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Machine learning and ontology 
in eCoaching for personalized 
activity level monitoring 
and recommendation generation
Ayan Chatterjee1,2*, Nibedita Pahari3, Andreas Prinz1 & Michael Riegler2

Leading a sedentary lifestyle may cause numerous health problems. Therefore, passive lifestyle 
changes should be given priority to avoid severe long-term damage. Automatic health coaching 
system may help people manage a healthy lifestyle with continuous health state monitoring and 
personalized recommendation generation with machine learning (ML). This study proposes a 
semantic ontology model to annotate the ML-prediction outcomes and personal preferences to 
conceptualize personalized recommendation generation with a hybrid approach. We use a transfer 
learning approach to improve ML model training and its performance, and an incremental learning 
approach to handle daily growing data and fit them into the ML models. Furthermore, we propose 
a personalized activity recommendation algorithm for a healthy lifestyle by combining transfer 
learning, incremental learning, the proposed semantic ontology model, and personal preference data. 
For the overall experiment, we use public and private activity datasets collected from healthy adults 
(n = 33 for public datasets; n = 16 for private datasets). The standard ML algorithms have been used to 
investigate the possibility of classifying daily physical activity levels into the following activity classes: 
sedentary (0), low active (1), active (2), highly active (3), and rigorous active (4). The daily step count, 
low physical activity, medium physical activity, and vigorous physical activity serve as input for the 
classification models. We first use publicly available Fitbit datasets to build the initial classification 
models. Subsequently, we re-use the pre-trained ML classifiers on the real-time MOX2-5 dataset 
using transfer learning. We test several standard algorithms and select the best-performing model 
with optimized configuration for our use case by empirical testing. We find that DecisionTreeClassifier 
with a criterion "entropy” outperforms other ML classifiers with a mean accuracy score of 97.50% 
(F1 = 97.00, precision = 97.00, recall = 98.00, MCC = 96.78) and 96.10% (F1 = 96.00, precision = 96.00, 
recall = 96.00, MCC = 96.10) in Fitbit and MOX2-5 datasets, respectively. Using transfer learning, the 
DecisionTreeClassifier with a criterion "entropy" outperforms other classifiers with a mean accuracy 
score of 97.99% (F1 = 98.00, precision = 98.00, recall = 98.00, MCC = 96.79). Therefore, the transfer 
learning approach improves the machine learning model performance by ≈ 1.98% for defined 
datasets and settings on MOX2-5 datasets. The Hermit reasoner outperforms other reasoners with 
an average reasoning time of 1.1–2.1 s, under defined settings in our proposed ontology model. Our 
proposed algorithm for personalized recommendations conceptualizes a direction to combine the 
classification results and personal preferences in an ontology for activity eCoaching. The proposed 
method of combining machine learning technology with semantic rules is an invaluable asset in 
personalized recommendation generation. Moreover, the semantic rules in the knowledge base and 
SPARQL (SPARQL Protocol and RDF Query Language) query processing in the query engine helps to 
understand the logic behind the personalized recommendation generation.
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Abbreviations
eCoach  Electronic coaching
ICTs  Information and Communication Technologies
ML  Machine learning
LPA  Low physical activity
MPA  Medium physical activity
VPA  Vigorous physical activity
IMA  Activity intensity
SVC  Support vector classifier
KNN  K-nearest neighbor
RF  Random forest
WHO  World Health Organization
OWL  Semantic Web language
RDF  Resources description framework
SPARQL  SPARQL Protocol and RDF Query Language
OWA  Open-world assumption
NSD  Norwegian Centre for Research Data
REK  Regional Committees for Medical and Health Research Ethics
FFS  Final feature set
MCC  Matthew’s correlation coefficient

According to the World Health Organization (WHO)1—an unhealthy lifestyle practice can increase the causes of 
death worldwide and can double the risk of lifestyle diseases, such as diabetes type II, cardiovascular disease, obe-
sity, elevated blood pressure, cancer, osteoporosis, depression, lipid disorders, and anxiety. Lifestyle diseases are 
the foremost cause of death  worldwide2,3. It has been an economic burden to an individual, household, employer, 
and government and leads to financial and productivity risks for economically poor and rich  countries1–5.

The idea of activity coaching may improve a personalized healthy lifestyle and physical activity level during 
the workdays and weekends to reduce sedentary time. The coaching procedure can be “in-person” or “technol-
ogy-driven” (via telematic means)6. In-person coaching with manual activity tracking and feedback generation 
is time-consuming and monotonous. An automatic coach (eCoach) can generate intuitive and personalized 
recommendations based on the insight from activity sensor data (as collected with wearable Bluetooth-enabled 
activity devices, such as Fitbit, MOX2-5) to reach daily, weekly, or monthly goals. Therefore, eHealth monitoring 
has gained popularity to convey Information and Communication Technology (ICT)-based remote and timely 
recommendations to the eCoach participants. In this study, we have conceptualized the design of a novel activity 
eCoaching concept for personalized recommendation generation as a case study that can collect activity data 
from the participants with wearable activity sensors, process those data with ML models to calculate individual 
activity levels, integrate personal preference data and ML outcomes in an ontology, and generate personalized 
recommendations to reach personal activity goals (e.g., daily, weekly, or monthly based on preferences).

Motivation. Behavior and health are strongly connected. Combining routine activities and nutritious habits 
can head toward a healthy behavior or  lifestyle7. Reduction of sedentary time with increased physical activ-
ity involves motivation and self-management. Tudor-Locke et  al.8 and Matthews et  al.9 showed that people’s 
activity level differs between weekends and weekdays; on weekdays and Saturdays, people stay active irrespec-
tive of gender. Gardner et al.10 stated that self-monitoring, problem-solving, and reforming the social or physi-
cal environment are the most promising strategies for behavior change besides recommending environmental 
restructuring, persuasion, and education to improve self-regulation skills. Intervention design to increase physi-
cal activity levels and reduce sedentary time varies significantly in content and usefulness (e.g., studies that focus 
on sports training and behavioral methods show conflicting results, while interventions that reduce sedentary 
time seem more promising)10–15. The use of active video games appears to be efficient in increasing physical 
activity, but the research results on their suitability to reach recommended levels are  inconsistent16,17. Web-
based or app-based interventions to improve physical activity and reduce sedentary behavior may be effective. 
The multi-component intervention seems to be more effective than the independent application intervention. 
However, the optimal number and combination of application functions and the degree of participant exposure 
need to be  confirmed18,19. Mobile applications used to improve young people’s physical activity should include 
customized and personalized feedback and provide  guidance20. Only a few available mHealth apps have been 
reviewed, and the data is of poor  quality20. Improving the quality of evidence includes supporting pre-release 
application performance monitoring, designing experiments, and conducting better reviews through rigorous 
bias risk  assessments20. If there is not enough evidence to support it, the practicality of digital interventions and 
applications will be in its infancy for some  time20. Workplaces or offices are often used for health promotion 
interventions. Recent preliminary evidence of workplace interventions to reduce sitting posture at work suggests 
that alternative workstations (e.g., sit-stand desk or treadmill) can reduce sitting posture in the workplace by 
thirty minutes to two hours. In addition, one review found that interventions that promote stair use, and per-
sonalized behavioral interventions increased physical activity. In contrast, another study found that the various 
interventions had no significant or inconsistent  effects21,22.

In physical activity recommendation, an activity tracker is maintained for daily step count, metabolic equiva-
lent of tasks, kilocalories, and distance to reduce sedentary behavior. Data are captured over time and analyzed 
with ML algorithms to give feedback if the personal activity goals can be achieved or not. The decision module 
recommends changing a person’s behavior, daily routine, and activity  plan10. The tracker gives an objective 
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measurement of activity level and enables self-monitoring. In addition, most modern consumer-based activity 
trackers already contain a variety of behavior change models or  theories23,24. A meta-analysis from Qiu et al.25 
and Stephenson et al.26 concluded that using a pedometer has a small but significant effect on reducing sedentary 
time. Just wearing an activity tracker (even without any form of guidance) can stimulate the passion for perform-
ing physical activities to improve the quality of life.

