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A B S T R A C T   

The exposome recognizes that individuals are exposed simultaneously to a multitude of different environmental 
factors and takes a holistic approach to the discovery of etiological factors for disease. However, challenges arise 
when trying to quantify the health effects of complex exposure mixtures. Analytical challenges include dealing 
with high dimensionality, studying the combined effects of these exposures and their interactions, integrating 
causal pathways, and integrating high-throughput omics layers. To tackle these challenges, the Barcelona 
Institute for Global Health (ISGlobal) held a data challenge event open to researchers from all over the world and 
from all expertises. Analysts had a chance to compete and apply state-of-the-art methods on a common partially 
simulated exposome dataset (based on real case data from the HELIX project) with multiple correlated exposure 
variables (P > 100 exposure variables) arising from general and personal environments at different time points, 
biological molecular data (multi-omics: DNA methylation, gene expression, proteins, metabolomics) and mul-
tiple clinical phenotypes in 1301 mother–child pairs. Most of the methods presented included feature selection or 
feature reduction to deal with the high dimensionality of the exposome dataset. Several approaches explicitly 
searched for combined effects of exposures and/or their interactions using linear index models or response 
surface methods, including Bayesian methods. Other methods dealt with the multi-omics dataset in mediation 
analyses using multiple-step approaches. Here we discuss features of the statistical models used and provide the 
data and codes used, so that analysts have examples of implementation and can learn how to use these methods. 
Overall, the exposome data challenge presented a unique opportunity for researchers from different disciplines to 
create and share state-of-the-art analytical methods, setting a new standard for open science in the exposome and 
environmental health field.   

1. Background 

The exposome is a concept of growing interest in the field of envi-
ronmental and molecular epidemiology. Described as “the totality of 

human environmental exposures from conception onwards”, it recog-
nizes that individuals are exposed simultaneously to a multitude of 
environmental factors and takes a holistic approach to the discovery of 
etiological factors for disease. The exposome’s main advantage over 
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traditional ‘one-exposure-one-disease’ study approaches is that it pro-
vides an unprecedented conceptual framework for the study of multiple 
environmental hazards (urban, chemical, lifestyle, social) and their 
combined effects. Indeed, classical single pollutant models make unsure 
the fact that the analysed association is due to the pollutant effect or 
from another correlated exposure not taken into account in the analysis. 
They are also unable to capture interactions and cumulative effects from 
the exposure mixture. Furthermore, given the increasing availability of 
complex environmental health data due to the emergence of new tech-
nologies (such as electronic health records, high throughput omics 
platforms, wearable sensors, etc), there is a need for more advanced 
statistical approaches that focus on complex mixtures of exposures. 

However, the analysis of such complex data comes with numerous 
challenges, for instance the usually high correlations between exposures 
of the same family (air pollutants, lifestyle), the ability to capture cu-
mulative low dose effects, assess interactions, identify important com-
ponents of the mixture. Recently, methods have been applied to take 
into account multiple exposures and the interactions between them, for 
example by using mixture analysis methods, by integrating the selection, 
shrinkage and grouping of correlated variables (e.g. LASSO, elastic-net, 
adaptive elastic-net), dimension reduction techniques (e.g. principal 
component, partial least square analysis) or bayesian model averaging 
(BMA), Bayesian kernel machine regression (BKMR), etc.) (Stafoggia 
et al., 2017, Lazarevic et al., 2019). A series of limitations of these ap-
proaches have been previously identified such as the lack of model se-
lection stability (shrinkage methods), lack of interpretability of the 
latent variables (dimension reduction) and computational inefficiency 
(Bayesian models). In addition, they are rarely applied in the context of 
large (>100 variables) and heterogenous exposome data (omics, cate-
gorical/continuous variables). 

To address the numerous challenges that come with the analysis of 
newly available exposome data and to promote interdisciplinary 
collaboration between researchers from around the world, ISGlobal 
hosted a 3-day online data challenge in April 2021 entitled “the Expo-
some Data Challenge Event”. This is the first data challenge organised in 
this field, and still a rarity in the academic sphere. Data challenges, 
hackathons or crowdsourcing events were initially used for software 
development in the 2000’s but are now additionally used in healthcare 
research to accelerate innovation and peer-reviewing, structure 
learning, test reproducibility of results, and enable wide participation. 
Briefly, these events allow participants, usually organized in teams, to 
respond in a short time frame (1–3 months) to common biological 
questions using a specifically provided dataset. The Exposome Data 
Challenge Event was inspired by previous events such as the National 
Institute of Environmental Health Sciences (NIEHS) workshop for 
assessing Health Effects of Environmental Chemical Mixtures in Epide-
miology (Taylor et al., 2016) organised in 2015 or the DREAM challenge 
annual series (Ellrott et al., 2019) during which biological data sets are 
released to the international community to build computational models 
that address specific biological questions. This data challenge was 
particularly motivated by the need to address interpersonal interactions 
constrained by the COVID-19 pandemic and provide a platform to re-
searchers from various genders, backgrounds, and career stages. It was 
built upon a well-established dataset from the HELIX cohorts which 
measured the early life exposome (Maitre et al., 2018; Vrijheid et al., 
2014). Exposome-health and exposome-omics associations in this 
dataset have been previously well described within the HELIX con-
sortium. However, the consortium was ready to open and brainstorm 
with a wider scientific community about unresolved challenges of 
exposome cohort data such as non-linear combined effects of exposures, 
causality and omics integration, repeated time points and multi-cohort 
design. Our main objective was to promote innovative statistical, data 
science, or other quantitative approaches to study the health effects of 
complex multi-dimensional exposures and high throughput omics 
measurements in this unique exposome dataset. At this stage, exposome 
studies are often framed without an a priori hypothesis, with an 

explorative approach, therefore we formulated the challenges around 
the data analysis and not specific research questions, ensuring the 
generalizability of the outputs. In addition, we wanted to deliver for the 
community a common public training dataset for exposome studies, 
programming code clearinghouse and open collaborations for future 
projects. 

