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Abstract: Industrial revolution 4.0 has enabled the advent of new technological advancements,
including the introduction of information technology with physical devices. The implementation
of information technology in industrial applications has helped streamline industrial processes and
make them more cost-efficient. This combination of information technology and physical devices
gave birth to smart devices, which opened up a new research area known as the Internet of Things
(IoT). This has enabled researchers to help reduce downtime and maintenance costs by applying
condition monitoring on electrical machines utilizing machine learning algorithms. Although the
industry is trying to move from scheduled maintenance towards predictive maintenance, there is
a significant lack of algorithms related to fault prediction of electrical machines. There is quite a
lot of research going on in this area, but it is still underdeveloped and needs a lot more work. This
paper presents a signal spectrum-based machine learning approach toward the fault prediction
of electrical machines. The proposed method is a new approach to the predictive maintenance of
electrical machines. This paper presents the details regarding the algorithm and then validates the
accuracy against data collected from working electrical machines for both cases. A comparison
is also presented at the end of multiple machine learning algorithms used for training based on
this approach.

Keywords: artificial intelligence; fault prediction; predictive maintenance; machine learning;
neural network

1. Introduction

The advancement in information technology and its integration with other fields have
opened up new research and development areas. This has also resulted in the revolution
of industrial standards with the massive turn of events along with the introduction of
industrial standards 4.0 [1]. This has helped industries streamline processes and make them
more efficient and cost-effective. The integration of information technology with physical
devices developed a whole new domain, which has become the core of the modern industry
and resulted in the advent of smart devices. This has made it easier for industries to reduce
shutdown times and help tackle issues in a more systematic way. Smart devices can
communicate with each other over the internet and make decisions or pinpoint the issues in
the system, which has made the industrial process smoother. This field of development of
smart devices and their communication over a network (or internet) is commonly referred
to as the Internet of Things (IoT) [2,3]. These devices can not only communicate with
each other, but they also can act as end nodes for data collection from electrical machines
using sensors. This process is known as condition monitoring of electrical machines as
the data are transmitted in real-time through smart devices and monitored in real-time.
This helps monitor the health of the electrical machine and reduces shutdown times in
case of fault occurrence. This collected data can further be used for training models for
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real-time fault detection, fault prediction, data analysis, and diagnostics of the connected
machine [4–7]. IoT has cemented its position in industrial applications, become one of the
fundamental pillars of modern industry [8], and further enhanced its importance due to
predictive maintenance research [9–13].

This advancement has helped the industry to switch from scheduled maintenance
towards predictive maintenance and real-time condition monitoring of electrical machines.
Condition monitoring of electrical machines is now a standard implementation in any
modern industry [14,15]. Data collection for further data analysis is a core part of this system
that helps develop predictive maintenance systems [10,16]. In general, electrical machine
maintenance can be divided into four phases: periodic, proactive, reactive, and predictive
maintenance. Most of the industry still works with periodic and reactive maintenance, i.e.,
scheduled maintenance or when a machine is down, as shown in Figure 1. There is an
uptrend to move towards proactive and predictive maintenance as it is more cost-efficient
and productive. This move is mainly possible because of the recent development in the
field of IoT and research on the development of more accurate machine learning-trained
models for electrical machines with high-quality data collected with the help of condition
monitoring systems.
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Condition monitoring systems are implemented concerning electrical machines and
making their way into other industries. Currently, most of the work related to classification
or detection using such systems is in the health domain [17–19]. Wearable devices are used
to monitor patients for any abnormal health conditions [16,17] so that doctors can react
quickly if a problem occurs. The development of such systems has also made its way into en-
vironmental control, where systems have been developed for monitoring air pollution [20],
carbon dioxide [21], and solar power [22]. Systems are also being developed to monitor
and control residential buildings, making them into smart homes [23] and monitoring
grids, and controlling network congestion. With the development of condition monitoring
systems, researchers are now looking at cost-effective systems, especially in the domain of
electrical machines, with more work being done on microcontroller boards. This can help
gather data, especially from off-shore electrical machines. Hence, condition monitoring
systems are being developed, which are particularly targeted toward weather sensors [24]
and wind turbines [25–27]. Researchers are also looking into a more portable approach
towards condition monitoring systems with the advancement of electrical machines, which
can give better mobility and less complexity [20,28–31].

