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Abstract. This paper proposes an effective bottom-up extension of the
popular FIND-S algorithm to learn (monotone) DNF-type rulesets. The
algorithm greedily finds a partition of the positive examples. The produced
monotone DNF is a set of conjunctive rules, each corresponding to the most
specific rule consistent with a part of positive and all negative examples.
We also propose two principled extensions of this method, approximat-
ing the Bayes Optimal Classifier by aggregating monotone DNF decision
rules. Finally, we provide a methodology to improve the explainability
of the learned rules while retaining their generalization capabilities. An
extensive comparison with state-of-the-art symbolic and statistical meth-
ods on several benchmark data sets shows that our proposal provides an
excellent balance between explainability and accuracy.

1 Introduction

Thanks to their performance, statistical machine learning methods (e.g., SVM
and neural networks) nowadays define the go-to approach in most real-world
tasks. However, they are (usually) complex and lack transparency, which leads
to poor comprehensibility. Recently, there has been an increasing awareness of
the importance of having the ability to explain the decisions of artificial intel-
ligence systems. Within interpretable machine learning methods, rule learning
represents one of the go-to approaches. The literature offers many algorithms
for rule induction [1, 2], but still most of them are far from having performance
comparable to the state-of-the-art. Rule sets [3] are by far the most discussed
approaches, thanks to their natural interpretation. In binary classification prob-
lems, the rules can be combined so that the resulting hypothesis resembles a
Boolean formula in Disjunctive Normal Form (DNF): the set contains only rules
that describe the positive class (akin to concept learning [4]). Thus, an instance
is classified as positive if and only it satisfies the conditions of at least one rule.

Following this direction, we propose FIND-RS (Find Rule Set), an effective
bottom-up extension of the popular FIND-S algorithm for DNF-ruleset induc-
tion. This method applies a specific-to-general approach by greedily partitioning
the set of positive examples while learning for each partition the most specific
conjunctive rule consistent with the training set. Conjunctive rules are learned
using the same idea of FIND-S [4] and the final hypothesis consists of a DNF.
Under mild conditions, FIND-RS guarantees to find a hypothesis that correctly
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classifies the training set. In addition, at the end of the algorithm, an efficient
pruning procedure is used to simplify the final DNF and improve interpretability.

As typical in rule learning, on more complex classification tasks the hypoth-
esis of FIND-RS may perform poorly w.r.t. state-of-the-art classification meth-
ods. To address this limitation, inspired by the work on Bayes Point Machines
[5, 6], we define a principled method to approximate the center of mass of the
version space. This method, named FIND-RS-BP, has the advantage to produce
an interpretable and very accurate set of rules. We show that this new hypoth-
esis significantly improves the performance. Finally, we provide a heuristic to
drastically simplify the rule set generated, thus improving the explainability of
FIND-RS-BP while retaining excellent generalization capabilities.

2 Background and notation

We consider binary classification problems with training sets S ≡ {(xi, yi)}
n
i=1,

where xi ∈ X are categorical feature vectors, with X ≡ ×m
j=1Xj for some finite

(symbolic) attribute/variable domains Xj , and yi ∈ {−1,+1}. We call P ≡
{x | (x, y) ∈ S ∧ y = +1} the set of positive instances, and conversely, N ≡
{x | (x, y) ∈ S ∧ y = −1} the set of negative instances. We denote with
r ∈ ×m

i=1(Xi ∪ {?}) a rule, and we say r covers an instance x ∈ X (or x satisfies
r), r � x, iff ∀i ∈ [m], ri = ? or xi = ri. In logical terms, r � x means that the
conjunction

∧

ri∈r|ri 6=?(ri = xi) is true. It is noteworthy that an instance x can

be seen as a rule in which every variable is constrained. A set D ≡ {r1, . . . , rk} of
(conjunctive) rules covers an instance x ∈ X , denoted D � x, iff ∃r ∈ D | r � x.
From a logical stand point, a set of conjunctive rules corresponds to a monotone
DNF (MDNF). We say that a DNF formula is consistent with a training set
iff it covers the positive training instances and it does not cover any negative
training instance. We say that a rule set (or DNF) D1 generalizes a rule set D2,
D1 ≥ D2, iff ∀x ∈ X , (D2 � x) ⇒ (D1 � x). With a slight abuse of notation,
an MDNF rule h is often used as a classification function in such a way that
given an example x, h(x) = +1 if h � x, −1 otherwise. An ordered set of rules
is denoted by 〈r1, . . . , rk〉. Finally, JbK ∈ {0, 1} denotes the indicator function
which is 1 iff the condition b is true.