This event gathered a widely diverse scientific audience of 307 
participants, including environmental epidemiologists, biostatisticians 
and computational scientists, to discuss state-of-the-art statistical 
methods for studying exposome-health associations. The participants 
were offered an opportunity to test their statistical methods of choice 
addressing one or several key challenges: a) the high dimensionality of 
the data, b) combined effect of exposure or mixtures, c) the omics data 
integration and the d) causal structure in the exposome. Participants 
were encouraged to accommodate in their approaches some of the 
particularities of the data (e.g. multi-cohort, count responses, categori-
cal and continuous exposure variables, exposures measured at two time 
points, etc). Visualization of the results was also a key point across all the 
challenges listed above. This report outlines the approaches presented at 
the event, which represent useful computational, conceptual, and sta-
tistical models for analyzing high dimensional exposome datasets, 
including omics and health outcome associations. In collaboration with 
the event committee and the selected participants, we discuss the 
different techniques. 

2. Methods 

2.1. Event organisation 

First, participants were invited to submit an abstract describing their 
team, the challenge(s) and the method they would apply on a common 
partially simulated exposome dataset (based on real case data from the 
HELIX project). The planning committee selected a total of 25 abstracts 
out of 39 based on method clarity, novelty, relevance for the exposome 
field and challenges presented. Second, the selected participants were 
invited to apply their method on the dataset during a month leading to 
the event. Third, they presented at the event their method’s statistical 
background, type of research question(s) it best addressed, and their 
results. At the end of the event, the committee and the audience voted 
for the best presentations based on clarity, novelty and relevance. 
Finally, the participants made their code available on the github account 
(Gonzalez, 2021) of the event and videos of the presentation are avail-
able on the youtube channel of the ATHLETE project. 

2.2. Data 

The exposome data provided for this challenge came from the HELIX 
subcohort database and were partially simulated. The HELIX study 
(Maitre et al., 2018; Vrijheid et al., 2014) represents a collaborative 
project across six established and ongoing longitudinal population- 
based birth cohort studies in six European countries (France, Greece, 
Lithuania, Norway, Spain, and the United Kingdom). From the 31 472 
mother–child pairs included in the cohorts, a subcohort of 1301 moth-
er–child pairs were followed up with measurements of biomarkers, 
omics signatures and health outcomes at 6–11 years of age. The data 
provided for the challenge came from this subsample, but it was 
partially simulated to respond to policies of data anonymization for 
privacy protection in the cohorts. In detail, for the set of health outcomes 
and exposures, we conducted the following process: for each participant, 
a total of 50 random variables (different for each subject) were con-
verted into missing values and then imputed (in successive rounds of 10 
variables at a time) with the method of chained equations. Thus, for each 
participant, some of the values in the provided dataset were real and 
some were simulated, in a way that precluded knowing what is real data 
and what is simulated. Omics data instead were kept intact but anno-
tations of genes and metabolites were not provided. We provided an 
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imputed dataset in which all missing values in the original data were 
imputed by the chained equations method. Exposure data were trans-
formed (e.g. logarithmic, square root, tertiles) to achieve symmetric 
distributions with a homogenous range of values (Annex 1). The original 
raw data are available on request subject to ethical and legislative re-
view. The “HELIX Data External Data Request Procedures” are available 
with the data inventory in this website: https://www.projecthelix. 
eu/data-inventory. 

The datasets are available in the github repository of the challenge 
event and transcriptomic and Epigenomics through a FigShare account: 
https://figshare.com/account/home#/projects/98813. An overview of 
available data is shown in Fig. 1 and the complete codebook description 
is available in Annex 1. It includes more than two hundred environ-
mental exposure variables, 13 covariates, six health outcomes [body 
mass index (BMI), asthma, birth weight, neurobehaviour, intelligence 
quotient (IQ)], and omics data (serum metabolome, urine metabolome, 
proteins, gene expression, methylation). Exposure, covariate and health 
outcome datasets contain both continuous and categorical values; health 
outcome data additionally included count data. Exposure and omic 
datasets both included highly correlated features (correlation > 0.8). 

2.3. Challenges 

The main challenges that were addressed during the workshop were 
as follows:  

(1) The high dimensionality of exposure data and, more precisely, 
methods to reduce it while minimizing the loss of useful infor-
mation regarding health associations and combined effects. The 
exposome dataset available during the challenge consisted of a 
large number of environmental exposure variables and a multi- 
omics dataset (approximately 0.5 M features), with a high 
inter-variable correlation, but a small sample size (N = 1301), 
typical of exposome studies.  

(2) The combined effect of exposure or mixtures. Researchers are 
interested in studying individual and combined effects of a large 
number of exposures together accounting for their potential in-
teractions. Effects of environmental exposures may be small 
when taken individually, but their aggregation may lead to a 

significant alteration of the health outcome of interest, leading to 
cocktail effects that researchers want to investigate.  

(3) Omics data integration. Omics data may be used, in addition to 
exposure data, in order to provide causal inference on the link 
between exposome and health. The challenge here was to incor-
porate one or several of the different omic layers available, with 
the purpose of finding patterns that can explain variations in one 
or more health outcomes and analysing how the exposome and 
the omes interact with regard to these outcomes. The method 
used in this context must be able to maximise omics data pre-
dictive power with very high dimensional data and small sample 
size (N≪P).  

(4) Causal structures in exposure data. This challenge included: 1) 
how to incorporate a priori hypothesized causal relationships 
between the different exposures and one health outcome into the 
analysis, 2) the comparison of this a priori approach with agnostic 
analyses that would perform variable selection treating all ex-
posures in the same way, 3) how one can answer a large number 
of causal questions referring to different exposures using causal 
inference techniques for high-dimensional data, 4) the incorpo-
ration of mediation analysis and high-dimensional mediation 
analysis. 

Additional points of interest included visualisation techniques, the 
handling of the multicenter design of the study, the control for potential 
confounders that may have an effect on the health outcomes and need to 
be considered when studying associations with the exposomic features, 
and missing data in exposome datasets. 

3. Results 

In this section, we summarise the statistical methods used by the 
participants in the Exposome Data Challenge listed in Table 1. All the 
codes developed by the participants to perform their analyses are 
available in the GitHub repository of the event. Briefly, most pre-
sentations focused on one health outcome out of the six available, 
mainly child BMI, and five used multiple outcomes. Seven presentations 
included categorical outcomes (i.e. asthma, BMI and birth weight <
2500gr), the rest focused on continuous outcomes only. Less than half of 
the methods included categorical exposure variables, focusing mainly 

Fig. 1. Overview of the data available during the challenge. The data were based on the HELIX project which collected exposome, omics and health data from six 
mother–child cohorts across Europe in 1301 participants (Maitre et al., 2018). 
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Table 1 
Summary of all the presentations during the exposome data challenge. Ge = Gene Expression, Me = DNA Methylation, Pr = Proteins, SM = Serum Metabolites, UM =
Urine Metabolites, IQ = total correct answer (RAVEN test), Neurobehavior = Internalizing and externalising problems (CBCL scale).  

