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A B S T R A C T   

The linear viscoelastic (LVE) properties of asphalt concrete is investigated in this paper using a controlled-strain 
triaxial dynamic modulus test over wide frequency, temperature, and confining pressure ranges. The time
–temperature-pressure superposition principle (TTPSP) is applied to validate the thermo-piezo-rheological 
simplicity of the tested materials using triaxial master curves. The LVE response is found highly stress- 
dependent at intermediate and high temperatures. The Prony series modeling of time-domain properties as
certains that confining pressure strongly correlates with long-term relaxation modulus, the absolute maximum 
slope of the relaxation modulus, and viscoelastic damage parameter. The stress triaxiality ratio concept is 
applied, and a new shift model is proposed that takes the triaxiality ratio as an internal state variable in the 
TTPSP. The model prediction agrees well with the experimental data. Moreover, a relationship between the long- 
term relaxation modulus and the triaxiality ratio is established. The triaxiality ratio coupled with TTPSP can 
accurately describe the stress-dependent response of asphalt concrete in the LVE domain.   

1. Introduction 

Asphalt concrete is a composite, time-dependent material that ex
hibits elements of elastic, viscous, and viscoelastic properties. The 
response of such materials is dependent on loading frequencies and a set 
of thermodynamic variables. As a fundamental thermodynamic vari
able, temperature and pressure significantly influence the viscoelastic 
and viscoplastic responses of time-dependent materials. The effect of 
time (frequency) and temperature is characterized using a joint 
parameter called reduced time (or reduced frequency) for a thermo- 
rheological simple material. Similarly, a time-pressure shift factor is 
used to analyze the joint effect of time and pressure for the piezo- 
rheological simple material. Several researchers have validated that 
the thermo-rheological simplicity (time–temperature response) of 
different asphalt concrete mixtures and the applicability of time
–temperature superposition principle (TTSP) in both undamaged and 
damaged states [3,20,29,26,14]. The validity of TTSP in undamaged and 
damaged states yields a significant material saving for the test [5]. The 
combined effect of the two fundamental thermodynamic variables 
(temperature and pressure) on the viscoelastic response is described 
using the Time-Temperature-Pressure superposition principle (TTPSP). 
A material that satisfies the TTPSP principle is called a thermo–piezo- 
rheological simple material [23,6]. The role of confining pressure on time- 

dependent materials has also been studied for several decades, such as 
for polymers [8,12]. As a three-phase material, asphalt concrete showed 
strong stress-dependent properties. Most studies on the triaxial stress 
response of asphalt concrete were focused on the viscoplastic properties 
[2,1,19,24]. Some studies such as Yun et al.[26] and Rahmani et al.[18] 
have investigated the role of confinement on the applicability of TTSP 
with growing damage and the effect of confining pressure on Schapery’s 
nonlinear viscoelastic parameters, respectively. Other studies 
[28,29,21] have investigated the effect of confining pressure on linear 
viscoelastic (LVE) responses of asphalt concrete mixtures using triaxial 
master curves. Previous research focused on proposing ‘vertical’ shift 
models as a function of confining pressure and was mainly involved in 
constructing the ‘triaxial’ master curves. The triaxial stress evolution in 
the LVE range was not discussed in previous research. Furthermore, 
most standards typically use uniaxial dynamic modulus tests for asphalt 
concrete LVE properties, including the mechanistic-empirical pavement 
analysis methods. However, the triaxial (confined) dynamic modulus 
test is more realistic to simulate the in-situ condition and the stress- 
dependent LVE properties should be investigated for accurate charac
terization of asphalt concrete. 

In this paper, strain-controlled triaxial dynamic modulus tests were 
conducted at wide ranges of confining pressure (0 to 300 kPa), tem
perature (-10 to 55 ◦C), and frequency (20 to 0.1 Hz). A target on- 
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specimen strain magnitude of less than or equal to 50 micros is selected 
to ensure that the deformation due to sinusoidal stress is within the LVE 
domain. A test procedure was proposed in the experimental campaign, 
and two different asphalt mixtures were tested. The main objective of 
this research is to investigate the stress-dependent LVE properties of 
asphalt concrete using the triaxial dynamic modulus test and develop a 
simplified triaxial shift model. The objective is achieved; first by veri
fying the thermo-piezo-rheological simplicity of the tested materials (con
structing triaxaial dynamic modulus master curves using existing and 
new triaxial shift models), and second by investigating the stress- 
dependent time-domain LVE properties using the Prony method. 
Furthermore, the role of confinement was also explored on the 
maximum slope of relaxation modulus and the viscoelastic damage 
parameter. Finally, the triaxiality ratio concept is introduced to analyze 
the triaxial (3D) stress-state on the LVE responses of asphalt concrete. A 
new triaxial shifting model is proposed using the triaxiality ratio as an 
internal state variable and validated using experimental data. Moreover, 
a simplified model is established between the long-term relaxation 
modulus and the triaxiality ratio to explain the stress-dependent visco
elastic behaviors of asphalt concrete. Unless otherwise stated, the term 
pressure in this paper refers to confining pressure (stress). 