In contrast, studies on workplace interventions using activity trackers have reported conflicting  results27–29. 
Several studies use wearable sensor or activity tracker data to develop customized applications to support research 
(e.g., the social computer game Fish’n’Steps, which links the daily steps of an employee to the growth and activ-
ity of individual fish in a virtual fish tank. The more active, the faster the fish will grow and prosper)30. Another 
example is research on the influence of social support groups using pedometers and mobile apps to increase 
physical  activity31.

Different research has studied the use of ML algorithms and sensor data to recognize human activities (e.g., 
identifying daily activities from an accelerometer  signal32 or accelerometer-based activity  detection33, quan-
tification of the lifetime circadian pace of physical  activity34). Only a few studies have investigated the use of 
actionable, data-driven predictive models (e.g., a survey to create a predictive physical fatigue model based on 
sensors has determined the relevant characteristics for predicting physical fatigue; however, the model has not 
been proven to be sufficiently predictive to be  applied35). Dijkhuis et al.15 performed a study at Hanze University 
on personalized physical activity coaching with an ML approach to improve sedentary lifestyles. They collected 
activity data (or daily step data) to train ML classifiers to estimate the probability of achieving hourly step goals 
and feedback generation with a web-based coaching application. Hansel et al.36 designed a fully automated 
web-based coaching program. They used pedometer-based activity or step monitoring in a random group of 
Type 2 diabetes and abdominal obesity patients to increase their physical activity. Pessemier et al.37 used raw 
accelerometer data for activity recognition in participants, accepted personal preferences for physical activity 
recommendation planning, and generated personalized recommendations with a tag-based recommender and 
rule-based filter. Oliveira et al.38 performed activity monitoring with a Fitbit flex activity sensor on a group of 
random trials. They accomplished a statistical analysis to discover the efficacy of a multimodal physical activity 
intervention with supervised exercises, health coaching, and activity monitoring on physical activity levels of 
patients suffering from chronic, nonspecific low back pain. Their study showed that physical activity performs 
a vital role in managing chronic low back pain.

Semantic rule-based recommendation generation has opened a new direction in eCoaching. Chatterjee et al.39 
focused on creating a meaningful, context-specific ontology to model non-intuitive, raw, and unstructured 
observations of health data (e.g., sensors, interviews, and questionnaires) using semantic metadata to create a 
compact logical abstraction for rule-based health risk assessment for an eCoach paradigm. Villalonga et al.40 
conceptualized an ontology-based automated reasoning model for generating tailored motivational messages 
for activity coaching considering behavioral aspects.

Improvement of physical activity in combination with wearable activity sensors and digital activity trackers, 
eCoach features can be promising and motivating to its participants. An intelligent eCoach system can generate 
automatic, meaningful, evidence-based, and tailored lifestyle recommendations to attain personal lifestyle goals. 
The application of machine learning to eCoaching is new, and an electronic search on the PubMed database 
with a search string: ((ecoach OR e-coach) AND (activity monitoring) AND (Healthy lifestyle or lifestyle) AND 
(activity or physical activity or exercise) AND (Sensor or activity sensor or activity tracker) AND (recommendation 
or recommendation generation) AND (data driven or data-driven or classification or prediction or regression or 
forecasting or rule-based or rule based or ruleset or knowledge base or knowledge-based or hybrid)) has produced 
no publications. Different activity monitoring and lifestyle coaching mobile applications are available online; 
however, they lack appropriate design and development guidelines.

Novelty. The state-of-the-art of this study is to conceptualize tailored recommendation generation using 
ML technology and semantic rules for the management of personalized activity goals. A goal type can be either 
short-term (e.g., weekly) or long-term (e.g., monthly). The accomplishment of short-term goals attainment may 
help in achieving the long-term goals.

Limited research has been conducted on sensor data using ML technology (e.g., transfer learning, classifica-
tion, incremental learning), combining the predictive analysis result and personal preference data with semantic 
rules for a hybrid recommendation generation. The semantic rules used in this study have shown how to enhance 
understandability in recommendation generation! The feasibility analysis of ML classifiers and the incremental 
learning techniques in physical activity recognition have been substantiated to design an ML pipeline. However, 
this study demonstrates one step ahead by applying them in real-time activity coaching to improve the self-
monitoring of actual participants with goal management abilities. This study uses standard ML classification 
algorithms on the processed sensor data rather than raw signal data for activity level classification. To illustrate 
the pertinency of the study, we describe a theoretical concept to apply the existing and standard ML classifiers 
with a semantic ontology for personalized recommendations.

Recommendation technology has a broad application domain. We have considered studies that are only 
related to lifestyle recommendations, either personal or group-level. Recommendations can be rule-based, data-
driven, or hybrid. A qualitative comparison between our study and the related studies has been made in Table 1 
based on the following parameters: hybrid recommendations (data-driven and rule-based), transfer learning, 
incremental learning, observation with activity sensors, and preference settings for tailored recommendation 
generation. A high-level description of the parameters has been captured in “Appendix A.1”. The study conducted 
by Pessemier et al. is more focused on community-level activity recommendations, while our research has focused 
on personal activity coaching with personalized recommendation generation.
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Aim of the study. This theoretical study uses ML technology with semantic rules to generate personalized 
lifestyle recommendations to motivate eCoach participants to accomplish their activity goals. The research ques-
tions for this study are:

a. How to use standard ML classifiers with semantic rules in activity coaching for personalized and understandable 
recommendation generation?

b. Can transfer learning be useful with an incremental learning approach in low-volume sensor datasets?

eCoach prototype system design
An eCoach system is a set of computerized components that constitutes an artificial entity that can observe, 
reason about, learn from and predict a user’s behaviors, in context and over time, and that engages proactively 
in an ongoing collaborative conversation with the user to aid planning and promote effective goal striving using 
persuasive  techniques20. Our eCoach prototype system (see Fig. 1) comprises of the following four modules—
data collection and integration, data processing, recommendation generation, and recommendation delivery.

The data collection and integration module plan to collect personal preference data through questionnaires and 
activity data from wearable activity sensors. The data processing module analyzes daily activity data and predicts 
daily activity level with ML models (see Table 2). The personal preference data consists of goal settings (e.g., 
daily, weekly, or monthly), target goal (e.g., medium active or vigorous active), target score, mode of interaction 
or recommendation delivery (e.g., text, audio, or graph), and time of recommendation delivery. Individual can 
modify their preference data, over time. All the collected and predicted personal data are semantically annotated 
in an ontology model written in the web ontology language (OWL). In the recommendation generation module, 
the ontology helps to generate semantic rule-based recommendation messages with SPARQL query engine. 
Resource description framework (RDF) uses a triplet structure (subject, predicate, and object) to describe web 

Table 1.  A qualitative comparison between our study and the related lifestyle recommendation studies.

Study
Hybrid recommendation? (Data-
driven and rule-based) Transfer learning

Incremental learning for real-
time data processing

Real-time observation with 
activity sensor

Preference settings for 
personalized recommendation 
generation

Our work Yes Yes Yes Yes Yes
15 Data-driven No No Yes No
25 No No No Yes No
26 No No No Yes No
32 Data-driven No No Yes No
33 Data-driven No No Yes No
34 Data-driven No No Yes No
35 No No No Yes No
36 No No No Yes No
37 Yes No No Yes Yes
38 No No No Yes No
39 Rule-based No No No No
40 Rule-based No No No No

Figure 1.  The data flow in our eCoach prototype system.
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resources and data exchange. In the created rule base, logical rules comprise of propositional variables with 
(IMPLIES), (NOT), (AND), and (OR) operations. The rules are of two types: related to activity, and satisfiability. 
Satisfiability ensures that only one message can be triggered at a time. The recommendation messages are formal 
and informal (To-Do), and their delivery depends on personal preferences. The recommendation delivery module 
helps to display a reflection of activity in progress with continuous and discrete personal health data, notifica-
tions, and recommendation messages in a meaningful way in the eCoach mobile app.