The recent advancement in micro-controller boards has made way for the development
of condition monitoring systems [7,32,33] utilizing these boards as it is not only cost-efficient
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but flexible and scalable too. This work is still in its early stages and is underdeveloped.
Most of the condition monitoring systems designed using this approach lack the sampling
frequency of data acquired through it, as generally, it is kept low. However, work is
being done for higher sampling frequency and more stable data acquisition systems based
on micro-controller boards [7,34]. These micro-controller boards are scaling at a rapid
pace with their safety, security, and power taken into account. Soon, it will be enough to
develop more stable and faster data acquisition systems utilizing these boards, with will
be cost-efficient and productive compared to currently available data acquisition systems.
Currently, most of the data acquisition systems in place are either developed with SCADA
or PLC [35–38], which are complex to use and expensive. Data acquisition cards are
available in the market but are expensive compared to micro-controller boards and need a
separate system to set up.

One of the most crucial parts of predictive maintenance or condition monitoring [39]
is the implementation of machine learning-based trained models. The accuracy of these
models depends mainly on the quality of data used for training and their diversity. Hence,
it is always instructed to utilize high-quality data samples with all possible scenarios and
an optimal number of features to get better results. Artificial Neural Networks (ANNs)
are the most commonly used models for fault detection classification. Although other
offline models are available for the diagnostics of electrical machines like FEM [40,41], they
are primarily for offline implementation and take much more time, which is unsuitable
for real-time detection. ANNs models are usually trained with high processing power
systems or cloud systems [42,43] to get minimum training time. However, there might be a
chance that the model gets over-trained, so it is always good to check the optimal number
of samples needed and optimize the machine learning algorithm.

Much work is being done on the condition monitoring of electrical machines [12] and
fault detection [44] in electrical machines and bearings [45,46]. However, not much work
is being done in the field of fault prediction in electrical machines. Some researchers are
working in this domain, but some are utilizing the time domain while other systems are
still being developed or are primarily for offline analysis and diagnostics [16,47]. Some of
the other systems used in this domain only utilize fault detection while gathering data for
training, or there are some commercialized products available. However, they are not only
expensive, but their technology is still not disclosed.

This article presents a new signal spectrum-based approach for fault prediction in
electrical machines based on signal processing and machine learning. Different machine
learning models are trained using the data generated through the proposed method to
check their accuracy and performance. A comparison between different neural networks is
also given to help choose the best suited for this case.

2. Methodology

This section of the article can be divided into three parts: (i) Signal Processing, (ii) Data
Preparation, and (iii) Machine Learning Training and comparison between trained models.
The method proposed here is a new approach to fault prediction of electrical machines
utilizing the frequency spectrum. This article includes the spectrum of an induction
machine with broken rotor bar faults. In this article, one broken rotor bar is used as a
reference for a faulty case. The method includes data gathered through Dewetron from
multiple induction motors for healthy and faulty cases. The general overview of the
data acquisition for the article, including the proposed method, is shown in Figure 2.
The acquired data are preprocessed to get distinct features in healthy and faulty cases,
which will be explained below. The processed data are then used for data generation
to cover expected cases, and a model is trained to test it with real-time data from the
induction machine.
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Figure 2. Data acquisition experimental setup.