2. Viscoelasticity 

The uniaxial stress–strain constitutive relationship for linear visco
elastic (LVE) material can be expressed in a Boltzmann superposition 
integral form in the time domain. 

σ(t) =
∫t

0

E(t − τ) dε
dτ dτ (1) 

Where σ and ε are stress and strain, respectively; t is physical time; τ 
is integral variable; E(t) is relaxation modulus. The one-dimensional 
relaxation modulus, E(t) is commonly expressed using a generalized 
Maxwell mechanical model (GM in parallel) with the Prony series. 

E(t) = E∞ +
∑M

m=1
Em

[
e(− t/ρm)

]
(2) 

Where E∞ is Long-term (equilibrium) modulus; Em is components of 
the relaxation modulus; ρm is components of relaxation time; and M is 
the total number of the Maxwell elements (one Maxwell element is 
composed of one elastic spring and one viscous dashpot connected in 
series). For generalizations into 3D formulations, the deformations 
within a material can be decoupled into shear and volumetric compo
nents. The time-dependent stress–strain response of an isotropic LVE 
material in 3D can thus be described in both deviatoric (G(t)) and bulk or 
volumetric (K(t)) relaxation moduli, as follow. 

G(t) = G∞ +
∑M

m=1
Gm

[
e(− t/ρm,G)

]
(3)  

K(t) = K∞ +
∑N

n=1
Kn

[
e(− t/ρn,K)

]
(4) 

Where G∞ and K∞ are Long term (equilibrium) shear and bulk 
moduli,Gm, ρm,G and Kn, ρn,K are Prony coefficients of relaxation modulus 
and time for shear and bulk, respectively. M and N are the number of 
Prony coefficients for shear and bulk relaxation. It is generally assumed 
as ρm,G = ρn,K = ρm. For the small stress LVE test, the time-dependent 
volumetric deformation of asphalt concrete is negligible. The reasons 
include (i) the hydrostatic pressure is usually less than the material’s 
tensile strength that causes a linear elastic volumetric deformation, (ii) K 
(t) is very high and viscous flow is assumed isochronous (linear flow). 
Hence, the time-dependent volume change is much smaller than the 
corresponding shear distortion on the same material [9] and a constant 

Poisson ratio (υ) is often assumed for asphalt concrete. 

K(t) =
E(t)

3(1 − 2υ),

G(t) =
E(t)

2(1 + υ)

(5) 

In theory, the relationships between the three moduli (K(t), G(t), and 
E(t)) should be established using a time-dependent Poisson’s ratio 
[27,17]. 

3. Materials and test method 

3.1. Materials 

In this study, two different asphalt concrete mixtures (AB11 and 
SKA11) collected from asphalt concrete production plants were used. 
The AB11 mixture is dense-graded asphalt concrete and SKA11 is a stone 
mastic asphalt. Both mixes have an 11 mm nominal maximum aggregate 
size (NMAS), where AB11 is a polymer-modified (PMB 65/105–60) 
while SKA11 is a 70/100 neat binder mixture. The gradation is given in 
Table 1. Cylindrical samples were produced by re-heating the loose mix 
at 150 ◦C for up to 4 h and compacting using a gyratory compactor 
according to the Superpave specification. The final test specimens (Ø100 
mm and 150 mm height) were fabricated by coring and cutting from the 
Ø 150 mm and 180 mm height samples. 

3.2. Test procedure 

A triaxial dynamic modulus test was performed using a servo- 
hydraulic universal testing machine (IPC UTM-130). Three sets of 
loose core linear variable differential transducers (LVDTs) were moun
ted on the specimen at 120◦apart radially with 70 mm gauge length. The 
instrumented specimens were conditioned at a target temperature for at 
least 2 h. A strain-controlled sinusoidal compressive load was applied 
axially with a target on-specimen axial strain of 50 micros or less. The 
test was conducted according to AASHTO T378 over a wide range of 
temperatures (-10, 5, 21, 40, 55 ◦C), pressures (0, 10, 100, 200, 300 kPa) 
and frequencies (20, 10, 5, 2, 1, 0.5, 0.2, 0.1 Hz). Three specimen rep
licates were tested at each temperature and pressure according to the 
following steps.  