Presentation 
order 

Authors names, 
University 

Presentation Title Method names Link 
to 
slides 

Link to 
papers 

Omics 
data 

Categorical 
exposures 

Selected health 
outcome 

2. Approaches to study the combined effect of exposures on health 
2.1 Approaches explicitly searching for combined effects of exposures, linear or nonlinear, and/or their interactions 

4 Chris Gennings, Icahn 
School of Medicine at 
Mount Sinai 

Evaluating a Mixture 
Effect of Perinatal 
Environmental Exposures 
on Childhood 
BMI Using Weighted 
Quantile Sum (WQS) 
Regression 

Weighted Quantile Sum 
Regression (WQS) 

Link (Carrico 
et al., 2015)  

N BMI z-score 

6 Matthew Carli and David 
Wheeler, Virginia 
Commonwealth 
University 

Exposome Analysis with 
Bayesian Group Index 
Regression 

Bayesian Group 
Index Regression 

Link (Wheeler 
et al., 2021) 

SM N Asthma 

2 Vishal Midya, Icahn 
School of Medicine at 
Mount Sinai 

A novel penalized LASSO 
type Bayesian Weighted 
Quantile Sum Regression 
Approach for Exposome- 
outcome effect estimation 

Bayesian Weighted 
Quantile Sum Regression 

Link (Colicino 
et al., 2020)  

N BMI z-score 

5 Shounak Chattopadhyay, 
Duke University 

Synergistic Interaction 
Detection 

Synergistic Interaction 
Detection 

Link Article in 
preparation  

N Birth weight 

3 Ander Wilson, Colorado 
State University, Daniel 
Mork 

Exposome Health 
Association Studies Using 
Bayesian Treed 
Distributed Lag 
Mixture Models 

Treed Distributed Lag 
Mixture Models 

Link (Mork and 
Wilson, 
2021)  

N but could BMI z-score 

22 Michele Peruzzi, Duke 
University 

Multi-Outcome Meshed 
Gaussian Processes on 
Projected Inputs for 
Scalable Inference with 
Exposome Data 

Meshed Gaussian 
Processes 

Link (Peruzzi 
et al., 2020)  

Y Birth weight, BMI 
and related 
variables 

1 Glen McGee, University 
of Waterloo 

Quantifying Exposome- 
Health Associations with 
Bayesian Multiple Index 
Models 

Bayesian Multiple Index 
Models 

Link (McGee 
et al., 2021)  

N BMI z-score  

2.2 Approaches using Machine Learning to maximise prediction performance 
14 Jean-Baptiste Guimbaud, 

Remy Cazabet, Léa 
Maitre, LIRIS-ISGlobal 

Leveraging machine 
learning and explainable 
AI to better understand 
exposomic data 

Multilayer Perceptron, 
xgboost, random forest, 
SVM, Elastic-net, SHAP 

Link NA  Y All 

13 Fei Zou, University of 
North Carolina, Chapel 
Hill 

Deep-Exposome: A 
Predictive and 
Interpretative Deep 
Neural Network 
Ensemble for Exposome 
Data 

Improved Bootstrap 
Aggregating and PermFIT 

Link (Mi et al., 
2021, n.d.)  

Y All 

16 Lucile Broséus and 
Paulina Jedynak, 
Université Grenoble 
Alpes 

Searching for the risk 
factors for childhood 
overweight - A novel 
approach to identify the 
most relevant child BMI- 
associated exposures 

Univariate Ordinal 
Logistic Regression and 
Multiple Correspondence 
Analysis (MCA) 

Link NA  Y BMI categorical 

24 Hua Yun Chen, 
University of Illinois at 
Chicago 

Estimating the effects of 
exposome and their 
interactions 

Explained variation (EV) 
in linear models 

Link NA  Y Birth weight, IQ  

2.3 Multi-stage approaches for combined effects 
12 John Pearce, Medical 

University of South 
Carolina 

Exposure Continuum 
Mapping for predicting 
health and disease in 
exposome studies 

Exposure Continuum 
Mapping and Generalized 
Additive Models 

Link (Pearce 
et al., 2021)  

N but could Birth weight 

8 Jaime Benavides and 
Lawrence Chillrud, 
Columbia University 

Pre- and postnatal urban 
exposure patterns and 
childhood neurobehavior 

Principal Component 
Pursuit (PCP), Factor 
Analysis, GAM and LASSO 

Link (Gibson 
et al., 2021)  

N Neurobehavior 

11 Sejal Mistry and 
Ramkiran Gouripeddi, 
University of Utah 

Clustering Exposure 
Trajectories to Classify 
Phenotypic 
Characteristics 

clustering transitions on 
phenotypic characteristics 

Link NA  N BMI z-score 

23 Sanjib Basu, Ruizhe 
Chen, Yu-Che Chung, 

Missingness pattern and 
exposure selection for 

COrrelation LeaRNing and 
exposure Selection 

Link NA  Y BMI z-score 

(continued on next page) 
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Table 1 (continued ) 

Presentation 
order 

Authors names, 
University 

Presentation Title Method names Link 
to 
slides 

Link to 
papers 

Omics 
data 

Categorical 
exposures 

Selected health 
outcome 

Jiyeong Jang Mary Turyk 
and Hua-Yun Chen, 
University of Illinois at 
Chicago 

mixed-type exposome 
data 

(COLRNS) and A Test for 
Realized Missing 
Completely At Random  

3. Studies using omics data to improve inference on the link between exposome and health 
10 Ziyue Wang, National 

Institute of 
Environmental Health 
Sciences 

Integrative Analysis and 
Visualization of 
Exposome and 
Transcriptome data 

Differential expressed 
gene analysis (DEG) and 
Mediation analysis 

Link NA GE Y Asthma 

18 Xiaotao Shen, Stanford 
University 

Decoding unknown links 
between the exposome 
and health outcomes by 
multi-omics analysis 

bi-directional mediation 
analysis. 