Proposed work
Ontology modeling. The idea of ontology was created thousands of years ago in the philosophical domain. 
It has the design flexibility and can use existing ontologies to solve real-world modeling and knowledge rep-
resentation problems. It supports an open-world assumption (OWA) knowledge representation style with 
the following elements: classes, objects, properties, relationships, and  axioms39,41. Properties are of two types: 
ObjectProperties and DataProperties. Each property has a domain-range, restriction rule, restriction filter, and 
restriction type as Some (existential), Only (Universal), Min (Minimum Cardinality), Exact (Exact Cardinality), 
and Max (Max Cardinality). An ontology follows a connected, acyclic, and directed tree  structure39,41. Owl:Thing 
acts as a super-class in an ontology class hierarchy. Our ontology has been explained in Textbox 1 and its high-
level structure has been depicted in Fig. 2 using OntoGraf tool in Protégé. The asserted class hierarchy of the 
ontology has been depicted in Fig. 3. The objectProperties, domain, range, property type, and cardinality of the 
ontology are defined in Table 3.

The purpose of the ontology is semantic representation of the knowledge (such as activity data, recommenda-
tion, and ML prediction outcomes), reasoning, and rule-based decision making with the generalization rules in 
the induction phase. The proposed ontology follows the following knowledge representation phases: abstraction 
or lexicon phase (L) for mapping rules, abduction phase (B) for hypothesis generation rule, deduction phase 
(C) for operator-reductor rule, and induction phase (D) for generalization rule. The resultant recommendation 
generation tree (T) follows a binary structure, and the syntactic knowledge representation in T helps to address 
understandability problem in personalized recommendation generation (see Fig. 4).

A set of propositional variables, logics, constants, and operators (such as NOT, AND, OR, IMPLIES, EQUIV, 
and quantifiers) are linked with Ontology representation and processing. In this study, the recommendation gen-
eration aims to maximize weekly individual physical activity level to minimize sedentary time. The maximization 
problem to stay medium activate for a week ((∑ days (1…0.7))) has been expressed in Textbox 2.

Table 2.  The rules for “Activity Level” feature creation based on standard guidelines for activity level 
 classification5. *MPA = 2VPA.

Activity level Rule* Score

Sedentary ((Steps < 5000) ∧ (VPA*2 + MPA) *7 < 90 ∧ LPA ≥ 0)) ∨ (Steps < 5000) 0

Low active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 90 ∧ (VPA*2 + MPA) *7 < 210) ∨ (Steps > 4999 ∧ Steps < 7500) 1

Active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 210 ∧ (VPA*2 + MPA) *7 < 300) ∨ (Steps > 7499 ∧ Steps < 10,000) 2

Medium active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 300 ∧ (VPA*2 + MPA) *7 < 360)) ∨ (Steps > 9999 ∧ Steps < 12,500) 3

Highly active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 360) ∨ (Steps > 12,499) 4

Figure 2.  The high-level structure of the proposed ontology.
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Figure 3.  The asserted class hierarchy of our proposed ontology.

Table 3.  Key objectProperties, domain, range, and cardinality of the ontology.

Object properties Domain Range Cardinality

hasHealthRecord Participant HealthRecord Some

hasPersonalData Participant PersonalData Some

hasPreferences Participant Preferences Some

hasReceivedRecommendation Participant Recommendation Some

hasStatus Participant ParticipantStatus Some

hasbeenCollectedBy ActivityData ActivityDataValue Some

hasTimeStamp ActivityDataValue, Questionnaire, Recommendation TemporalEntity Some

has Measurement Capability ActivityDevice Measurement Capability Only

hasOutput ActivityDevice Sensor Output Some

observes ActivityDevice Property Only

detects ActivityDevice Stimulus Only

feature of interest Observation Feature of Interest Only

observation result Observation Sensor Output Only

observedBy Observation Sensor Only

is property of Property Feature of Interest Some

hasProperty Feature of Interest Property Some
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According to the World Health Organization (WHO) guidelines, adults (age:18–64) should do at least 
150–300 min (2.5–5 h) of moderate-intensity aerobic exercise (MPA); or at least 75–150 min of high-intensity 
aerobic exercise (VPA) or perform an equivalent combination of moderate and high-intensity activities within 
a week to stay  active5. To determine the weekly score of personal goal achievement, we have summed up the 
daily activity score (see Table 2). eCoaching aims goal score maximization with constant activity monitoring 
and recommendation generation. To conceptualize the personalized recommendation generation in our eCoach 
system, we have considered an example of personal preferences table (see Table 4).

Our proposed ontology has integrated daily activity level classification results, personal preferences, and 
recommendation messages with its content and intent. The activity goals can be system-defined (i.e., generic) or 
user-defined, as athletes may have different activity goals than ordinary people. For the verification, we have used 
the ontology for automatic rule-based recommendation generation with SPARQL queries and semantic rulesets 
maintained in a knowledge base. The ontology has annotated recommendation messages beyond static literal to 
describe its characteristics, metadata, and content. Additionally, the semantic rules have helped to interpret the 
logic behind recommendation generation with logical (AND), (OR), and (NOT) operations. “Appendix A.2” 
describes a set of defined recommendation messages for ontology verification. However, the rules are adaptable. 
SROIQ description logic has been used as the conventional logic for reasoning (see “Appendix A.3”). For each 
condition described in “Appendix A.3”, the recommendations will be generated following the ((Rule) IMPLIES 
(Proposition variable) → Recommendation message) structure. This study has divided six semantic rules into 
activity level classification (5) and satisfiability (1).

Quantifiable parameters associated with certain participants’ activities on the timestamp are obtained from 
SPARQL queries at preference-based intervals. The rules (1–6) in “Appendix A.3” assign truth values to proposi-
tion variables to ensure reliability. We have confirmed that the correct recommendation message will be triggered 
for a specific context with the ontology reasoner. Therefore, it is important to guarantee that no propositional 
variable pattern makes the entire rule unsatisfiable. We have established that only one message will be triggered at 
a time. Here, we have assumed that two “once a day” messages can neither be initiated concurrently nor can there 
be a model output by the ontology reasoner every time for every possible variable combination. Suppose we put 
the different variables used in the first five rules in “Appendix A.3” into the propositional variables (see “Appen-
dix A.3”). In that case, it will produce an exponential number of “possible participants”. A typical way to ensure 
the presence of a model negates all our rules and provides the same. Thus, this formula is truly unsatisfactory. 

Figure 4.  The structure of the recommendation generation binary tree.

Table 4.  Personalized preferences for participants.

Preferences Value

Goal setting Weekly score

Nature of goal System defined—Generic [set by the WHO]

Frequency of recommendation delivery Weekly

Target goal To stay medium active for the entire week

Target score 21

Mode of recommendation Text (e.g., push notification on the eCoach app.)

Time of recommendation 8:00 am
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Since two recommendation messages cannot be triggered concurrently to meet the exact requirements, we have 
added a rule (Rule-6), and the variable used in the proposal starts “once a day”. If (Rule-6) is false, the entire 
ruleset (considered as significant conjunction) will lead to false, and then there will be no model as output, and 
we will be able to "debug" our rules if required. If it is set to true, we will have a formal assurance that no matter 
the true value we put in the knowledge base, two “once a day” messages will not be triggered concurrently. All 
the rule execution internally follows a binary tree structure where the non-leaf nodes hold the semantic rules (A 
| A → B) to be executed (see Fig. 4), and the root node has the condition (A). The leaf nodes contain the results 
(B or recommendations), and the edges hold a decision statement (True or False). In this manner, satisfiability 
and understandability problems are addressed in this study.

Personalized activity recommendation generation. For personalized activity recommendation 
generation, the updating processes for the global  (GC) and local  (LC) classifiers are described in Algorithm 1. 
Models  (LC) trained with personalized activity data are disjointed with the trained models for other partici-
pants for a month as datasets are separate and personal. A global classifier  (GC) is re-built at the end of every 
month, combining all individual’s monthly historical activity data. The process is repeated to handle growing 
data and increase the model’s learning, stability, and performance. The process is stopped for an individual if 
their eCoaching cycle is ended.

Textbox 1. The Ontology and Knowledge Expression. An ontology can be defined as a tuple 
Ω = {Ć, R}, where Ć is the set of concepts and R is a set of  relations41.