(1). The instrumented sample is installed in the testing system at the 
target temperature. A sinusoidal load is applied from high to low 
frequencies without a rest period between sweeps. The average 
strain of three LVDTs should not be more than the target 50 
micros.  

(2). Then, 10 kPa confining pressure is applied for about 15 min to 
stabilize the deformation due to confinement. Repeat step 1.  

(3). Compare dynamic modulus and phase angle values from steps 1 
(unconfined or uniaxial) and step 2 (10 kPa confined). The dy
namic modulus results should not vary by a significant margin.  

(4). Apply 100 kPa confining pressure (for 15 min). Repeat step 1.  
(5). Apply 200 kPa confining pressure (for 15 min). Repeat step 1.  
(6). Apply 300 kPa confining pressure (for 15 min). Repeat step 1. 

Table 1 
Aggregate gradation.  

Sieve size [mm] AB11 [%] SKA11 [%] 

16.0 100 100 
11.2 95 91.2 
8.0 70 53.6 
4.0 48 35.7 
2.0 36 21.7 
0.25 15.5 12.8 
0.063 10 8.4 
Binder Content [%] 5.6 5.83  
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4. Dynamic modulus test results 

The response of an asphalt concrete material in a dynamic modulus 
test under a continuous sinusoidal loading is expressed by a complex 
modulus,E*. The three measured parameters (outputs) strain ε(t), stress 
σ(t), and dynamic modulus, E* are expressed as follows. 

ε(t) = εosin(ωt) (6)  

σ(t) = σosin(ωt+φ) (7)  

E* =
σoei(ωt+φ)

εoeiωt = |E*|(cosφ+ isinφ) = |E*|eiφ (8) 

|E*| is the norm of dynamic modulus, E = |E*|cosφ and E′′ = |E*|sinφ 
are the storage and loss moduli, respectively, σo and εo are stress and 
strain amplitudes, respectively. The phase angle, φ [0, 90◦] is calculated 
from time lag (tl) in strain signal and loading period (tp) of the stress 

signal,φ = 360o
(

tl
tp

)

. A material with a phase angle between 0◦ (purely 

elastic) and 90◦ (purely viscous) is a viscoelastic material. The dynamic 
modulus test results are the average of modulus on three specimens at 
each temperature, confining pressure and frequency. The average 
specimen-to-specimen variation for dynamic modulus value is generally 
less than 10% at high temperatures (40 and 55 oC). The variation is 
overall less than 5% for lower temperatures (21, 5 and -10 oC). 

4.1. Effect of confining pressure on dynamic modulus 

The effect of confining stress on the viscoelastic response of asphalt 

concrete is investigated by conducting triaxial dynamic modulus tests. 
The triaxial dynamic modulus test results of the AB11 mixture are pre
sented in Fig. 1 (a-e). It is clearly seen that confining pressure has a 
significant role on the viscoelastic response of asphalt concrete at in
termediate (21 ◦C) and high temperatures (40 ◦C and 55 ◦C) but mar
ginal or no effect at lower temperatures (such as 5 ◦C). For example, at 1 
Hz frequency, the dynamic modulus at 300 kPa is 1.5 times (at 21 ◦C), 
2.5 times (at 40 ◦C), and 4.4 times (at 55 ◦C) that of the uniaxial dynamic 
modulus. Moreover, the effect of confinement at 40 ◦C has some irreg
ular patterns as compared to the dynamic moduli at 21 and 55 ◦C. The 
cause of such variations can be due to the increase in binder viscosity at 
high temperatures and low frequencies, resulting in a higher phase 
angle. However, the measured phase angles at higher temperatures are 
dictated not only by the binder but also by aggregate interactions. The 
binder becomes soft at high temperatures and low frequencies and the 
elastic aggregate structure dominates the mixture behavior, which is 
reflected by the reduction of phase angle. The role of confinement in 
such conditions is retarding the binder flow, and aggregate-to-aggregate 
contact is reduced. The other reason can be the transient effects during 
the dynamic modulus test [10], in addition to the microstructural 
change between 30 and 55 ◦C. 