Link NA GE, 
UM, 
SM, Pr 

N IQ, 
Neurobehavior, 
BMI z-score 

19 Congrong Wang, Brigitte 
Reimann, Rossella 
Alfano,Hasselt 
University 

Meet-in-the-middle meets 
multi-omics: a strategy to 
identify molecular 
signatures of 
environmental drivers of 
childhood BMI 

Multi-omics Mediation 
Analysis 

Link NA All Y BMI z-score 

21 Miao Yu, Icahn School of 
Medicine at Mount Sinai 

Molecular Gatekeepers 
bridge the exposome and 
health 

Molecular gatekeepers 
discovery 

Link (Yu et al., 
2021) 

SM N Asthma 

17 Carl Brunius, Chalmers 
University of Technology 

Omics Modules for 
Exposome-Health 
Associations (OMEXA) 

MUVR, GeneralizedLinear 
Models and Triplot 

Link (Shi et al., 
2019) 

All Y All 

9 Nikos Stratakis, 
University of Southern 
California 

Latent unknown 
clustering integrating 
multi-omics data (LUCID) 
with phenotypic traits 

Unknown Clustering 
(LUCID) 

Link (Peng et al., 
2020) 

SM, 
UM 

N BMI z-score 

7 Qiong Wu, University of 
Maryland, College Park 

A new statistical graph 
model to systematically 
study associations 
between multivariate 
exposome data and 
multivariate 
metabolomics data 

Bipartite Graph Link NA SM N None  

4. Causal inference 
25 Charlie Roscoe, Hari 

Iyer, Huichu Li, and 
Marcia Pescador 
Jimenez, Harvard 
University 

Air pollution and 
childhood cognition: a g- 
computation approach to 
assess mediation by a 
mixture of metals 

Causal mediation analysis 
and quantile g- 
computation 

Link (Keil et al., 
2020)  

N IQ 

20 Daniela Zugna, Chiara 
Moccia,University of 
Turin 

Application of a novel 
method for mediation 
analysis in the exposome 
context 

Mediation Analysis Link (Loh et al., 
2020)  

Y Birth weight 
(<2500gr) 

15 Alejandro Caceres, 
ISGlobal 

Using causal random 
forest to determine 
exposure environments 
with high sexual 
dimorphisms 

Causal random forests Link NA Me, GE Y BMI z-score 
difference in boys 
and girls  

Table 2 
Method classification according to dimensionality reduction technique used in the exposome data challenge. The number of the presentation corresponds to the list in 
Table 1. The ones with an * correspond to presentations which can fit in several categories.   

Feature selection 

Feature 
extraction  

None By statistical tests 
(correlation*) 

Regularized regression (LASSO, 
Elastic-net) 

Feature importance 
(tree based, permutation based, regression 
coefficients etc..) 

None 12, 13, 15, 18, 
24, 25 

7, 21 3, 5, 20 14, 16, 17 

Indices (weighted quantiles, 
risk scores)   

1*, 2*, 10 1*, 2*, 4 

Feature projection (PCA/FA/ 
PCP/MCA) 

11*,22  8 19 

Clusters 9,11*, 12, 23   

Abbreviations: FA, Factor Analysis; PCA, Principal Component Analysis; PCP, Principal Component Pursuit; MCA, Multiple Correspondence Analysis. 
*Both correlations with the outcome and within features were used to perform feature selection. 
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on continuous chemical exposures. Eight presentations included omics 
data, including one with all omics layers. A separate results section is 
dedicated to the comparison of the findings across methods that focused 
on child BMI and chemical exposures. 

3.1. Approaches to deal with high dimensionality of the data 

Most analyses presented at the event, even those dealing only with 
environmental exposures (n > p), applied some sort of dimensionality 
reduction techniques, as summarized in Table 2. These techniques can 
be split in two categories: 1) feature extraction techniques (Khalid et al., 
2014), which consist in computing derived variables that are functions 
of the original ones and have a smaller dimension, but retain/extract 
most of the information contained in the original feature space, and 2) 
feature selection techniques which consist in selecting a subset of the 
original variable set, while keeping most of the information contained in 
the whole variable space. 

Among the feature extraction techniques that were used during the 
event, we can further define different types: 1) techniques that calculate 
summary measures (indices) based on the creation of weighted combi-
nations of exposures that predict the health outcome; 2) feature pro-
jection techniques such as Principal Component Analysis (PCA) (Jolliffe, 
1986), Factor Analysis (FA), Principal Component Pursuit (PCP) (Candes 
et al., 2009) or Multiple Correspondence Analysis (MCA) (Blasius and 
Greenacre, 2006) to represent the data in a low dimensional space; and 
3) techniques that provide clustering of participants sharing a similar 
exposome profile, which could be predictive of the outcome, i.e. su-
pervised, or not. 

Feature selection approaches used during the event can also be 
divided into different types of selections: 1) based on correlation with 
the outcome of interest, using Pearson’s correlation as a screening 
approach; 2) based on regularisation (LASSO, Elastic-net regression) by 
shrinking the less relevant features’ coefficients; 3) based on feature 
importance which reflects the impact of a given feature on the model 
predictions through permutation (Altmann et al., 2010), random forest 
(Breiman, 2001), or regression coefficients. Other statistical tests exist 
for features’ selection (ex: chi-squared test, ANOVA, etc..) but were not 
used during this challenge. Some analysts made an a priori selection, by 
choosing to focus only on a particular subset of exposures, e.g. lifestyle 
exposure, based on prior knowledge for causal models (25) or model 
abilities (continuous-only-exposures). 

Eight studies implemented feature selection but not feature extrac-
tion, four implemented feature extraction but not feature selection, and 
seven applied both techniques (Table 2). 

4. Approaches to study the combined effect of exposures on 
health 

4.1. Approaches explicitly searching for combined effects of exposures, 
linear or nonlinear, and/or their interactions 

Several methods were presented to capture the effect of exposure 
mixtures. Most of them can be classified as linear index models or 
response surface methods. Linear index models generate new variables 
(usually called indices) that are weighted averages of the original ex-
posures, and regress those indices against the health outcome. Response 
surface methods fit a complex high-dimensional surface to the data, and 
are thus able to capture complex non-linearities and interactions. 