L = Levels  (Oh) = Total number of levels in the ontology hierarchy, 0 ≤ n ≤ L, where n ⋲  Z+ and n = 0 represents 
the root node.
Cn,j = a model classifying O at a level n; where, j ⋲ {0, 1, …, |Cn|}
|C|= Number of instances classified as class C
E = Edge  (Cn,j,  Cn-1, k) = edge between node  Cn,j and its parent node  Cn-1, k

We have used the concept and represented our ontology with four tuples:
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O = {Ca, R, I, A}

Ca: {Ca1,  Ca2, …..,  Can} represents “n” concepts or classes and each  Cai has a set of “j” attributes or properties 
 Ai = {a1,  a2,……..,  aj} provided n, i, j ⋲  Z+.
R: A set of binary relations between the elements of Ca. It holds two subsets –

a. H: Inheritance relationship among concepts
b. S: Semantic relationship between concepts with a domain and range

I: Represents a knowledge base with set of object instances.
A: Represents a set of axioms to model O. A includes domain specific constraints to model an Ontology with 
 Ca, R, and I.

The knowledge (K) in the ontology has been expressed with two tuples:
K = {OntoActivityReco,  RulesActivityReco},

The elements of OntoActivityReco and RulesActivityReco are:
OntoActivityReco = {KL,  KB,  KC,  KD}
RulesActivityReco = {RL,  RB,  RC,  RD}

KL,  KB,  KC,  KD are the knowledge bases of the personalized physical activity recommendation’s lexicon or 
abstraction, abduction, deduction, and induction interfaces. In contrast,  RL,  RB,  RC,  RD are set of rules to 
match with the abstraction, abduction, deduction, and induction interfaces, respectively.  KB,  KC, and  KD are 
representations of properties A of concepts (C), data or entities (e.g., activity variables), and they follow a 
simple representation of A(X|Y) or A(Y|X) based on the relational mapping; where, A: Attributes or proper-
ties in O, X, Y: Elements of activity variables. All the rule execution internally follows a binary tree structure 
where the non-leaf nodes hold the semantic rules (A | A → B) to be executed, the leaf nodes hold the results 
(B or recommendation messages), and the edges hold a decision statement (True or False). Rulesets help to 
explain the logic behind a recommendation generation.

Textbox 2. Expression for the activity maximization problem. Maximize,

Subject to,

where,

V = A set of activity variables = {V1, V2, ……… ………., Vn | n ⋲ Z +}
P = A set of propositional variables = {P1, P2, ……… ………., Pn | n ⋲ Z +}
CV = Set of activity variable combinations to create semantic rules in a description logic
R = A set of recommendations = {R1, R2, ……… ……….., Rn | RX ⋂ Ry = {ø}, n, x, y ⋲ Z +}
∑ P = 1 ensures satisfiability

Methods
In this study, we have established a theoretical eCoaching concept for personalized activity monitoring, goal 
management, and lifestyle recommendation generation following the standard guidelines. For the same, we 
have used established statistical methods and ML models to analyze both public and real-time activity datasets 
for adults (age range 18–64). Afterwards, we have shown a direction to combine the result of the classifiers with 
semantic rules to generate personalized recommendation for automatic activity coaching.

The overall process (see Fig. 5) includes data collection, data pre-processing, semantic presentation of data, 
statistical analysis, data visualization, feature ranking and selection, ML model training, testing, and evaluation, 
and semantic rules for personalized recommendation generation. Activity data for elderly, children, athlete, 
bodybuilder, and pregnant women are beyond the scope of this study as we have not collected data for them. 
We have followed the Standards for Reporting Implementation (StaRI) for this study (see “Appendix B”). All 

∑

ModerateActivitytime > 150
∑

GoalScoredaily ≥ 21

ModerateActivitytime ≥ 21.45

GoalScoredaily ≥ 3

CV → P

P → R
∑

P = 1

ModerateActivitytime = 2 ∗ VigorousActivitytime
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methods have been carried out following the regulations, and relevant guidelines in the “Ethical approval and 
consent to participate” section.

Data collection. Public fitbit dataset. We have used an anonymous Fitbit dataset (“dailyActivity_merged”) 
for adults available via “Zenodo”42 for the initial ML model training and testing. The description of the dataset 
is outlined in “Appendix A.4”. We found two datasets from: mturkfitbit_export_3.12.16-4.11.16 and mturkfit-
bit_export_4.12.16-5.12.16. Therefore, we have merged two datasets into a single dataset. The dataset has various 
features related to the activity; however, we have selected the following relevant features—timestamp, total daily 
steps, LPA minutes, MPA minutes, VPA minutes, and sedentary minutes based on feature analysis to maintain 
the focus of this study. We have used this public dataset to discover the best-performing classifiers with the 
defined features in a multiclass classification problem. Then, we applied the best performing model to the real-
time datasets using transfer learning and an incremental learning approach for daily activity level classification.

Real-time MOX2-5 dataset. We have collected anonymous activity data from sixteen adults in Sothern-Norway 
(Agder region) for one month using the MOX2-5 wearable medical-grade (CE approved) activity  sensor43 fol-
lowing the ethical guidelines and a signed consent. Based on an agreement with “University of Agder, Grimstad, 
Norway”, NSD—The Norwegian Centre for Research Data AS has assessed that the processing of personal data 
in this project is in accordance with data protection legislation. The detailed description of the MOX2-5 dataset 
is summarized in “Appendix A.5”. We will make MOX2-5 datasets available in “Appendix C” for further studies in 
an anonymous way, once the paper will be accepted.

After feature analysis the selected features are timestamp, activity intensity (IMA), sedentary seconds, weight-
bearing seconds, standing seconds, LPA seconds, MPA seconds, VPA seconds, and steps per minute. The “step” 
and “IMA” are the most valuable and strong features of the MOX2-5 datasets, as other attributes (except the 
timestamp) are almost derived (e.g., LPA, MPA, and VPA are derived from IMA as defined in Table 5). IMA has 
a strong relation with steps. In MOX2-5 sensor, sedentary time refers to the non-activity duration, including 
leisure time and sleep time. The relation between sedentary and active (LPA/MPA/VPA) can be written as—

Data processing and preparation. Nature of data and data volume. The selected temporal activity data 
are continuous for both datasets. The detailed descriptions about the data attributes can be found in “Appendices 
A.6” and “A.7”. For the classification, we have converted the continuous data to discrete form by removing the 

(1)
∑

(

sedentary, active, weight− bearing, standing
)

= 60 seconds

Figure 5.  The process of combining classification result with semantic rules and preferences for personalized 
recommendation generation.

Table 5.  Relation between IMA and activity level classification.

Activity type Rule

LPA 0 ≤ IMA ≤ 400

MPA 401 ≤ IMA ≤ 800

VPA IMA ≥ 801
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timestamp feature. Furthermore, we have removed participants’ data which are less than one month, redundant, 
noisy, incomplete, or missing. In the public Fitbit datasets, we have decided to consider activity data for 33 
participants as they have performed activities for more than a month, resulting in 1397 records in total. In the 
MOX2-5 private datasets, we have considered data for 16 participants as they have performed activities more 
than a month, resulting in 539 records in total (see details in “Appendix A.6”).

Statistical testing. Normality test with methods, such as Shapiro–Wilk, D’Agostino’s Kˆ2, and Anderson–Dar-
ling  test44 on each feature of the datasets have revealed that data samples do not have Gaussian characteristics. 
The normality test has been performed following the hypothesis testing method with P value > α = 0.05 (i.e., 
sample looks like gaussian) and P value < α = 0.05 (i.e., sample does not look like gaussian)44.

Feature selection for individual datasets. For the feature selection, we have performed methods, such as Select-
KBest, recursive feature elimination (RFE), principal component analysis (PCA), ExtraTreesClassifier, ML pipe-
line with PCA and SelectKBest, and the correlation analysis. SelectKBest is a univariate feature selection and 
feature ranking method with statistical testing (e.g., chi-squared). RFE selects optimal features and assigns a 
rank after removing redundant features recursively. PCA is an unsupervised data reduction method that uses 
linear algebra to reduce data dimensions. It ranks features based on variance ratio. ExtraTreesClassifier is a 
bagging-based feature importance (or ranking) method.

Moreover, correlation analysis is a statistical method used to measure the strength of the linear relationship 
between two variables and compute their association. A high correlation signifies a strong relationship between 
the two variables, and a low correlation means that the variables are weakly related. The sample correlation coef-
ficient (r) measures the closeness of association of the variables. "r" ranges from − 1 to + 1, where − 1 indicates a 
perfectly linear negative, i.e., inverse, correlation (sloping downward) and + 1 shows a linear positive correlation. 
"r" close to 0 suggests little, if any, correlation. Correlation methods are of the following two types: (a) Pearson 
correlation: it evaluates the linear relationship between two continuous variables, (b) Spearman correlation: It 
considers the monotonic or non-Gaussian relationship. Our used datasets have shown a non-Gaussian relation-
ship with normality testing methods. The correlation  analysis45 with the “spearman” method revealed the strength 
of the linear relationship between features and helped to determine which feature to retain or  not44,46–49. We have 
considered removing features if they showed a powerful dependency score (r ≥ 0.72).