4.2. Isobaric master curves 

The dynamic modulus test data are shifted horizontally (along the 
logarithmic frequency axis) to construct a master curve at a reference 
temperature using a sigmoidal function [16]. 
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Fig. 1. Dynamic modulus at different temperatures and confining pressures - AB11 mixture.  
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log(E*) = δ+
(α − δ)

1 + exp(η − γlogfR)
(9) 

Where E* is the dynamic modulus, δ and α are the minimum and 
maximum logarithm of the dynamic modulus, respectively, η and γ are 
shape factors and fR is reduced frequency. 

fR = αT × f (10) 

Where f is the frequency and aT is time–temperature shift factor. The 
Williams, Landel, and Ferry (WLF) function [25] is widely used for aT. 

logαT = −
C1(T − T0)

C2 + T − T0
(11) 

Where C1 and C2 are WLF constants and T0 is reference temperature. 
The isobaric master curves are constructed at 21 ◦C reference temper
ature using the sigmoid model and WLF shift function for the AB11 
mixture, as shown in Fig. 2a. The isobaric master curves did not fall into 
a single curve at high temperatures (and low frequencies). The shift 
factors in Fig. 2b also showed a slight variation at different confining 
pressure levels. Moreover, the effect of confining pressure can be seen 
from the energy loss quantity during the dynamic modulus test. The total 
energy in cyclic viscoelastic deformation has a dissipated (ΔW =

πσoεosinφ) and stored (W = σoεo
2 ) energy components in J/m3 per cycle 

[22,9]. The ratio of dissipated energy to the maximum stored energy 
(ΔW

W ) is independent of stress and strain amplitudes, as shown in Eq. (12). 

ΔW
W

= 2πsinφ (12) 

As shown in Fig. 3, the maximum energy loss ratio is recorded 
around 0.1 Hz frequency. At this point, confining pressure contributed 
to reducing the dissipated energy (or phase angle) and confining pres
sure has no significant effect on energy loss at low temperatures and 

high frequencies. Therefore, confining pressure retarded energy loss and 
contributed to the elastic energy at high temperatures and low fre
quencies. These observations verify that the LVE properties of asphalt 
concrete are stress-dependent at intermediate and elevated tempera
tures. Hence, a stress-dependent shift function is necessary to generate a 
single, continuous master curve for LVE characterization in a triaxial 
stress state. 

4.3. Stress-dependent master curve 

In the triaxial dynamic modulus test, the confining pressure causes 
an increase of dynamic modulus. To construct a stress-dependent master 
curve, the modulus at different frequencies, confining pressures and 
temperatures are shifted both horizontally and vertically. The time
–temperature shift factor is superposed and modified to couple pressure 
in the shifting function. Two models are suggested to construct and 
compare stress-dependent or triaxial master curves. The first model 
(Model-1) is the modified WLF function proposed by Fillers, Moonan, 
and Tschoegl (FMT) model [8], expressed as follows. 

logαTP =
− C1(T − T0 − Γ(p) )

C2(P) + T − T0 − Γ(p)
(13)  

Γ(p) = C3(P)ln
1 + C4P
1 + C4P0

− C5(P)ln
1 + C6P
1 + C6P0

(14) 

Where αTP is time–temperature-pressure shift factor; P is the pressure 
of interest; P0 is reference pressure;C1, C4 and C6 are constants;C2(p), 
C3(p) and C5(p) are pressure-dependent parameters. In the FMT model, 
the coefficients represent the thermal expansion of the relative free 
volume and the pressure-dependent parameter Γ(p) accounts for the 
compressibility attributed to the collapse of free volume [7]. The FMT 
equation can be reduced to the WLF equation at P = Po = 0, and 
whenT = To, the FMT function becomes a pressure shift function. A 
modified version of Model-1 is proposed in this paper. The pressure- 
dependent coefficients C2(P) and C3(P) are approximated as linear 
functions and the last component of Eq. (14) can be dropped. 

C2(P) = C20 + C21P,
C3(P) = C30 + C31P

(15) 

Where C20,C21,C30,C31 are coefficients. The proposed modified FMT 
model (Model-1) time-pressure or “vertical” shift factor takes the 
following form. 

Γ(p) = (C30 +C31P)ln
1 + C4P
1 + C4P0

(16) 

The second triaxial shifting model (Model-2) is a sigmoid-type 
Zhao’s model [30], expressed as, 

logλ =
− (P − Po)

exp[C3 + C4log(fR) ] + C5(P + Pa)
C6

(17) 
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Where Pa is atmospheric pressure (101.3 kPa); C3–C6 are regression 
coefficients;P, Po are confining and reference pressures, respectively. 

All stress-dependent master curves in the subsequent sections are 
constructed at 21 ◦C reference temperature and 100 kPa reference 
confining pressure. A total of ten parameters (including four sigmoid 
parameters) were optimized to construct the stress-dependent master 
curves (see in Table 2 and Table 3). 