In the group of index models, Gennings (4) et al. presented the 
weighted quantile sum regression (WQSR) method (Carrico et al., 2015), 
its history and recent extensions. WQSR builds a new index, which is a 
weighted average of the initial exposures (previously categorised into 
quantiles as a way to standardise the data and prevent the effect of 
influential observations). The new index is regressed against a health 
outcome, producing a single regression coefficient. The weights to build 
the index, which incorporate directionality constraints (e.g., all 

variables are expected to produce negative effects on the health 
outcome), are estimated simultaneously with the regression coefficients. 
This technique assumes additive effects of the different pollutants. Some 
presented extensions included models to produce strata-specific weights 
and regression coefficients, combining two indices (one for each direc-
tionality) in the same model, or using resampling to improve the prop-
erties of the method. 

Carli (6) et al. presented the application of Bayesian Group Index 
Regression (BGIR), a Bayesian equivalent to WQSR that does not use 
directionality constraints and allows multiple indices (based on groups 
of exposures) in the same model (Wheeler et al., 2021). In the applica-
tion, they included several indices according to exposure families, and 
each exposure family could have two indices if the family contained 
both exposures that were positively and negatively correlated with the 
outcome. They conducted analyses separately by cohort and included 
serum metabolomics data as an additional group of exposures. Midya (2) 
et al. presented the application of LASSO-type Bayesian Weighted 
Quantile Sum Regression (LBWQSR), which is similar to BGIR, but 
introducing LASSO and Elastic net penalties to prevent overfitting (Xu 
and Ghosh, 2015). 

In the group of response surface methods, Chattopadhyay (5) et al. 
presented a method to search for two-way non-linear interactions. Two- 
dimensional splines were used to capture the shape of the association for 
all pairs of continuous exposures. A Bayesian paradigm was used, with 
priors that allow shrinking terms to zero in the absence of interaction. 
Prior information on the direction of the interaction (synergistic vs. 
antagonistic) was also incorporated. 

Mork et al. (3) presented the application of Treed Distributed Lag 
Mixture Models (TDLMM) (Mork and Wilson, 2021). This method uses a 
Bayesian additive regression trees style model that performs exposure 
selection of main effects and two-way interactions, and incorporates the 
repeated exposure measurements available at two time points. The 
model performs hierarchical variable selection (interactions are only 
included if both main effects are included), performs shrinkage of 
regression coefficients, and performs dimension reductions by averaging 
over multiple time points when there is no evidence that the association 
varies over time. 

Peruzzi et al. (22) presented the application of Multi-outcome 
Meshed Gaussian Processes on Projected Inputs (PIMGP). This method 
adapts Meshed Gaussian Processes, a method from the geostatistical 
literature which normally works with bidimensional inputs, for use in 
higher dimensional input spaces: after projecting the inputs onto a lower 
dimensional subspace (using, e.g. PCA), PIMGP use common GP kernels 
and lead to much faster performance relative to standard GPs or 
Bayesian Kernel Machine Regression (BKMR), especially with big data-
frames (high N). The modeling framework was very flexible, allowing 
multiple outcome variables, missing covariates and covariates measured 
with error. 

McGee et al. (1) presented the application of Bayesian Multiple Index 
Models (BMIM) (McGee et al., 2021). This approach combines the 
dimension reduction and interpretability of linear index models (such as 
WQSR and BGIR) and flexible exposure–response modelling of response 
surface methods (such as BKMR and PIMGP). With BMIM, the original 
exposures are reduced to a set of indices, as in BGIR. The approach 
simultaneously estimates the index component weights (with variable 
selection) and a potentially complex, high-dimensional exposur-
e–response relationship between the indices and health outcome. Thus, 
it allows non-linear effects of the indices and interactions between 
indices. This presentation won one of two exposome data challenge 
prizes. 

4.2. Approaches using Machine Learning to maximize prediction 
performance 

Guimbaud (14) et al. linked the exposome with several health out-
comes using several machine learning methods, namely multilayer 
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perceptron, random forest, XGboost, support-vector machines (SVM), 
and elastic net. They compared the prediction performance of the 
different techniques and used explainable AI by calculating SHAP 
(SHapley Additive exPlanations) values (Lundberg and Lee, 2017) to 
examine the impact of each exposure in the resulting models and their 
interactions with regards to the health outcomes. Zou (13) et al. con-
ducted similar analyses, using in this case a deep neural network 
ensemble model, which was compared in terms of prediction accuracy to 
LASSO, SVM and random forest. Instead of SHAP values, they calculated 
a permutation-based feature importance test. Broséus (16) et al. studied 
the relationship between the exposome and child’s BMI using a multi-
step approach. First, they ranked predictors by feature importance using 
multivariate ordinal random forests. Based on this metric, they used an 
arbitrary threshold to select the most pertinent exposures and, among 
these, they performed an analysis of exposure associations using: 1) an 
ordinal logistic regression model to obtain effect estimates and direction 
of association and 2) an MCA to obtain a graphical view of the clustering 
of exposures, adapted to categorical exposures. Finally, Yun Chen et al. 
(24) proposed a measure of explained variation to assess the perfor-
mance of models, which can be estimated accurately without estimating 
the individual regression coefficients. Looking at explained variation 
can provide interesting insights, such as confidence intervals, the 
explanatory power of different exposure families or of interactions 
terms. 

4.3. Multi-stage approaches for combined effects 

Multi-stage modelling approaches were applied to model patterns in 
the exposome data prior to examining associations with the outcome. 
For example, Pearce et al. (12) linked the exposome to birth weight by 
applying the framework defined as Exposure Continuum Mapping 
(ECM). An exposure continuum map is a spatially organized map of 
exposome features that places similar exposure profiles close to each 
other and different ones are further apart. It is built in two steps: first 
they build a low dimensional (2D) representation of the data using 
Kohonen self-organising maps (Kohonen, 1982) in order to identify 
exposure profiles. Then, using information from this organised map, 
they used a Generalized Additive Model (GAM) to build a 3D exposur-
e–response function that allows examination of a total mixture effect. 

Benavides et al. (8) linked the urban exposome with neurobehavior 
using a strategy that involved reducing the exposome via PCP (Gibson 
et al., 2021) and FA, in order to identify both consistent and unique pre- 
and postnatal exposure patterns, and then regress these lower dimen-
sional patterns to the health outcome using generalized additive models 
(for the consistent pre- and postnatal patterns) and LASSO (for the 
unique patterns). Mistry (11) et al. linked the exposome to obesity. They 
used PCA and k-means clustering to identify exposure profiles in both 
the prenatal and postnatal periods, and then used logistic regression to 
assess the risk of obesity as a function of the transitions of individuals 
between prenatal and postnatal exposure clusters. Basu (23) et al. 
designed an iterative algorithm (COLRNS) that creates clusters of 
correlated exposures and then performs variable selection within the 
clusters to predict the health outcome while minimizing the error of the 
model. This method can also handle missing data. 