Combining features from datasets. First, we have performed feature ranking and feature selection from public 
Fitbit datasets based on adopted correlation method and created an optimal feature-set (FS-1). Second, we have 
performed the same feature selection method on private MOX2-5 datasets and created an optimal feature-set 
(FS-2). Then, we have performed an intersection of FS-1 and FS-2 to create a common feature space (or final 
feature-set) to make transfer learning approach relevant for this study (see Fig. 6).

Data labeling for classification. The “active” feature represents five classes—sedentary (0), low active (1), active 
(2), medium active (3), and highly active (4). The rule for the “Activity Level” feature class creation is defined 
in Table 2. We have created the feature class “Activity Level” based on the daily step-count following the stand-
ard  guidelines50–52. In the multi-feature-based classification problem, we have derived the feature class “Activity 
Level” based on the steps, LPA, MPA, and VPA following the WHO activity guidelines for  adults5. The features, 
such as age, gender, weight, weight-bearing, standing, are out of the scope. The class distributions in multi-class 
classification for both the datasets are depicted in Figs. 7 and 8.

Model training and testing. ML models. This study has performed multi-class classification with stand-
ard ML algorithms, as in Table 6 and followed by an empirical comparison testing. We have used ML classifiers 
instead of deep learning classifiers because of the following reasons: convex optimization technique in gradient 
descent to find global minima, small amounts of training data, lesser model training time, training on a central 
processing unit (CPU), computationally inexpensive in terms of time and space, and transparency.

Figure 6.  Combining features from both the datasets to prepare final feature-set.
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Regularizations (L1-norm and L2-norm) have not been added to the models due to the limited set of features. 
Support vector classifier (SVC)53 is a supervised learning method to classify support vectors (or data points) 
using a decision plane or hyperplane to maximize the margin. It follows an iterative approach to generate the 
best hyperplane. SVC uses the “kernel” trick to convert low-dimensional input space to high-dimensional input 
space to make datapoints separable. The Linear kernel uses dot (.) product in two observation vectors. Radial 
basis function (RBF) kernel uses gamma (γ) (⋲ {0,1}) to map input datapoint space to infinite-dimensional space. 
Naïve Bayes (NB)54 is a supervised classification method based on the Bayes theorem, assuming that features are 
independent of each other. In Bayesian classification, posterior probabilities are determined to decide which 
feature-set will belong to which class based on the prior probabilities. NB can be classified into the following 
categories based on the nature of datasets: Gaussian, multinomial, and Bernoulli. Both SVC and NB are efficient 
classifiers on low data volume. K-nearest neighbors (KNN)55 is a supervised non-parametric method to cluster 
similar group data points based on different distance metrics, such as Euclidean, Hamming, Manhattan, and 
Minkowski. Decision Tree (DT)54,55 is a supervised predictive model to classify datasets based on the condi-
tions. In classification DT, the decision variables at each node are categorical. It uses either “Gini” or “Entropy” 

Figure 7.  Class distribution for the public Fitbit datasets.

Figure 8.  Class distribution for the private MOX2-5 datasets.

Table 6.  Machine learning classifier models with optimization algorithms.

Models Optimization algorithms

SVC (kernel = linear or rbf) Gradient descent

Naïve Bayes (NB) Gradient descent

Decision tree (DT) Information Gain, Gini

K-nearest neighbor (KNN) ‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’

Random forest (RF) Ensemble—Bagging
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criteria to generate binary splits. Random forest (RF)55 classifier uses a bagging ensemble learning method that 
combines multitude of decision trees during training time to improve prediction accuracy and reduce model 
variance. The final prediction of RF model is determined by estimating the average of all predictions from the 
individual estimators.

Furthermore, we have used a DummyClassifier as a simple baseline to compare against other more complex 
classifiers as mentioned in Table 6. It makes predictions that ignore the input features. We have used its strategy 
parameter as “most_frequent”.

Training and testing. To better utilize the data, initially, we have shuffled the dataset, then split the dataset 
into training and testing. To boost the performance of the machine learning model, we have used a k-fold cross-
validation where k ≥ 5. Furthermore, we have used Grid  Search56 hyperparameter optimization technique for 
model tuning. The technique has helped in an appropriate selection of learning rate (alpha (α)) in the gradient 
descent algorithm, and a proper selection of other components, such as criterion, and max_depth in the tree-
based models. Gradient descent follows a convex optimization technique with an upper limit (L) and a lower 
limit (µ) on curvature f:

where  d2f.(x) is the Hessian (H), µ > 0, I = Identity matrix, and L = Lipschitz continuous.
We have executed each ML classification model for five times and calculated their mean performance scores 

for a comparative analysis. The general pseudocode we have used to train and test the classifier models is stated 
as follows: 

Evaluation metrics. In this multi-class classification problem, we have focused only on discrimination 
analysis. The discrimination analysis metrics are precision, recall, specificity, accuracy score, F1 score, classifica-
tion report, and confusion matrix. A confusion matrix is a 2-dimensional table (“actual” vs “predicted”), and 
both dimensions have “True Positives (TP)”, “False Positives (FP)”, “True Negatives (TN)”, and “False Negatives 
(FN)”44,46–49. Equations to calculate classification metrices are:

(2)µId ≤ d2f(x) ≤ LId,

(3)Accuracy(A) =
(TP+ TN)

(TP+ FP+ FN+ TN)
, 0 ≤

(A)

(100)
≤ 1

(4)Precision (P) =
(TP)

(TP+ FP)

(5)Recall (R) or Sensitivity (S) or True positive rate =
(TP)

(TP+ FN)
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Accuracy tells how close a measured value is to the actual one. Recall or sensitivity suggests the exact number 
of positive measures. Precision means how relative the measured value is to the actual one. Furthermore, we used 
cross-validation score to determine overfitting and underfitting, validation curve to determine bias versus vari-
ance, and learning curve to visualize the convergence status of training score with the cross-validation score. Bias 
is an error due to erroneous assumptions in the learning algorithm, and variance is an error from sensitivity to 
small fluctuations in the training set. High bias leads to underfitting, and the high variance results in overfitting. 
Accuracy and F1 scores can be misleading because they do not fully account for the sizes of the four categories 
of the confusion matrix in the final score calculation. MCC is more informative than the F1 score and accuracy 
because it considers the balanced ratios of the four confusion matrix categories (for example, true positives, true 
negatives, false positives, and false negatives). The F1 score depends on which class is defined as a positive class. 
However, MCC does not depend on which class is the positive class, which has an advantage over the F1 score 
and avoids incorrectly defining the positive  class57.

We have also tested if the standardization technique on the entire dataset before learning and the “Feature 
Union” tool during feature extraction can improve the performance of the models or not by reducing data leakage 
(if any!). In standardization scaling technique, values spread with mean (µ) = 0 and standard deviation (SD or 
σ) = 1. Furthermore, our ontology model has been evaluated against reasoning time, and SPARQL query execu-
tion time in Protégé and Jena Fuseki server. We have used reasoner, such as HermiT, Pellet, Fact++, RacerPro, 
and KAON2 available in Protégé for the verification of structural and logical consistencies in the ontology model.

Rules for recommendation generation. A knowledge base is a database for knowledge management 
and provides means for information to be collected, organized, shared, searched, and inferred. It comprises 
two types of statements: asserted and inferred. The inferred statements are logical consequences of asserted 
statements and logical rules. A knowledge base is used to store and manipulate knowledge in computer sci-
ence, interpreting invaluable information. It is often used in artificial intelligence applications and research for 
better understanding of a subject in computer-understandable form using appropriate symbols. In general, a 
ruleset is applied to the systems that involve human-designed or managed sets of rules. A knowledge base may 
contain semantic rules with human-understandable symbols and words. Semantic misunderstanding occurs 
when people assign different meanings to the same word or phrase. In this study, we have stored semantic rules 
(see “Appendix A.3”) in a knowledge base that combines ML classification results with preference variables to 
generate personalized recommendations based on the query execution in the SPARQL query engine (see Fig. 5).