As it is difficult to gather data for each scenario, primarily when the fault is generated
or is about to be generated, it is of utmost importance to consider all the possible cases
and the effect of fault frequency components. Researchers work on generating this data
using Simulink models or statistical equations to cover more situations and gather more
data samples. However, this approach usually does not consider the effect of external
parameters on the electrical machine. Here, a more straightforward approach is taken
to generate missing data in between or to cover all the expected outcomes. The general
overview of the paper is shown in Figure 3.
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2.1. Signal Processing

The first step is to process the gathered data and make it suitable for training. The data
gathered through Dewetron are in the time domain, which is converted into the frequency
domain using Fast Fourier Transform (FFT). The approach taken here is considering the
current signature of the electrical machines and the effect of faults on them. A compar-
ison between the entire frequency spectrum of both healthy and faulty cases is shown
in Figure 4a. The spectrum is also shown in the logarithmic scale in Figure 4b for better
understanding.
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As a wide range of frequency components are present in the spectrum, the first step is
to identify the most prominent frequency components and filter out the negligible ones.
This will give fewer frequency components and will make identifying distinct components
easier. In this case, the frequency range was decided to be up to 500 Hz as, after this
range, the frequency component amplitude is negligible and is not making any significant
difference. The frequency spectrum after applying the cut-off is shown in Figure 5.
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After narrowing down the frequency components used for training, a comparison is
made between the healthy and faulty spectrums to narrow down the frequency components
that make a difference. This comparison is carried out for multiple cases, and data are
collected from different induction motors to help identify the correct frequency components.
General spectrums and their difference for one of the samples are shown in Figure 6. Once
it is narrowed down, the most prominent components are selected to help determine the
specific fault. This help simplifies the training more, and these components will be used as
one of the basics to complete combinations for the training of the predictive algorithm.
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Figure 6. Frequency spectrum (a) healthy case, (b) faulty case, (c) difference to identify
frequency components.

The data are then further processed to check the amplitude of these frequency com-
ponents in healthy and faulty cases. This process is carried out for multiple samples from
different induction machines so that the identified components are universal for this specific
fault. All amplitudes are normalized to lie between the range of 0–1 to get consistent results.
Figure 7 shows an example of a frequency spectrum for both healthy and faulty cases with
frequency components and amplitudes.
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Figure 7. Frequency spectrum with normalized amplitudes (0–1) (a) healthy case, (b) faulty case.

After going through multiple samples, the changes in amplitude of the frequency com-
ponents for both healthy and faulty are singled out. After careful analysis, the amplitude
range for the prominent frequency components for fault occurrence is determined. Some of
the frequency components with their amplitude range for the healthy case are shown in
Table 1, whereas the faulty case is shown in Table 2. This range will help specify the fault
occurrence probability for the predictive algorithm.

Table 1. Frequency amplitude range for fault occurrence (healthy signal).

Frequency Component (Hz) Minimum Amplitude (A) Maximum Amplitude (A)

38.45 Hz 0.0031 0.612
43.33 Hz 0.0022 0.0797
100 Hz 1.3004 × 10−4 0.0460

125.73 Hz 7.5295 × 10−5 0.0139
250.21 Hz 4.92 × 10−5 0.0092
380.86 Hz 2.96 × 10−6 8.56 × 10−4

404.66 Hz 9.1363 × 10−6 0.0049
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Table 2. Frequency amplitude range for fault occurrence (faulty signal).

Frequency Component (Hz) Minimum Amplitude (A) Maximum Amplitude (A)

38.45 Hz 4.72 × 10−4 0.0633
43.33 Hz 6.8 × 10−4 0.0841
100 Hz 8.6951 × 10−5 0.0563

125.73 Hz 3.415 × 10−4 0.0140
250.21 Hz 1.50 × 10−4 0.0145
380.86 Hz 3.86 × 10−5 0.0032
404.66 Hz 1.7432 × 10−5 0.0083

After identifying the frequency components and their amplitude ranges for healthy
and faulty cases, the trend of change in amplitude is noted. This will help to generate data
and form combinations for the training of machine learning mode for fault prediction.