4.4. Studies using omics data to improve inference on the link between 
exposome and health 

Several studies used one or more omics datasets as intermediate 
layers and conducted some kind of mediation or meet-in-the-middle 
analyses. Wang (Ziyue) et al. (10) studied the link between the expo-
some and asthma using transcriptome as an intermediate layer. In 
particular, they used a combination of 1) differential gene expression 
and gene set enrichment for asthma, 2) exposure selection in a model for 
asthma via elastic net and calculation of exposure risk scores, and 3) 
high-dimensional mediation analysis. Shen et al. (18) also conducted 

mediation analysis, in this case using several omics datasets (tran-
scriptome, proteome, serum/urine metabolome) as potential mediators 
in the relationship between the exposome and several health outcomes 
(IQ, behavior, BMI). All models were fitted with linear mixed models 
and they used BH correction to correct for multiple comparisons. This 
presentation received the committee prize for integrating all the high 
dimensional omics and multiple outcomes while using informative vis-
ualisation of the results. Wang (Congrong) et al. (19) conducted a causal 
mediation analysis using multi-omics layers (transcriptome, proteome, 
serum/urine metabolome) as potential mediators of the relationship 
between the exposome and BMI. In this case, they used multi-omics 
factor analysis to reduce dimensionality of the omics layers and factor 
analysis to reduce the dimensionality of the exposome. 

Yu et al. (21) presented Gatekeepers (Yu et al., 2021) a new theory to 
assess exposure-metabolites associations. They identified some Gate-
keepers in the data using the Pearson correlation and then studied their 
associations with asthma. Gatekeepers are metabolites associated with 
both exposures and other metabolites. They are presented as the bridge 
between the exposome and the metabolome. Brunius et al. (17) also 
implemented a meet-in-the middle approach in which they used the 
proteome, serum metabolites, urine metabolites, gene expression and 
methylation as middle layers between the exposome and health out-
comes. In their analytical pipeline, Omics Modules for Exposome Health 
Associations (OMEXA) (Shi et al., 2019), they used machine learning 
(MUVR Multivariate Methods with Unbiased Variable Selection, a pre-
dictive machine learning algorithm using an embedded recursive feature 
elimination mechanism within a repeated double cross validation pro-
cedure) to select the exposure variables related to the phenotypes 
available and partial correlation to further refine the selected list of 
exposures, adjusting for covariates. Then, they reused the same pipeline 
to select omic variables related to the selected exposures; and finally, 
they implemented a generalized linear model to link the selected omics 
with the phenotypes. They visualized the final results with triplots by 
projecting exposures, omics and phenotypes into two principal 
components. 

Zhao (Stratakis) et al. (9) studied the link between organochlorines 
and BMI, using proteins, urine and serum metabolites as intermediate 
layers. They used the latent unknown clusters (LUCID) method (Peng 
et al., 2020), which found latent subgroups of subjects characterized by 
having at the same time distinguished BMI, distinguished omics profiles 
and distinguished exposure. The process includes variable selection with 
LASSO and results were visualized with a Sankey diagram. 

Finally, Wu et al. (7) linked the exposome with metabolomics, 
without including the health phenotypes. They used a bipartite graph 
model to represent pairwise associations between exposures and me-
tabolites. From this graph they extracted subgraphs of concentrated 
most significant negative or positive association blocks (that were 
assessed using the pairwise Pearson correlation coefficients). 

5. Causal inference 

Some researchers studied causal relationships between environ-
mental exposure and health. Roscoe et al. (25) studied the relationship 
between air pollution and cognition, and used blood concentrations of 
metals (part of the exposome) as potential mediators. They used causal 
mediation analysis and quantile g-computation to assess mediated ef-
fects. Zugna et al. (20) also conducted mediation analyses, in this case 
they considered the exposome as a potential mediator in the association 
between socioeconomic position and birthweight. Thus, they studied a 
context with a high-dimensional mediator set, and their proposed 
analysis was based on interventional effects and penalized regression 
models (Loh et al., 2020). 

Cáceres et al. (15) conducted an analysis trying to explain the dif-
ferences in BMI between boys and girls (outcome variable). They 
inferred groups (clusters) of participants with specific exposomic pro-
files for which those differences were the highest. The underlying 
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method used was a recent implementation (https://github.com/teff-pac 
kage/teff) of random causal forests (Wager and Athey, 2017). They also 
looked for omics markers (transcriptomic and methylomic) that were 
associated with differences between the exposome clusters. This pre-
sentation won the popular vote of the challenge. 

6. Results on chemical pollutants and zBMI 

In this section, we summarise the results obtained by different 
participating groups that addressed a similar research question, namely 
the relationship between chemical pollutants and zBMI. This is done for 
illustrative purposes and to provide some idea on how similar are the 
results when different methods are applied to the same dataset. The 
results of such comparison are of course dependent on the data and 
methods used and cannot be generalised, but they can give an idea of 
what could happen in a real research setting if multiple statistical ana-
lyses are applied. We also note that the dataset used was partially 
simulated, and that the analyses did not necessarily adjust for all 
necessary confounders. Therefore, subject-matter associations reported 
in this section should not be interpreted, and we just restrict the focus on 
the reproducibility of associations under the different analyses. 

Although subject-matter interpretation of the results is not the focus 
of this section, it is noteworthy that most of the approaches that focused 
on child BMI confirmed previous HELIX publication results (Vrijheid 
et al., 2020), namely that childhood hexachlorobenzene (HCB) exposure 
is cross-sectionally associated with reduced childhood BMI z-score. 
Some studies also identified metals and PCBs (polychlorinated bi-
phenyls, particularly PCB170) to be linked with BMI. 

In a WQS regression of 38 prenatal and postnatal chemicals, Genn-
ings et al. (4) reported a significant negative association between the 
mixture index and child BMI. Higher weights belonged to the postnatal 
exposures, with HCB being the chemical with the highest contribution. 
Conversely, Midya (2) et al. found in a penalized group mixture BWQSR 
that prenatal organochlorine compounds (OCs) and metals were posi-
tively associated with child BMI, whereas PCBs were negatively asso-
ciated. Within each group, the chemicals with the highest weight were: 
HCB (for OCs), As, Cd and Co (for metals), and PCB170 (for PCBs). 