Conceptualization of automatic activity coaching. The eCoach prototype system aims to collect 
individual activity data from wearable activity sensors at a daily level (day-n) and classify the activity data into 
the identified five classes using ML algorithms. In the procedure, participants can set personal preferences in the 
eCoach mobile app for personalized recommendation generation and its meaningful delivery. In this study, we 
have focused on the conceptualization of weekly short-term activity recommendation generation in eCoaching.

Different classification models are available; however, we can’t determine “a priori” which classifier will 
perform the best. It requires enormous data for training, validation, and testing. We have collected real-activity 
data for sixteen adults using the MOX2-5 activity sensor over minimum of thirty days. According to the device 
manufacturer (Maastricht Instruments B.V.), the device’s wear locations are thighs, hips, arms, and sacrum. We 
have placed the device in the trouser pocket for this study to collect activity data from the hip or thigh location. 
We use the MOX downloadable android mobile application to capture personal activity parameters into the 
download folder of the android smartphone or tablet. Then, we use our developed android supported eCoach 
mobile application to periodically transmit activity data to the eCoach back-end server. The eCoach server is 
protected by “eduVPN” and a firewall to filter redundant traffics. The back-end data collection module at the 
eCoach server has been developed with the Spring-boot framework (V. 2.5.x). The front-end (user interface) and 
the back end of the eCoach system is connected using REST (representational state transfer) microservice APIs 
(application programming interfaces). We have set up PostgreSQL (V. 12.9) for data storage at eCoach server 
following an authentication and authorization mechanism. The machine learning module for real-time model 
training, classification, model saving as pickle files, and model re-training has been developed with Python V 
3.8.5. At the end of ML model execution, results for individual participants are stored in the database to display 
with android eCoach app. In the eCoach app, we have developed a push-notification generation mechanism 
with Google Material Design guidelines to notify participants about their daily or weekly, or monthly progress 
in activities and thereby, generate personalized recommendations to motivate them to reach short-term and 
long-term activity goals.

Sixteen participants used the MOX2-5 devices regularly to record their daily activity data during the study 
in progress. We have applied a mean imputation method to imputing missing activity data during real data col-
lection. The format of the collected data from the MOX2-5 is comma-separated values (CSV). All the activity 

(6)Specificity (S) =
(

1− Sensitivity
)

=
(TN)

(TN+ FP)

(7)F1 score (F1) =
(2 ∗ P ∗ R)
(P+ R)

, 0 ≤
(F1)

(100)
≤ 1

(8)

Matthew’s correlation coefficient(MCC) =
(TP(TP ∗ TN− FP ∗ FN))

√
((TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN))

,−1 ≤
(MCC)

(100)
≤ +1.
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data have been captured “per minute” basis. The developed eCoach app reads those files periodically using a 
schedular service to send them in the data collection module for storage following a consistency check. The ML 
module has further processed individual data from “per minute” to “per hour” and stored it in a separate table. As 
a result, it has produced a set of 539 records, which is not sufficient to determine the factual accuracy of the best 
classifier model. Therefore, we have adopted the concept of transfer learning and incremental learning. Initially, 
we have trained all the potential classifiers (see Table 4) with public Fitbit datasets using Kfold = 5 cross-validator 
and radom_state = 7. Afterward, we have selected the best performing classifier and saved them as pickle files. 
Then, we have re-used those pre-trained models for individual activity level classification. In this study, we have 
classified the MOX2-5 sensor data with collection duration of more than 30-days with the following method—

• Pre-train model with public Fitbit datasets and select the best classifier,
• Training of pre-trained models with individual activity data (collected with MOX2-5 sensor) and model 

storing for individual participants, and
• Activity classification for day-n with individual models and re-train the models with the individual classifica-

tion result of that day for the following day (e.g., day-n + 1) classification.

We have selected the activity classification result from the individual classifiers with the highest mean accu-
racy. The adopted transfer learning and incremental learning approaches have been expressed with the following 
pseudo code. 

The usefulness of the eCoaching concept to achieve personalized short-term goals (e.g., weekly) and long-
term goal (e.g., 4 weeks) with transfer learning and incremental learning approaches have been conceptualized 
for an individual in Fig. 9, where “n” signifies the total number of individuals, “N” signifies total number of day’s 
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data used for transfer learning, and “r” signifies the total number of daily activity record during model training 
and classification.

Validation study. Verification of the classifiers. To verify the performance of the classifiers in public Fitbit 
and MOX2-5 datasets, we have the following three visualization approaches: (a) validation curve: it is an essen-
tial diagnostic tool that shows the sensitivity between changes in the accuracy of an ML model and changes in 
specific model parameters. A validation curve is usually drawn between some model parameters and the model’s 
score. There are two curves in the validation curve—one for the training set score and one for the cross-valida-
tion score. Validation curves evaluate existing models based on hyperparameters, (b) learning curve: it shows 
the estimator’s validation and training scores for different numbers of training samples. It is a tool to see how 
much we benefit from adding more training data and whether the estimator suffers more from variance or bias 
errors, and (c) scalability: it defines the ability of a classifier to adjust the classification results with an increasing 
number of training samples.

Verification of personalized recommendation generation and visualization. For personalized recommendation 
generation in the eCoach prototype system, we have maintained individual personal preferences to understand 
personal interests (e.g., see Table 4). Preferences data are stored in the knowledge base. Participants can view 
and update their preference data in the eCoach mobile app. The design and specification of the eCoach mobile 
app using a user-centered design approach are beyond the scope of this study. To determine the weekly score of 
personal goal achievement, we have summed up daily activity score, and the measure of daily activity score is 
mentioned in Table 2.

Ethical approval and consent to participate. For our project, we received ethical approval from Nor-
wegian Centre for Research Data (NSD) (#797208) and Regional Committees for Medical and Health Research 
Ethics (REK) (#53224). For this study, informed or signed consents have been obtained from all the participants. 
Here, we have not disclosed any identifiable data of the participants using text, numbers, or figures.

Figure 9.  The usefulness of eCoaching to achieve short-term goals and long-term goal with transfer learning 
and incremental learning or training approaches.
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Results
Experimental setup. We used Python 3.8.5 supported language libraries, such as pandas (v. 1.1.3), NumPy 
(v. 1.21.2), SciPy (v. 1.5.2), Matplotlib (v. 3.3.2), Seaborn (v. 0.11.0), Plotly (v. 5.2.1), scikit-learn or sklearn (v. 
0.23.2), and Graph Viz (v. 2.49.1) to process data and build the machine learning models. We set up the intended 
Python environment in Windows 10 Enterprise system using Anaconda Distribution Individual Edition and 
used the Spyder 4.1.5 IDE for the development, debugging, and data visualization. We have used Protégé 5.x 

Figure 10.  Correlation matrix for the public Fitbit datasets.

Figure 11.  Correlation matrix for the private MOX2-5 datasets.

Table 7.  Performance of the machine learning classifiers for public Fitbit datasets.

ML classifier models Mean accuracy Precision Recall F1 MCC

SVC (kernel = ’linear’) 90.00 90.00 90.00 90.00 87.16

SVC (kernel = ’rbf ’) 92.14 92.00 92.00 92.00 90.03

GaussianNB () 81.78 82.00 82.00 82.00 76.82

DecisionTreeClassifier (criterion = "gini") 97.10 97.00 97.00 97.00 96.10

DecisionTreeClassifier (criterion = "entropy") 97.50 97.00 98.00 97.00 96.78

RandomForestClassifier (n_estimators = 50) 95.99 96.00 96.00 96.00 95.29

RandomForestClassifier (n_estimators = 100) 95.99 96.00 96.00 96.00 95.40

KNeighborsClassifier (n_neighbors = 2) 89.40 89.00 89.00 89.00 86.10

KNeighborsClassifier (n_neighbors = 4) 92.50 92.00 92.00 92.00 90.36

DummyClassifier 33.21 11.00 33.00 11.00 00.00
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open-source editor for ontology design and implementation. Moreover, we have used the Jena Framework to 
query ontology classes, predicates, subject, and objects and captured the corresponding execution time. Fig-
ures 1, 2, 3, 4, 5, 6 and 9 were created with Microsoft Visio Professional 2021 software.