In Fig. 4 a-b, the triaxial master curves are presented for AB11 and 
SKA11 mixtures. Both Model 1 and Model-2 have good prediction ac
curacy (R2 = 0.98 for model-1 and R2 = 0.95 for Model-2 for AB11) (as 
shown in Fig. 5). For the SKA11 mixture, a very close prediction is 
observed using both models (Fig. 4 b). It is seen that both models have 
the advantage of simplicity while successfully shifting stress-dependent 
master curves. Model 1 has a wider reduced frequency range and better 
accuracy than Model2. In addition, Model 1 is derived based on the free 

volume theory and has a sound physical and theoretical basis. On the 
other hand, Model 2 is a mathematical sigmoid function with a char
acteristic S-shaped. The vertical shift model is independently deter
mined and added to the sigmoid model (i.e., the model is a two-step 
process). Hence, Model-1 is favored and proposed for further analyses in 
this paper with simplifaction. As shown in Fig. 6, the vertical shift factor 
Γ(p) has an approximate linear function relationship with confining 
pressure. 

5. Time-domain viscoelastic properties 

Although the frequency domain dynamic modulus can give sufficient 
information about the viscoelastic properties of asphalt concrete, the 
time domain modulus is often used for performance prediction. Inter
conversion between frequency and time domain is performed using 
storage and loss modulus data. Often conversions based on the storage 
modulus data provide sufficient accuracy. But it is essential to evaluate 
the smoothness of storage modulus data before conversion to time- 
domain moduli. As shown in Fig. 3, the dissipated energy due to 
phase angle introduces noise and inconsistency to the storage modulus 
at high temperatures. Hence, a continuous sigmoidal function [13] in 
Eq. (18) is used to smoothen and avoid discreteness, wave or noise in the 
data. The error optimization function of min[log10

(
E
(
fR
) )

− g
(
fR
)
] is 

used. 

g(fR) = a1 +
a2

a2 +
a4

exp(a5+a6 logfR)
(18) 

Where a1, 2, …, 6 are coefficients, fR is the reduced frequency. The 
filtered storage modulus data (as shown in Fig. 7) is then utilized to 
obtain relaxation modulus using the Prony method. 

5.1. Relaxation modulus 

The Prony function (Eq. (19)) [15] with error minimization objective 
function, OF (Eq. (20)) is used to predict the relaxation modulus from 
pre-smoothen storage modulus data. 

E(ω) = E∞ +
∑M

m=1

ω2ρ2
mEm

1 + ω2ρ2
m

(19)  

OF =
1
N

[
∑N

i=1

(

1 −
|E*(ωi)|Predicted

|E*(ωi)|Measured

)2
]

(20) 

Where E∞ is long-term relaxation modulus (Mpa), Em and ρm are 
Prony coefficients (relaxation modulus [MPa] and relaxation time [sec], 
ω is angular frequency, M is number of Prony coefficients of a general
ized Maxwell model, and N is number of storage modulus data points. 

The data presented in the subsequent sections are only for AB11 
asphalt concrete. In Fig. 8, the isobaric and triaxial relaxation modulus 

Table 2 
Sigmoid and TTPS Shift model coefficients - AB11 Mixture.  

Model Coefficients 

α β γ δ C1 C20 C21 C30 C31 C4 

1  4.52  − 0.06  − 0.46  2.24  10.11  83.42  0.21  1.53  0.02  0.25 
2  4.40  0.29  − 0.68  2.61  8.92  99.11  0.99  0.96  1.50  5.17  

Table 3 
Sigmoid and TTPS Shift model coefficients - SKA11 Mixture.  

Model Coefficients 

α β γ δ C1 C2 C3 C4 C5 C6 

1  4.15  − 0.81  − 0.83  1.75  7.03  54.44  0.04  0.15 2.5E-03  92.27 
2  4.12  − 0.79  − 0.85  1.77  6.85  54.5  2.0  2.0 2.2  4.9  
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Fig. 4. Stress-dependent Master Curves at 21 ◦C and 100 kPa for AB11 and 
SKA11 Mixtures. 
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master curves using Model-1 are shown. It is seen that the effect of 
confining pressure is significant on the long-term side of the relaxation 
modulus. The Prony terms of a generalized Maxwell model presented in 
Fig. 9 and Table 4 showed a normal (Gaussian) distribution of relaxation 
moduli of the Prony coefficients. A total of twelve Prony coefficients 
were used. The coefficients (Ei) at long-time are almost the same and can 
be taken as independent of confining stress. 