3 FIND-RS

FIND-RS considers a hypothesis space consisting of MDNF formulas of arbitrary
size. To find the solution that better explains the dataset, it uses a bottom-up
approach, starting from a very specific hypothesis that is greedily generalized
to allow new positive instances to be covered, while being consistent with the
negative instances.

FIND-RS computes the classification MDNF hypothesis by building a con-
junctive rule at a time. Each conjunction is initially defined as the rule corre-
sponding to a randomly picked positive training instance s ∈ P (not already
covered by the running MDNF). Then, FIND-RS tries to greedily generalize
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such conjunctive rule considering the remaining uncovered positive instances in
a fashion similar to the FIND-S algorithm. Akin FIND-S, FIND-RS generalizes
a rule by removing one or more attribute-value constraints (i.e., setting it equals
to ?) while keeping the overall hypothesis consistent with the negative examples.

It is worth to notice that, by design, FIND-RS will always find a (MDNF)
hypothesis that correctly classifies all the training set iff there are no contradic-
tory examples, that is ∄(x1, y1), (x2, y2) ∈ S | (x1 = x2)∧(y1 6= y2). In the worst
case, FIND-RS will return a hypothesis of the form

∨

p∈P p that clearly overfits
the training set. Algorithm 1 provides a detailed description of FIND-RS.

Rule pruning. Being FIND-RS a greedy algorithm, at the end of the training
process, the produced hypothesis may contain superfluous rules, i.e., rules that
can be removed without losing the consistency with the training set. Thus, the
idea of the rule pruning is to discard such redundant rules. To speed up this
pruning process, we rely on the observation that at every iteration t holds that
∀j < i ∈ [k], ∄x ∈ Bi | rj � x, where the current hypothesis isDt = 〈r1, . . . , rk〉.
This provides a “backward incompatibility” between rules, however, it does not
say anything in the other direction. In particular, it may happen that every
instance in Bi, for some i, can be covered by other conjunctive rules rj for j > i.
In practice, this post-processing step (prune in Algorithm 1) checks if some Bi

can be emptied. In such a case, the corresponding conjunctive term can be safely
removed from the current hypothesis, thus creating a more specialized one that
is still consistent with the training set.

Algorithm 1: FIND-RS

Input: P: set of positive examples; N : set of negative examples
Output: Disjunctive Normal Form rule

1 B,D, k ← [ ], [ ], 0 ⊲ Create an empty bucket list and an empty rule list

2 while P is not empty do

3 s← pop(P) ⊲ Pick a starting example

4 B,D ← B + {s}, D + s ⊲ Create a new bucket/rule

5 Q← [ ] ⊲ Track examples not covered by a chosen rule

6 for p ∈ P do

7 r← Dk ⊲ Get the latest rule found

8 r′ ← generalize(r,p) ⊲ Attempt to further generalize it

9 if ∄n ∈ N | r′ � n then

10 Bk ← Bk ∪ {p} ⊲ Update the last bucket

11 Dk ← r′ ⊲ Update the last rule

12 else

13 Q← Q+ p ⊲ Update examples not covered by current rule

14 P ← Q ⊲ Keep finding new rules for examples not covered

15 k ← k + 1 ⊲ Index the next bucket

16 return prune(D,B)

183

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



3.1 Bayes optimal approximation

Under the condition that there are no contradictory instances, FIND-RS guar-
antees to find one hypothesis of the version space. Moreover, assuming there
exists a target MDNF that has generated data, such hypothesis lies in the ver-
sion space. In large version spaces such hypothesis is hard to find and with a
uniform prior over the hypothesis it is known that the optimal choice is to return
the expected value of the decision of the hypotheses in the version space (aka
Bayes Optimal Classifier). A surrogate of the optimal classifier is the so-called
Bayes Point Classifier (BPC) in which the center of mass of the version space
is selected as classification hypothesis. Unfortunately, to get such hypotheses,
one needs to sample uniformly from the version space and this is a very difficult
task. With the aim to approximate the BPC [5], we propose to combine different
MDNFs obtained from multiple runs of FIND-RS.