Experimental results. This section describes—first, feature correlation and selection, second, the analyses 
on public Fitbit and real-time private MOX2-5 datasets with ML classifier models, third, the selection of the best 
model with their best parameters to train MOX2-5 activity data for personalized activity classification, forth, 
evaluation of model accuracy under data preparation and feature extraction pipeline, and fifth, the performance 
analysis of ontology reasoners in Protégé.

Table 8.  Performance of the machine learning classifiers for real-time private MOX2-5 datasets.

ML classifier models Mean accuracy Precision Recall F1 MCC

SVC (kernel = ’linear’) 96.03 96.00 96.00 96.00 95.10

SVC (kernel = ’rbf ’) 47.01 43.00 47.00 45.00 30.69

GaussianNB () 93.40 93.00 93.00 93.00 91.80

DecisionTreeClassifier (criterion = "gini") 96.10 96.00 96.00 96.00 96.10

DecisionTreeClassifier (criterion = "entropy") 96.10 96.00 96.00 96.00 96.10

RandomForestClassifier (n_estimators = 50) 95.80 95.00 96.00 95.00 94.88

RandomForestClassifier (n_estimators = 100) 95.80 95.00 96.00 95.00 94.88

KNeighborsClassifier (n_neighbors = 2) 70.98 70.00 71.00 70.00 66.31

KNeighborsClassifier (n_neighbors = 4) 66.54 66.00 67.00 66.00 61.30

DummyClassifier 35.18 35.00 35.00 35.00 00.00

Table 9.  Performance of the machine learning classifiers after transfer learning.

ML classifier models Mean accuracy Precision Recall F1-score MCC

SVC (kernel = ’linear’) 84.70 85.00 84.00 84.00 80.29

SVC (kernel = ’rbf ’) 69.30 69.00 70.00 69.00 64.48

GaussianNB () 64.40 64.00 65.00 64.00 57.29

DecisionTreeClassifier (criterion = "gini") 97.51 97.00 98.00 97.00 96.73

DecisionTreeClassifier (criterion = "entropy") 97.99 98.00 98.00 98.00 96.79

RandomForestClassifier (n_estimators = 50) 96.90 96.00 96.00 96.00 96.08

RandomForestClassifier (n_estimators = 100) 97.10 97.00 97.00 97.00 96.41

KNeighborsClassifier (n_neighbors = 2) 81.35 81.00 82.00 81.00 77.79

KNeighborsClassifier (n_neighbors = 4) 83.25 81.00 82.00 81.00 79.78

DummyClassifier 27.31 27.00 27.00 27.00 00.00

Figure 12.  The training vs. testing curve for DecisionTreeClassifier in transfer learning.
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Figure 13.  The learning curve for DecisionTreeClassifier in transfer learning.

Figure 14.  The validation curve for DecisionTreeClassifier in transfer learning.

Figure 15.  The scalability curve for DecisionTreeClassifier in transfer learning.
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The correlation matrices obtained from both the datasets are depicted in Figs. 10 and 11 to show the strength 
of linear relationship between features to compute their association. We have prepared our final feature set (FFS) 
based on the outcome of feature selection methods and feature correlation score. The feature “calorie” is not 
related to the context of this study. Therefore, the final feature-set can be written as:

The Fitbit and MOX2-5 datasets were classified with all the classifiers mentioned in Table 6, and the results 
are presented in Tables 7 and 8. The best performing models are marked as bold. After that, we have used the best 
performing model in Fitbit datasets for transfer learning in MOX2-5 datasets, and the corresponding classifica-
tion scores are in Table 9. The DecisionTreeClassifier with criterion “entropy” has outpaced other classifiers in all 
the datasets. Moreover, it has improved classification performance by ≈ 1.98% in transfer learning. The training 
vs. testing, validation, learning, and scalability curves for the DecisionTreeClassifier classifier used in transfer 
learning are depicted in Figs. 12, 13, 14 and 15. The results show neither overfit nor underfit and a sharp rise in 
model scalability with increasing training examples. Transfer learning has helped to improve ML model perfor-
mance with trained knowledge transfer, saving resources and improving efficiency. The best hyperparameters (as 
obtained with the grid search method) for the DecisionTreeClassifier are described in Table 10 for each dataset.

Furthermore, during training data preparation and feature extraction, we have investigated if the pipeline 
execution concept can improve the performance of the ML classifiers or not! Thus, we have created a data prepa-
ration pipeline models for the best performing classifier. We have normalized the whole datasets in each data 
preparation pipeline and then performed the classification. Similarly, we have created another feature extraction 
pipeline using the “FeatureUnion” that consisted of PCA and SelectKBest feature selection methods. Next, we 
have added the “FeatureUnion” and the classifier model in the pipeline to classify activity data. However, neither 
the data preparation pipeline nor the feature extraction pipeline significantly has improved the performance 
of the DecisionTreeClassifier in Fitbit datasets and combined datasets for transfer learning. However, it has 
improved the ML model performance in MOX2-5 datasets. The results of DecisionTreeClassifier in pipeline 
execution are in Table 11. Such pipeline approaches can be helpful for robust datasets, and further testing is 
required to prove the hypothesis in upcoming studies.

We have used OWL-full to read ontology in Jena in the “TTL” format and estimated the reading time to 
1.0–1.5 s. Moreover, we have used TDB storage, “optimized rule-based reasoner OWL rules” and the Jena 

(9)FFS = (FS - 1 ∩ FS - 2) =
{

sedentary, LPA,MPA,VPA, steps
}

.

Table 10.  Optimized parameters for top-5 models in single feature-based classification.

Data type ML classifier models Parameter list Best parameters

Fitbit (public) DecisionTreeClassifier (crite-
rion = "entropy")

criterion = [’gini’, ’entropy’]
max_depth =  [2,4,6,8,10,12] criterion = ‘entropy, max_depth = 12

MOX2-5 (private) DecisionTreeClassifier (crite-
rion = "entropy")

criterion = [’gini’, ’entropy’]
max_depth =  [2,4,6,8,10,12] criterion = ‘entropy, max_depth = 4

Combined for Transfer learning DecisionTreeClassifier (crite-
rion = "entropy")

criterion = [’gini’, ’entropy’]
max_depth =  [2,4,6,8,10,12] criterion = ‘entropy, max_depth = 10

Table 11.  Results of pipelined machine learning model execution.

Dataset type Model Accuracy score in data preparation pipeline
Accuracy score in feature extraction 
pipeline

Fitbit (public) DecisionTreeClassifier (criterion = "entropy") A = 96.06, P = 96.00, R = 96.00, F1 = 96.00, 
MCC = 95.30

A = 95.42, P = 95.00, R = 95.00, F1 = 95.00, 
MCC = 94.30

MOX2-5 (private) DecisionTreeClassifier (criterion = "entropy") A = 98.44, P = 98.00, R = 98.00, F1 = 98.00, 
MCC = 98.44

A = 98.44, P = 98.00, R = 98.00, F1 = 98.00, 
MCC = 98.44

Combined for Transfer learning DecisionTreeClassifier (criterion = "entropy") A = 97.21, P = 97.00, R = 97.00, F1 = 97.00, 
MCC = 97.21

A = 95.91, P = 95.00, R = 95.00, F1 = 95.00, 
MCC = 95.91

Table 12.  Performance analysis of different reasoners available in Protégé.

Reasoner(s) Average reasoning time (s)

HermiT 1.1–2.1

Pellet 2.2–4.1

Fact++ 3.4–4.5

RacerPro 2.2–3.1

KAON2 2.9–3.8
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framework to query the ontology class, predicate, subject, and object of each sentence in < 1.2 s, < 1.8 s, < 1.7 s, 
and < 1.9 s, respectively. The estimated ontology reasoning time against different reasoners has been described 
in Table 12.

Discussion
Principal findings. Combined activity datasets have shown a trend of doing less exercise in terms of daily 
step count with the progression of a week, as shown in Fig. 16. A motivation with an eCoach may improve self-
monitoring by keeping up an active pace of exercise over the days or weeks or months.