Mork and Wilson (3) developed treed distributed lag mixture models 
with 56 prenatal and postnatal exposures and observed that the chem-
icals with the highest PIPs (near 1) were HCB, PCB170, DDE, and Mo. 
They also identified a strong interaction (PIP = 1) between prenatal Mo 
and postnatal HCB. McGee et al. (1) grouped 150 exposures into 29 
indices corresponding to exposure families and time of exposure (pre-
natal or postnatal) in a BMIM. The groups with the highest PIPs (>0.5) 
were postnatal OCs, postnatal metals, prenatal water DBPs and the 
postnatal built environment. Among these, OCs were strongly negatively 
associated with child BMI z-score, and HCB was the chemical with the 
strongest effect in the index, followed by PCB170 and DDE. No in-
teractions were observed except for prenatal water DBPs and postnatal 
OCs. Consistently, Broséus et al. (16) also identified postnatal HCB as the 
chemical exposure with the highest importance in multivariate ordinal 
random forests. After combining lifestyle and chemical exposures in an 
MCA, they found that Cu was associated with an increased risk of 
childhood overweight. 

Using the LUCID method, Yinqi Zhao et al. (9) identified protein 
signatures (IL-1beta, IL-6, insulin) giving insight into underlying 
mechanistic pathways of childhood obesity (e.g. systemic inflammation, 
disturbed glucose metabolism). Finally, in multi-omics mediation anal-
ysis, Wang (Congrong) et al. (19) detected urine metabolites (e.g. 
phospholipids, TMAO, hippurate) that mediated the effect of maternal 
smoking and built environment on childhood BMI. 

7. Discussion 

This event brought together researchers from various disciplines to 
work on a common challenge: exposome data analysis. It established an 

overview of state-of-the-art methods currently used in the field and 
paved the way to interesting discussions and exchange of ideas. Next, we 
discuss some of the advantages and disadvantages of the different 
methods proposed. 

7.1. Dimensionality reduction 

The first point of interest was the wide use of dimensionality 
reduction methods, especially feature selection, to deal with multivar-
iate exposomic data (even without omics). Feature extraction methods 
were less used because they usually complicate the interpretation of the 
results if we are interested in the effect of a particular exposure on 
health. However, during the challenge, some interesting methods tried 
to analyse groups of correlated exposures as a way to reduce the 
dimensionality of the input while keeping the results interpretable. 

7.2. Combined effects of exposures 

In this section we discuss general pros and cons of the different 
methods presented. Several index methods were presented. These have 
the advantage of easy interpretation, as they provide a single parameter 
estimate for the mixture of exposures, along with the weights that easily 
illustrate the contribution of each exposure. The detection of a mixture 
effect is also expected to be more powerful when it is based on a single 
degree of freedom test. The weighted quantile sum regression family 
imposes directionality constraints, which could be seen as a limitation 
compared to other approaches such as Bayesian Group Index Regression. 
However, indices with both positive and negative weights are more 
difficult to interpret, and within the context of WQSR one can build one 
index for those exposures with positive contribution and another for 
those with negative contribution. Approaches such as LBWQSR may 
facilitate the interpretation of results by shrinking some of the less 
relevant associations towards zero. In principle, index models assume 
linear associations, but methods have been developed to estimate 
quadratic associations with the weighted index, where the significance 
of the quadratic term may be used as a test for the linearity assumption. 

All index methods have the disadvantage that they do not consider 
interactions between exposures contributing to the same index. This can 
be solved by using response surface methods, at the cost of a potentially 
more difficult interpretation. Two methods were presented that 
searched for and detected two-way interactions in their analyses, and 
other methods such as PIMGP or BKMR can potentially capture higher 
order interactions and nonlinear effects. As order of interactions in-
creases, flexibility increases, but again possibly at the price of inter-
pretability. It is worth noting that, even if models can capture complex 
high-dimensional surfaces, interpretation of such models is usually done 
using plots that show the effects of just one or two variables at a time. 
Even though one could explore the effects of higher order interactions in 
methods such as PIMGP or BKMR, some studies suggest that structures 
based on four variables are at the limit of human ability to correctly 
process the information (Halford et al., 2005). Thus, when interest is in 
explaining the associations (and not merely predicting), higher order 
interactions can be of limited use. 

The tension between interpretability and complexity when choosing 
between index models and response surface models can be eased by 
recently developed methods (multiple index models) that combine some 
of the advantages of both families of methods, and while defining easily 
interpretable indices, they can accommodate non-linear and non- 
additive relationships between exposure indices and the health 
outcome (McGee et al., 2021). 

Several Bayesian techniques were presented in this section. The 
Bayesian paradigm is useful because it naturally penalises complex 
models and it offers flexibility to incorporate a process of variable se-
lection. It is also useful to obtain the distributions of any quantity that 
can be derived from the model output. These techniques require some 
familiarity with Bayesian methods, for example to evaluate 
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convergence. However, currently available R packages greatly facilitate 
their implementation, even for those less versed in Bayesian inference. 

7.3. Machine learning and prediction 

Machine learning methods can potentially increase the predictability 
of the outcome by capturing more complex information from the data (e. 
g., complex interactions, non-linear relationships etc.). Models that 
combine multiple statistical techniques into an ensemble can even 
provide better results, as the different methods may be able to capture 
different patterns of the data. In the challenge, black box methods 
included ensemble methods (such as random forests, xgboost), neural 
networks and support-vector machines. The method most often used was 
by far random forests. One has to consider that the small sample size 
available in the challenge (N = 1301) limited the use and performance of 
machine learning methods. 

Despite their potentially greater predictive power, machine learning 
techniques have been rarely used until recently in the context of envi-
ronmental health studies, probably because of their lack of interpret-
ability. One can improve on the interpretability of black box models in 
several ways, here we will discuss two of them. The feature importance 
metric was the most popular technique during the challenge and is also 
the most used in the exposome field. It can be computed in several ways 
depending on the model: 1) impurity based feature importance (Brei-
man, 2001) for a model based on decision trees 2) permutation based 
feature importance (Altmann et al., 2010) and shapley values based 
feature importance (Harris et al., 2021) can be both applied on any 
model (model agnostic). Another approach is to use partial dependence 
plots (Zhao and Hastie, 2021) that allow visualizing partial associations 
between variables. There are other approaches not implemented in the 
challenge that make use of machine learning while trying to obtain 
interpretable results. One example is the application of a combination of 
super-learner and g-estimation to assess the association between 
chemical pollutants and cognitive function (Oulhote et al., 2019). 