Furthermore, the bulk (volumetric) and shear moduli should be 
considered in the triaxial stress analysis for granular materials like 
asphalt concrete. From Eq. (5), it can be observed that the bulk relaxa
tion modulus is more sensitive to change in Poisson ratio than the cor
responding shear modulus. For incompressible materials (when υ =

0.5), the bulk relaxation spectra (Km) are zero or the bulk modulus K(t)
is infinite. To illustrate the relationship between the three moduli (E, G 
and K), a parametric study at different constant Poisson ratios is shown 
in Fig. 10. For example, as Poisson ratio increases from 0.3 to 0.35, the 
shear modulus increases by 3.8%, and the bulk modulus is reduced by 
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25%. Similarly, if the Poisson ratio increases from 0.35 to 0.4, the bulk 
modulus showed a 33% reduction and the shear component increased by 
3.7%. As discussed previously, the applied confining pressure is ex
pected to be lower than the minimum tensile strength of asphalt con
crete. Thus, deformation caused by confining stress is assumed an elastic 
strain. Moreover, as temperature increases, tensile strength decreases 
contrary to the increment of the Poisson ratio. Therefore, the bulk 
modulus will ultimately be reduced and vanish due to high viscosity at 
υ = 0.5 (incompressible). 

5.2. The effect of confining pressure on viscoelastic damage parameter 

For a viscoelastic material, the absolute maximum slope of the 
relaxation modulus curve is found confining stress-dependent. The 
maximum slope of the Log-Log relaxation modulus E(t) – time (t) curve 
is computed using the following expression. 

So =
d[logE(t) ]

dt
=

∑M
m=1

(
− Em × e−

t
ρm
)

E∞ +
∑M

m=1

(
Em × e−

t
ρm
) (21) 

The maximum slope (So) is a crucial parameter for the viscoelastic 
damage prediction of asphalt concrete. The viscoelastic continuum 
damage parameter (α) is described as α = 1

So 
for control-stress and 

α = 1
So
+1 for control-strain fatigue damage modes [4,11]. As shown in 

Fig. 11a, the absolute maximum slope is reduced as confining pressure 
increases and due to the increment of relaxation modulus at an infinite 
time (or when frequency approaches zero, ω ≅ 0) on the high- 
temperature side. On the other hand, the damage parameter (α) in
creases as confining pressure increases much faster (5.4 times) than the 
slope (So) reduction rate (Fig. 11b). Conventionally, fatigue damage 
tests are uniaxial and ignored the role of triaxial (3D) stress conditions. It 
is revealed that the triaxial stress-state affects the damage evolution 
parameter and subsequently impacts the fatigue life prediction of 
asphalt concrete. Further research is underway on this topic by the au
thors of this paper. The role of confinement on the permanent defor
mation evolution is well understood and incorporated in the strain 
hardening phenomenon of asphalt concrete materials. 

5.3. Effect of confining Pressure on the Long-term relaxation modulus 

The long-term relaxation modulus (E∞) is a modulus at a very long 
time (t→∞) or when the frequency approaches zero (ω→0). After 
removing the applied load, the viscoelastic material gradually recovers 
its deformation, and full recovery is possible given sufficient time. The 
long-term relaxation modulus is the modulus that governs the stress 
relaxation of a material in the long-time limit. The relaxation modulus is 
a crucial quantity for performance prediction. From the sigmoid storage 
modulus [log(E) = δ+ (α− δ)

1+exp(η− γlogfR)
], the long-term relaxation modulus 

is the minimum value as frequency closes to zero (i.e., δ or E∞ ≅ 10δ). 
Different models have been proposed to correlate E∞ with confining 
stress [16,28]. As shown in Fig. 9 and Fig. 12, the long-term relaxation 
modulus is dependent on confining stress and a linear relation can be 
seen between the long-term relaxation modulus and confining pressure. 

There is a relatively weak correlation between the long-term relax
ation modulus and the absolute maximum slope of the relaxation 
modulus curve and the damage parameter, as shown in Fig. 13. 

5.4. Triaxiality ratio in linear viscoelastic response 

In this paper, the stress ratio parameter (triaxiality ratio) is intro
duced to investigate the linear viscoelastic (LVE) property of asphalt 
concrete. The triaxiality ratio (η) is defined as the ratio of hydrostatic 
pressure (mean stress, σm) and the von Mises equivalent stress (σvm) or 
the ratio of the first stress invariant (I1) to the second deviatoric stress 
invariant (J2). It is argued that the stress ratio factor is essential to 
describe the stress-dependent LVE response of asphalt concrete. 