2.2. Data Preparation

After identifying the ranges and combinations, the next step is to prepare the data
for training the machine learning model. In this case, the data gathered from the electrical
machine are either for the healthy or faulty case. The combinations present are for either of
the cases, and there are no such data samples at this point that can predict the movement
before fault occurrence or chances of fault occurrence. To compensate for this lack of data
points in between, we will be using average to get the range value of range between the
healthy and faulty cases. Equation (1) depicts the calculation of frequency amplitudes for
the case between healthy and faulty states.

yt =

(
y f + yh

)
2

(1)

Here, yt is the higher average amplitude of the frequency component when it is
transitioning from a healthy to a faulty state. Let us say this is the transition state of
the motor, whereas yh and y f represent the maximum amplitude of the frequency com-
ponent at healthy and faulty states, respectively. This will give the range of values for
the frequency component amplitude between the transitioning state, which can be used
further to determine which combinations can identify the faulty frequency components. A
general overview of the amplitude range of different frequency components during the
transitioning state is shown in Table 3.

Table 3. Frequency amplitude range for fault occurrence (transition state).

Frequency Component (Hz) Minimum Amplitude (A) Maximum Amplitude (A)

38.45 Hz 0.612 0.0633
43.33 Hz 0.0797 0.0841
100 Hz 0.0460 0.0563

125.73 Hz 0.0139 0.0140
250.21 Hz 0.0092 0.0145
380.86 Hz 8.56 × 10−4 0.0032

The difference in ranges for a specific frequency component is graphically shown in
Figure 8. This gives an idea about the specific ranges needed to generate combinations for
training a machine learning model.
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It can be seen that the ranges might overlap a bit, but it is either on the minimum side
or maximum size of the transitioning state of the motor, which is to be expected. Once
all the ranges of each considered frequency component are determined, the next step is
to divide these ranges further into three parts, i.e., each part will be 30% of the range,
excluding healthy and faulty areas. This will give us some idea about how much of a
chance there is for the occurrence of a fault in the electrical machine. Table 4 shows the
division of one of the frequency component amplitudes in the transition state.

Table 4. Division of transition state frequency component range for 250.21 Hz frequency component.

Minimum Amplitude (A) Maximum Amplitude (A) Fault Occurrence Probability

0 0.00828 0%
0.00828 0.01052 30%
0.01052 0.01185 60%
0.01186 0.01317 90%
0.01317 - 100%

Table 4 shows the division of the range for one of the frequency component’s am-
plitudes. This will help define the probability of fault occurrence in the incoming signal
and will further enable the determination of the fault occurrence level. Once these are
established, data points are generated based on these ranges, which will then be used for
training the machine learning algorithm. Multiple combinations of these ranges are created
to avoid missing out on any possible scenarios. The generated data are then combined with
the data for healthy and faulty states for the specific frequency ranges and used for training
the machine learning algorithm. The probability of fault occurrence is taken as an average
with a weight of the ranges used in the combination. A weight is assigned based on the
critical value of the frequency component amplitude and in which range it lies.

For example, for the initial combinations, the range values are the same, so similar
weightage is applied to each range value to determine the probability of the fault occurrence,
and the average of those probabilities is taken. This will give us the same probability of the
urgency of the fault that is occurring. The ranges are divided into five parts for simplicity,
as shown in Table 4 above. The weightage assigned to each range is shown in Table 5. The
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final occurrence probability percentage is decided by taking the average for all frequency
components, as shown in Equation (2).

fp =
(a1 + a2 + a3 + . . . + an)

n
(2)

Here, fp is the probability of fault occurrence, whereas a1 to an are the assigned
probabilities to different frequency component amplitudes in the combination, and n is
the total number of frequency components present in the combination. This will give an
average probability for the fault occurrence, which is then simplified based on the division
shown in Table 4. The general overview of the data points combination example used for
training the machine learning mode is shown in Figure 9.

Table 5. The weightage assigned to the range of amplitude of frequency component.

Range %Age of Error Weightage Assigned (0–1)

0% 0
30% 0.3
60% 0.6
90% 0.9

100% 1
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This will determine the probability of fault occurrence in the electrical machine. How-
ever, for this research, the probability is rounded off to 0%, 30%, 60%, 90%, and 100% to
classify the data for these five cases. However, they can be further divided into multiple
options, and a machine learning model can be trained based on them. Once the data are
prepared, different machine learning models are used for training the sample data. The
blind validation method was used to determine the accuracy of the trained model.
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2.3. Machine Learning Training and Comparison

After completing the data points, the next step is to train machine learning models
based on those data sets and validate the results to see if they predict the occurrence
correctly or not. To ensure we cover all possible cases, healthy and faulty data points for
validation were gathered from running electrical machines, whereas the data points for
validation for transitioning state were randomly generated from the defined ranges. For
comparison purposes, five different kinds of machine learning algorithms were selected,
and models were trained using those models.

