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and INFN, Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy,

3 Department of Physics, Indian Institute of Technology Hyderabad,
Kandi, Sangareddy, Telangana State 502285, India

Abstract. In QCD, the soft function exponentiate in terms of diagrams
known as webs. We have defined Cwebs or correlator webs which are
useful in the calculation of soft function exponentiation at higher per-
turbative orders. We review the results of the four-loop Cweb mixing
matrices. We also provide a direct construction of few of the mixing
matrices without applying the complicated steps of the replica trick.
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1 Introduction

In non-abelian gauge theory the studies of infrared singularities have a rich
history and have produced remarkable insights in all order results. These sin-
gulartites get canceled in a well defined (infrared safe) physical observable but
they leave their signatures in the form of large logarithms of the kinematic vari-
ables. In the IR limit the scattering amplitude factorizes into a universal soft
function, a collinear jet function and an infrared finite hard function. Our object
of interest, the soft function for a n parton scattering process is defined as,

Sn
(
βi · βj , αs(µ2), ε

)
≡ 〈0|

n∏
k=1

Φβk
(∞, 0) |0〉 , (1)

where Φβi(∞, 0) are semi-infinite Wilson lines along βi (velocity of the i-th
parton), αs = g2s/4π and ε = (4 − d)/2. As a consequence of factorization, the
soft function obeys renormalization group equation, solving which leads to the
exponentiation in terms of soft anomalous dimension Γn. The soft function in
terms of the soft anomalous dimension is given by,

Sn
(
βi · βj , αs(µ2), ε

)
= P exp

[
−1

2

∫ µ2

0

dλ2

λ2
Γn

(
βi · βj , αs(λ2), ε

)]
. (2)
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The soft anomalous dimension was computed recently at three loops in [2, 3] and
the current frontier is to calculate the soft anomalous dimension at four loops.

The soft function Sn follows a diagramatic exponentiation such that

Sn = exp
[
Wn

]
, (3)

whereWn are collectively known as webs. Thus, one can directly compute the soft
anomalous dimension matrix Γn using webs. The diagrammatic exponentiation
was first observed in QED, where Wn contains only connected photon sub-
diagrams. In QCD for the general case of n Wilson lines a web is defined as
a set of diagrams which are related to one another by the permutation of the
gluons on each Wilson line. If K(D) and C(D) denote the kinematics and color
of a diagram D in a web then the exponent of the soft function is given by,

Sn = exp

∑
D,D′

K(D)R(D,D′)C(D′)

 , (4)

where R is called the web mixing matrix and

C̃(D) =
∑
D′

R(D,D′)C(D′) , (5)

is called the exponentiated colour factor for a diagram D. The general properties
of the web mixing matrices were studied in [5–8] and are given by,

1. The web mixing matrices are idempotent i.e. R2 = R.
2. The row-sum of the matrices are zero.
3. The elements of web mixing matrices obey the column sum rule∑

D s(D)R(D,D′) = 0, where s(D) denotes the number of ways that the
gluons can be sequentially shrunk to the hard interaction vertex.

2 Cwebs at four loops

We define a correlator web, or a Cweb as a set diagrams, built out of connected
gluon correlators attached to Wilson lines, and closed under shuflles of the gluon
attachments to each Wilson line. As compared to webs, Cwebs have their own
perturbative expansions and thus useful in the enumeration of webs at higher
orders. A Cweb connecting n Wilson lines with cm number of m-point gluon
correlators and with kl number of attachments on l-th Wilson line is denoted

by W
(c2,...,cp)
n (k1, . . . , kn). As described in [1], one can generate all the Cwebs at

O(g2n) from the Cwebs at O(g2n−2) by performing the following moves,

1. Add a two-gluon correlator connecting any two Wilson lines.
2. Connect an existing m-point correlator to any Wilson line, turning it into

an (m+ 1)-point correlator.
3. Connect an existing m-point correlator to an existing n-point correlator,

resulting in an (n+m)-point correlator.
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Using the above steps, we have generated all the four loop Cwebs [1, 4]. We have
developed an in-house Mathematica code which computes the mixing matrices
of all the Cwebs at four loops following the steps of the replica trick algorithm
[5].

We show an example of a mixing matrix of a four loop CwebW
(1,0,1)
4 (2, 2, 1, 1)

which connects 4 Wilson lines and has one 2-point gluon correlator and a 4-point
gluon correlator.

Fig. 1: Diagrams for W
(1,0,1)
4 (2, 2, 1, 1)

Diagrams Sequences S-factors
C1 {{BA}} 1
C2 {{AB}} 1

The mixing matrix for this Cweb is given by,

R =

(
1
2 −

1
2

− 1
2

1
2

)
. (6)

This mixing matrix follows all the properties of a general mixing matrix. Using
Eq. (5), one can easily calculate the exponentiated color factors. The mixing
matrices for all the four-loop Cwebs connecting 4 and 5 Wilson lines are presented
in [1] and for 2 and 3 Wilson lines in [4]. We have checked the correctness of our
results by checking the known properties of the mixing matrices: idempotence,
zero row-sum rule and the conjectured column sum rule.

3 Direct construction of mixing matrices

In this section, we will describe the construction of the web mixing matrices
without applying the replica trick algorithm. All the elements of the possible 2
dimensional mixing matrices arising at all perturbative orders are fixed by using
the row-sum, column-sum and the idempotence property. A detail calculation is
presented in [4].

The next step is to calculate the 3 dimensional mixing matrices using the
known properties. The column weight vector of a Cweb with 3 diagrams is s =
{1, 0, 1}. The diagram which has s = 0, cannot be generated from diagrams
which have s = 1, by the action of the replica ordering operator. Taking this
into consideration, the 3 dimensional mixing matrix takes the form,

R =

 1
2 0 − 1

2
− 1

2 1 − 1
2

− 1
2 0 1

2

 . (7)
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This is the only 3 dimensional mixing matrix that can appear at any perturba-
tive order. Proceeding further, we find that the mixing matrices for any prime
dimension p are unique at all perturbative orders and are given by [4],

R =


1
2 0 0 . . . 0 − 1

2
− 1

2 1 0 . . . 0 − 1
2

. . .
− 1

2 0 0 . . . 1 − 1
2

− 1
2 0 0 . . . 0 1

2

 . (8)

We believe that the exponentiation of soft function in terms of Cwebs will make
the enumeration of Cwebs at higher orders much simpler as compared to webs.
The exponentiated colour factors presented in [1, 4] completes the full list of
colour factors, which will be instrumental in the calculation of the soft anomalous
dimension at O(g8) in the future.
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