The performance of ML models depends on the nature of datasets used for a particular case study, under 
defined setting. Therefore, we have tried different ML classifiers with unique settings using the Grid-Search 
method; however, only DecisionTreeClassifier with criterion "entropy" produces the best accuracy, F1, precision, 
recall, and MCC score in our low-volume datasets for our case study. Entropy is an information theory metric 
that estimates the impurity or uncertainty in a group of observations. It decides how a decision tree chooses to 
split data. The most significant advantage of decision trees is that they make it very easy to interpret and visualize 
nonlinear patterns in data. They have worked faster than other classifiers in this exploratory data analysis. Moreo-
ver, decision trees do not require any data scaling or normalization. The interpretable classification visualization 
of DecisionTreeClassifier (with depth = 4) in transfer learning has been depicted in Fig. 17. The non-leaf nodes 
describe the reason for entropy-based branching; the leaf nodes are the predicted classes, and the branches hold 
binary values: True (1) or False (0). The entropy (E) in our system (S) can be expressed as:

Figure 16.  Weekly progression of activity in terms of daily step count.

Figure 17.  The interpretable classification visualization of DecisionTreeClassifier in transfer learning.
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where “Pi” is simply the frequentism of an element/class ‘i’ in our data.
Furthermore, this sub-section describes the overall process of daily and weekly score determination, goal 

verification, recommendation generation and its visualization on the eCoach app as a push notification. To 
verify the personalized recommendation generation in real participant data (i.e., MOX2-5 data), we have divided 

(10)E(S) =
c

∑

i=0

−Pi log2Pi

Table 13.  Activity classification per day over a week duration for P-1 with transfer and incremental learning.

Days

The best performing 
classifier model(s) used in 
transfer learning

Actual activity level on 
day-n

Activity level predicted on 
day-n after incremental 
learning

Daily achieved score 
predicted Propositional variable

Day-1

DecisionTreeClassifier (crite-
rion = "entropy")

Low Active Low Active 1 A-2, A-7, A-9

Day-2 Low Active Low Active 1 A-2, A-7, A-9

Day-3 Medium Active Medium Active 3 A-4, A-8

Day-4 Active Active 2 A-3, A-9

Day-5 Low Active Low Active 1 A-2, A-7, A-9

Day-6 Low Active Low Active 1 A-2, A-7, A-9

Day-7 Low Active Low Active 1 A-2, A-7, A-9

Weekly Score Achieved = ∑Daily_achieved_score_predicted = (1 + 1 + 3 + 2 + 1 + 1 + 1) = 10 –

Prediction accuracy ∑Daily_achieved_score_actual—∑Daily_achieved_score_predicted = 0 –

Difference Defined_goal_score—Achieved = (21 − 10) = 11 –

Weekly recommendation Formal message—“You are 11 points behind to reach your weekly goal. Work hard on the following week.”
Informal message—“Improve your performance to meet the goal! ☹” A-11

Figure 18.  Weekly recommendation generation as a text (e.g., push notification) for P-1.
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each participant’s activity days (n) into the following two parts—a. (n−7) days window for training the best 
performing classifier model(s) used in transfer learning, and b. remaining seven days window for testing with 
incremental learning approach. The incremental learning approach has helped in activity classification on the 
day-(n+1) based on model training with personal activity data up to day-n. We repeated the same incremental 
process until the goal periods were completed (here, we have assumed it as a window of 7-days). Moreover, 
we have used three standard emojis in recommendation visualization to motivate participants based on their 
weekly goal accomplishment [well done or good work ( ), up-to-the-mark or satisfactory performance ( ) 
and improve performance (☹)].

We have shown the overall process of recommendation generation and its meaningful presentation for a 
single participant (P-1) from the private MOX2-5 datasets (see Table 13, Fig. 18) collected for this study. The 
corresponding dataset for P-1 has been attached in “Appendix C” for verification. However, the same approach 
can be applied to other participants (P-2 to P-16). The transfer learning and incremental learning approach helped 
to increase the prediction accuracy on low-volume sensor datasets with limited feature space.

Recent coaching strategies are mainly based on the “String” messages that hardly personalize to each partici-
pant’s context, needs, and preferences. In this regard, our proposed ontology has been successful in modeling 
individualized recommendation message components, intent, and contents to label messages into different cat-
egories in an object-oriented design approach (see Fig. 3). The semantic rules described in “Appendix A.3” rep-
resent the logic behind recommendation message generation. The rule-based binary reasoning (If → 1, else → 0) 
helps to understand the formation of a personal activity recommendation messages on daily and weekly basis.

Overall, this study rigorously focuses on automizing the personalized activity recommendation generation 
with an ML pipeline, personal preference information, adjustable rule base, and their integration with a semantic 
network for reasoning and meaningful querying for personalized recommendations. Personalization is important 
in health recommendations to understand the user context and perspective. Therefore, health recommendations 
algorithms are contextually different from traditional user or item-based recommendation algorithms which 
are well accepted in the commercial domains. In Table 13, we have accomplished the efficiency of applying our 
proposed hybrid recommendation algorithm in activity eCoaching in an empirical way. The Daily achieved score 
predicted column in Table 13 describes the reason behind the recommendation generation in Propositional vari-
able column. Such a study in eCoaching has not been conducted according to the existing literature. Therefore, 
we have restricted Table 1 to a qualitative comparison instead of an empirical comparison.

Limitations and future scope. Our used datasets are small, and we thought they might be biased. High 
bias leads to model underfit. Therefore, we have used the MCC metric to understand the ML models’ per-
formance in a better way. However, more data is required to better train and test the classifier models. Multi-
ple feature-based activity classification is more realistic than single feature-based classification (e.g., daily step 
count-based), as step count cannot be the only measure for activities. Activities like spot-running and MOX2-5 
calculate appropriate IMA values; however, lower step counts than expected. In contrast, IMA appropriately 
correlates with step count in walking or running. However, this study has elaborated activity-level classification 
strategies, semantic knowledge representation, tuple query processing, and meaningful, personalized recom-
mendation generation. However, this is not actual coaching but conceptual modeling with machine learning 
algorithms and semantics. In authentic coaching, to attain a weekly or monthly goal, as a part of continuous 
monitoring, the eCoach module will generate personalized recommendations on time, based on the activity 
outcome on each day, followed by a predictive analysis to achieve the weekly goal. For evaluating the practical 
effectiveness of the concept, a further study is required on a cluster of controlled trials.

Collaborative  filtering58–60 is a popular recommendation generation technique to filter out items based on 
the reactions of similar users. Collaborative filtering is a searching problem where a large group of users is being 
searched to find a smaller set of users with tastes like a particular user. It helps to create a ranked recommenda-
tion. This paper proposes a model-based personalized recommendation algorithm based on a hybrid approach 
where the ML classification results are combined with semantic ontology to generate rule-based customized 
recommendations. Activity recommendations are filtered out based on personal preferences and goal achieve-
ments. The ontology tree structure explains the logic or rule behind a particular recommendation generation. The 
process is very personalized and, therefore, does not include the concept of group similarity in recommendation 
generation. In future, we will extend this study with a group-based metaheuristic approach by combining the 
idea of collaborative filtering. We will analyze further the applicability of density-based spatial clustering, session, 
criteria, and statistical  models61–63 in our future group-based lifestyle recommendation generation.

Conclusion
This study has shown a direction to use ML technology, personal preferences, and semantic ontology to design 
and develop an intelligent eCoach system with semantic knowledge representation to generate automatic, mean-
ingful, contextual, and personalized activity recommendations to attain personal activity goals. According to 
this theoretical research, the improvement of physical activity in sequence with wearable activity sensors, digital 
activity trackers, and eCoach features can be encouraging. The concept, such as transfer learning, exists in image 
processing; its re-use with incremental training and testing in an activity eCoaching idea has been effective. 
Ontology has increased the logical consistency of our eCoach model with an object-oriented design. This study 
has presented a detailed analysis of different ML classifiers on activity data, thereby generating understand-
able and meaningful personalized activity recommendation generation with sematic rules and SPARQL query 
execution. We will extend this study with the integration of concepts such as step prediction, statistical meth-
ods, activity density, clustering, and probabilistic interval predictions to make eCoach recommendations more 
realistic and evidence based.
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Data availability
All the data used or produced in this study are either in the main text or in the supplementary files. All the 
codebase and datasets will be made publicly available, and the corresponding author AC can be contacted for 
the datasets.
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