η =
σm

σvm
=

I1/3
̅̅̅̅̅̅̅
3J2

√ (22) 

Where η is triaxiality ratio; σm=
σ1+σ2+σ3

3 ; σvm=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σ1 − σ2)

2+(σ1 − σ3)
2+(σ2 − σ3)

2

2

√

; 
σ1,σ2, σ3 are principal stresses. Simplifying Eq. (22) for triaxial condition, 
i.e., σ1 = σd +σc and σ2 = σ3 = σc (σc is denotes confining pressure and σd is 
peak deviatoric stress) takes the following form. 
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Fig. 9. Prony Coefficient Relaxation Moduli (Gaussian type distribution) – 
AB11 Mixture. 

Table 4 
Prony Coefficients of relaxation Spectrum.    

Confining Pressure [kPa] 

m ρm [sec] Uniaxial 10 100 200 300 

1. 1.0E-08  49.93  50.00  148.88  99.91  99.90 
2. 1.0E-07  1000.00  128.85  500.00  313.05  1000.00 
3. 1.0E-06  3010.97  732.38  1210.12  1368.52  2746.72 
4. 1.0E-05  4531.55  2025.15  2820.49  2962.72  4417.43 
5. 1.0E-04  5566.01  4315.72  5173.00  5792.28  5628.03 
6. 1.0E-03  4439.48  5359.20  5010.70  5268.25  4292.64 
7. 1.0E-02  1956.16  2241.81  2027.36  1954.50  1896.97 
8. 1.0E-01  708.32  607.34  638.67  621.62  786.14 
9. 1.0E + 00  224.02  154.84  188.90  183.54  294.38 
10. 1.0E + 01  83.97  48.50  64.21  60.77  120.83 
11. 1.0E + 02  33.15  15.41  22.31  19.59  49.20 
12. 1.0E + 03  18.12  0.01  1.79  9.94  18.09 
E∞[MPa] 149.26  344.35  533.57  921.67  989.65  
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η =
σc

σd
+

1
3

(23) 

The triaxiality ratio for the uniaxial or unconfined (σc= 0) condition 
is 1/3. The ratio increases as the confinement level dominate the Mises 
equivalent stress. Theoretically, the maximum ratio (i.e.,η = ∞) is ob
tained when deviatoric stress is minimum or at very high hydrostatic 
stress. 

The peak deviatoric stress is obtained from the frequency sweep 
dynamic modulus test. Fig. 14 shows the peak deviatoric stress in a 
strain-controlled triaxial dynamic modulus test. The stress decreases as 
temperature increases and frequency reduces. That means maximum 
deviatoric stress is exerted at low temperature and high frequency to 
maintain the target strain limit (50 micros). As can be seen in the figure, 
the peak deviatoric stress does not vary much with confining pressure at 
a particular test temperature. This confirms the consistency of applied 
deviatoric stress regardless of the different volumetric stresses. 

However, the slight variations observed (e.g., at 21 ◦C) could be due to 
transient effects during the sinusoidal test or due to lateral pressures. As 
shown in Fig. 15a-b, the triaxiality ratios are computed at each tem
perature and confining stress. It is clearly seen that η is both pressure and 
temperature-dependent, and increases with both confining pressure and 
temperature in a controlled-strain test. Furthermore, a power relation
ship (with R2 over 0.95) is observed between η and the two thermody
namic variables (temperature and pressure). The rate of triaxiality ratio 
start decreasing from and after 100 kPa confinement (Fig. 15b) and 
40 ◦C temperature (Fig. 15a). Although the realistic confining pressure 
in the asphalt pavement is not accurately known, the range between 100 
and 250 is generally considered as an in-situ confining stress range 
(average of 150 to 175 kPa). The surface plot in Fig. 16 also shows that 
the triaxiality ratio is critical at the combination of hot temperature and 
high confinement conditions. This observation indirectly implies that 
the linearity limit of asphalt concrete depends on the triaxiality ratio 
(Von Mises and mean stresses) and can be determined using different 
combinations of confining pressures, temperatures, and deviatoric 
stresses. Based on the observations from Figs. 15 and 16, the triaxiality 
ratio can be integrated into the time-temperature-pressure shift model to 
predict triaxail stress-dependent LVE response of asphalt concrete. 