7.4. Integration of omics data 

Considering the analysis of omics data, all the studies presented 
performed some sort of dimensionality reduction before applying 
different statistical analysis. This is a limitation of most existing multi- 
omics data integration approaches since they have not been imple-
mented to deal with large matrices. Therefore, development of new 
integrative methods/tools must consider efficient handling of large data 
sets (Subramanian et al., 2020). Most presentations studied the rela-
tionship between environmental exposures and health outcomes using 
omic data (single or multi-omics) as an intermediate layer in a mediation 
analysis fashion. Some other studies used Pearson correlation to study 
the relationships between omics and exposome data. Different combi-
nations of statistical tools were proposed for omics data integration in 
analytical frameworks. These tools taken individually were not novel 
but their combination for integrating exposome, multi-omics and out-
comes was strongly relevant and novel. We note that when one wants to 
include multi-omics layers in the analysis, the analyst needs to make 
several decisions in terms of pre-processing the data, reducing dimen-
sionality, testing association between multiple sets of data using 
different techniques, and so on. This can lead to a large number of po-
tential pipelines to analyse such data, each leading to potentially 
different results. This is a common problem in most kinds of data 
modelling, but it is aggravated in multi-omics analyses due to the 
availability of multiple sets of high-dimensional data. 

Moreover, we note that other methods previously used for exposome 
and omics data may also be of interest when analysing such data, but 
they were not presented during this event. These methods include 
dimension reduction techniques related to PCA, such as partial least 
square (PLS) and its derivatives (sparse-PLS, group-PLS) (Chun and 
Keleş, 2010; Jain et al., 2018; Lenters et al., 2015), canonical-based 

methods or network analysis (Bessonneau et al., 2021). 

8. Causal models 

Causal models have gained popularity in environmental epidemi-
ology (Bind 2019), including for mixtures (Bellavia et al. 2019). Indeed, 
causal questions are what ultimately drive interventions and policy 
change. Causal mediation analysis with exposome data can help us 
prioritize environmental factors that have the greatest impacts on 
health. In the challenge, examples of causal models applied to 
exposome-health associations included mediation analysis using omics 
data, g-computation methods and the use of causal random forest. 

With regards to mediation analysis with omics data, we note that our 
data was cross-sectional. In such a setting, results from mediation ana-
lyses with omics data should be interpreted with caution, since the omics 
markers might be a consequence of the health outcome or of the expo-
sure (one or the other, not both). In particular serum metabolome data, 
which mainly included information on lipid metabolism, are closely 
related to phenotypic outcomes such as BMI. Therefore, the associations 
found should be expected to reflect more outcome classification (e.g. 
obesity subtypes) than an exposure effect. 

The methods that used other causal inference methods focused on a 
clearly defined question that involved a single main variable of interest 
(sex or socioeconomic position) and its relationship with a health 
outcome, although they used the exposome as an intermediate layer. 
This is expected, as causal inference requires a clearly formulated causal 
quantity of interest that is easier to define for a single variable. Causal 
inference methods for a high-dimensional exposome is a field in which 
further developments are needed, possibly with a comparison of the 
results of those causal techniques with the results of agnostic analyses 
that perform variable selection, effectively treating all exposures in the 
same way. 

9. Final remarks 

We note that this article does not provide an exhaustive list of po-
tential methods to study the exposome. In addition, the provided dataset 
was limited in power to study interactions between exposures Still, this 
is a realistic setting for most epidemiological datasets with exposome 
data. Other approaches to be explored in the future include trying to 
integrate a priori knowledge in the analysis, for example from experi-
mental toxicological data, in order to find chemical interactions, or to a 
priori group exposures with similar biological targets. These knowledge- 
driven approaches can also be used to reduce the dimensionality in the 
omics dataset. Other future challenges to be addressed in the exposome 
field include developing analysis strategies for longitudinal exposome 
datasets. The longitudinal component is actually key in the exposome 
definition, as the exposome tries to capture the totality of exposures 
across a lifespan. The present dataset only included two periods, preg-
nancy and childhood, and thus it only partially covered the lifetime 
exposome. 

The strength of this event was the application of various methods on 
the same, well-characterized HELIX dataset. Indeed, it was possible for 
approaches focusing on the same outcome, child BMI, to find the same 
chemicals as main predictors (PCBs, metals). Although biological 
interpretation from these analyses should be avoided due to the partially 
simulated nature of the data and the heterogeneity in the methods to 
deal with the confounder structure (e.g., multi-centre structure), this 
exposome dataset could serve as a reference to test novel methods in the 
future. We also acknowledge that the way we imputed part of the data 
may have diluted some complex association patterns that may be pre-
sent in the real dataset. Although we tested some models and obtained 
similar results in the real and imputed dataset, this may not be the case 
with the most flexible models, which can potentially capture complex 
association in the real dataset but not in the simulated dataset. Finally, 
the work herein has resulted in computational algorithms with 
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associated code made available to the community with an open-source 
licence, allowing for reproducible research and applications to other 
similar research questions based on exposome and even multi-omics 
data. This event was thought-provoking and highlighted the impor-
tance of networking between researchers in a multi-disciplinary envi-
ronment. It fostered new collaborations at a time where interpersonal 
interaction was constrained by COVID pandemic, as well as giving vis-
ibility to researchers of various genders, backgrounds and career stages. 

10. Consortia 

The Exposome Data Challenge Participant Consortium is listed below 
in alphabetical order, and author affiliations are available in Table S1. 

Alfano Rossella, Basu Sanjib, Benavides Jaime, Broséus Lucile, Bru-
nius Carl, Caceres Alejandro, Carli Matthew, Cazabet Rémy, Chatto-
padhyay Shounak, Chen Yun Hua, Chillrud Lawrence, Conti David, 
Gennings Chris, Gouripeddi Ramkiran, Iyer S Hari, Jedynak Paulina, Li 
Huichu, McGee Glen, Midya Vishal, Mistry Sejal, Moccia Chiara, Mork S 
Daniel, Pearce L. John, Peruzzi Michele, Pescador Jimenez Marcia, 
Reimann Brigitte, Roscoe J. Charlotte, Shen Xiaotao, Stratakis Nikos, 
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