For machine learning, different neural network algorithms were trained to compare
purposes. As this is the initial stage of the proposed algorithm, the data points used
for training the machine learning based models were around 68,000 data samples with
a validation sample count of 6800 data samples. These initial tests were carried out on
smaller data sets and might need to be tested for bigger data sample sets. Each range was
assigned a classification label, which is shown in Table 6.

Table 6. Classification assigned per range of error.

Range %Age of Error Classification Label Assigned

0% 1
30% 2
60% 3
90% 4

100% 5

Machine learning models were trained based on blind validation, i.e., the samples used
for validation were not used for the training of the models. A total of eight models were
considered, with the majority from neural networks for classification. A comprehensive
comparison between the accuracies of these models is given in Table 7. The confusion
matrix for the validation results of the two models is shown in Figure 10.
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Table 7. Comparison results.

Machine Learning Algorithm Accuracy (Validation)

Course Tree 93.9%
Gaussian Naïve Bayes 88.6%

Fine KNN 97.1%
Narrow Neural Network 99.3%
Medium Neural Network 99.3%

Wide Neural Network 99.6%
Bilayered Neural Network 99.3%
Trilayered Neural Network 99.1%

As can be seen from Table 7, all of the Neural Network techniques performed well,
whereas the others were nearby. This might be because the data set is small and not too big.
Further experiments need to be done with bigger data sets to confirm results.

3. Discussion and Conclusions

There has been much research in predictive maintenance, but it is still lacking a good
predictive maintenance algorithm. Most of the algorithms being utilized at the moment
are related to fault detection, and work is still under development in the area of the
prediction of faults. Some commercial products are available in the market, but they are
too expensive and company-dependent. Moreover, the technology included for these
products is confidential but includes both hardware and software. The algorithm presented
in this paper is a step towards a stable and general-purpose approach for fault prediction
in electrical machines, which can be implied to different faults.

This paper proposes a novel single-spectrum-based approach for the predictive main-
tenance of electrical machines. This is a new concept and might need some more refinement
and research. The method presented here is based on the current signature fluctuations
because of faults in electric machines and utilizing those changes to predict faults. There is
only one fault considered for this research, i.e., a broken rotor bar in the electrical machine
for reference.



Energies 2022, 15, 9507 14 of 16

There are two different parts of the presented approach; one is signal processing,
whereas the other is the preparation of data samples for training a machine learning model
for fault prediction. The proposed method and experiment show a promising result. The
data set used for training is small, which might be one reason for the higher accuracy
of neural network models. Nevertheless, this shows that predictive maintenance can be
achieved using the proposed method. There is still a need to test the approach on a bigger
data set with more faulty scenarios and combinations. Although the method needs initial
processing to be processed on the incoming signals before giving it to detection, it does not
take much time, and the models can be implemented and tested in real-time scenarios.

However, there is still a need to improve the method and include different faults of the
electrical machines and also work on multiple combinations between transition, healthy
and faulty states. This will make the algorithm broader and will help with the predictive
maintenance of machines. Moreover, the algorithm can be improved in determining the
urgency of maintenance by adding more layers of transition state and combinations. It
might be possible in the future to utilize the presented approach for predicting different
faults of electrical machines in real time.

The presented algorithm/approach for fault prediction is still in its early phase. For
test purposes, only one type of fault was considered to validate the algorithm. This work
can be further extended by considering other faults and testing the algorithm to validate
their accuracy. It would also be beneficial to test out its general approach and to evaluate
its working with any fault of the electrical machine just by changing the faulty signal. The
future work also includes the implementation of this algorithm with bigger data samples
and more complex faults.
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