5.5. The proposed model 

The triaxiality ratio (η) is a fundamental material parameter that can 
couple the stress-dependent thermo-piezo-rheology responses of visco
elastic materials. The Prony method is widely used for viscoelastic 
modeling of asphalt concrete. From a mechanistic viewpoint, the 
triaxiality ratio is more comprehensive and efficient approach to model 
triaxial viscoelastic properties. As discussed in Section 5.4, the triaxi
ality ratio (η) is dependent on both temperature and pressure. This paper 
proposes a new model to integrate the triaxiality ratio with the time
–temperature-pressure superposition principle. The proposed model 
takes the following form. 
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logαTP =
− C1[T − T0 − Γ(p) ]

C22 + C23η + T − T0 − Γ(p)
(24)  

Γ(p) = (C7η)ln
(

1 + C8P
1 + C8P0

)

(25) 

Where C1,C22,C23,C7,C8 are temperature and pressure shift factor 
coefficients. A master curve is constructed using the new proposed 
model (Eqs. (24) and (25)) and compared with Model-1 (Eqs. (13), 15, 
and 16). As shown in Fig. 17, the proposed triaxiality ratio-based model 
fitted the measure data well. The main advantage of this model is the 
consideration of deviatoric stress in the LVE modeling while being 
concise and fewer number of model coefficients. In most dynamic 
modulus tests, the load control mechanism is controlled-strain modes. 
Limiting the strain output is more controllable than that of the stress 
when linear viscoelastic response is concerned. However, there are cir
cumstances where stress-controlled responses can be more plausible. In 
such conditions, the proposed triaxiality ratio shift model is convinient 
to predict the linear viscoelastic response. 

Furthermore, the relationship between the long-term relaxation 
modulus (E∞) and the triaxiality ratio (η) is established. 

E∞ = 10[κ+λ×ln(η)] (26) 

Where κ and λ are fitting parameters. The exponent in Eq. (26) is 
equivalent to the minimum dynamic modulus value δ of the sigmoid 
function i.e., min[log(E*)] = δ = κ+ λ× lnη). As shown in Fig. 18, a good 
correlation is observed between long-term relaxation modulus (E∞) and 
the triaxiality ratio (η) at high temperatures. This is because the stress 
ratio is more critical on the viscous side of asphalt concrete than the 
elastic part (as shown in Fig. 16). The fitting parameters of the model 
(Eq. (26)) are given in Table 5. 

6. Conclusion 

In this paper, the effect of triaxial stress on the linear viscoelastic 
properties of asphalt concrete material was investigated using triaxial 
dynamic modulus test over a wide range of temperatures, frequencies, 
and confining stresses. Two different asphalt mixtures (neat and 
polymer-modified binder) were used and proved as thermo-piezo- 
rheologically simple material. The Fillers, Moonan, and Tschoegl 
(FMT) model is adopted for time–temperature-Pressure shifting and 
compared with another model from literature (Model 2). The stress ratio 
concept (triaxiality ratio) is introduced to characterize the stress- 
dependent viscoelastic properties of asphalt concrete. The main contri
butions are summarized as follows. 
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• The linear viscoelastic (LVE) property of asphalt concrete in a triaxial 
stress state is validated using the time–temperature-pressure super
position principle (TTPSP). The LVE properties are highly stress- 
dependent at intermediate and high temperatures.  

• A simplified, integral (one-step), and theoretically sound vertical 
shift model is proposed by modifying the FMT model to construct 
triaxial master curves.  

• A Prony method time-domain viscoelastic analysis revealed that the 
long-term relaxation modulus and maximum slope of a relaxation 
modulus curve are strongly stress-dependent. However, the Prony 
series coefficients (Ei) are independent of pressure at high relaxation 
time.  

• A slight reduction of the maximum slope of relaxation modulus due 
to confining pressure causes more than 5.4 times increment of the 
viscoelastic fatigue damage parameter, highlighting the limitations 
of uniaxial fatigue life prediction, particularly at intermediate tem
peratures (from 15 to 25).  

• The concept of triaxiality ratio is introduced to characterize the 3D 
stress effect on the linear viscoelastic responses of asphalt concrete. 
For a controlled-strain dynamic modulus test, the triaxiality ratio 
increases with temperature and pressure. In addition, the ratio has a 
strong correlation with the long-term relaxation modulus.  

• A new triaxial TTPSP shifting model is proposed and validated. The 
triaxiality ratio can indirectly characterize the viscoelastic linearity 
limit for the thermo-piezo-rheological simple materials. 
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Fig. 18. Triaxiality ratio versus long-term relaxation modulus at different pressure and temperatures.  

Table 5 
Fitting Parameters for Eq. (26).  

Coefficient Temperature [oC] 

¡10 5 21 40 55 

κ  3.87  3.42  3.09  2.93  2.86 
λ  1.38  1.00  0.73  0.63  0.60  
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