Consider an R-dimensional vector space where R is the number of possible
rules. Then, a ruleset can be seen as a vector ŵ ∈ RR+1 where ŵr = 1, r ≤ R iff
the rule indexed by r is present in the ruleset, and ŵR+1 = − 1

2 . An instance is
represented in the same space as the vector x̂ ∈ RR+1 where x̂r = Jr � xK, r ≤ R,
and x̂R+1 = 1. It can be easily verified that the ruleset decision can be given as
h(x) = sign(〈ŵ, x̂〉). FIND-RS-BP is obtained by taking the approximate Bayes
point as the average of the hypotheses ŵ(t) found by running FIND-RS T times:

Hbp(x) = sign

(

1

T

T
∑

t=1

(〈ŵ
(t)
1:R, x̂1:R〉 −

1

2
)

)

> 0⇔
T
∑

t=1

〈ŵ
(t)
1:R, x̂1:R〉 >

T
∑

t=1

1

2
=

T

2
.

Noticing that
∑

t〈ŵ
(t)
1:R, x̂1:R〉 equals the number of rules in the T rulesets

that x satisfies, then Hbp classifies a new instance as positive whenever the
number of rules x satisfies exceeds T/2. Moreover, let G be the set of unique
discovered rules, then the decision can be compacted as

∑

r∈G αrJr � xK > T/2
where αr is the number of times r has been discovered.

This approach gives a principled method to order the discovered rules ac-
cording to their weights α. This weight represents the importance of a given
rule in the decision thus providing an indicator that could be used to perform
rule pruning. Note that, when pruning (cut-off pruning) is performed, let say
by retaining the first K rules GK , then the discriminant function needs to be
changed accordingly. Namely, HK(x) = +1 iif

∑

r∈GK

αrJr � xK >
γKT

2
, where γK =

∑

r∈GK
αr

∑

r∈G αr

.

4 Experiments

This section presents the experiments performed with FIND-RS. They have been
executed on an Apple MacBook Pro (2019) with a 2,6 GHz 6-Core Intel Core i7.
The model has been implemented in Python using scikit-learn. Our source
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code is publicly available1. We selected 9 discrete real-world datasets from the
UCI Machine Learning Repository. Multi-class datasets have been converted
into binary classification datasets by selecting the most frequent class as the
positive one. We applied this procedure [7] for all the datasets expcept for
monk-1, monk-2, monk-3, where we used the value 1 as the positive class. We
compared FIND-RS with different baselines (i.e., RIPPER, CART, Logistic Regres-
sion, Random Forests, and SVM). RIPPER [1] is a state-of-the-art rule learning
model that scales nearly linearly with the number of training examples and can
efficiently deal with noisy datasets. CART [8] is a widespread implementation of
decision trees that can have good performance and high interpretability.

For the experiments we used the following procedure: (1) the dataset is
randomly split into training and test set, using a 50/50 proportion; (2) a grid
search is performed on the training set using 5-fold cross-validation, with hyper-
parameters reported in [9]; (3) the best model found is trained on the entire
training set; (4) the performance is computed on the test set. The number
of iterations T of FIND-RS-BP has been set to 100 (FIND-RS-BP100). We
repeated this process for ten runs and the F1-score has been averaged among
these runs. Additionally, we tried both the attribute-value (AV) and the one-hot
(OH) encoding representations for CART, RIPPER, and FIND-RS and we reported
the results obtained with the best performing one. For the other baselines, we
used the OH encoding representation only, as AV is not compatible.

Results Table 1 summarizes the results. In our experiments, SVM outper-
formed Random Forests. Hence, for space constraints, we reported only the
results for SVM.

FIND-RS FIND-RS-BP100 RIPPER CART LR SVM

car 0.988(0.00) 0.990(0.00) 0.988(0.01) 0.983(0.00) 0.963(0.00) 0.996(0.00)
kr-vs-kp 0.988(0.00) 0.991(0.00) 0.981(0.00) 0.989(0.01) 0.972(0.00) 0.991(0.00)
monk-1 1.000(0.00) 1.000(0.00) 0.939(0.06) 0.909(0.05) 0.669(0.02) 1.000(0.00)
monk-2 0.864(0.06) 0.894(0.04) 0.175(0.12) 0.811(0.08) 0.038(0.05) 0.966(0.02)
monk-3 0.962(0.01) 0.978(0.01) 0.935(0.01) 0.986(0.01) 0.972(0.01) 0.985(0.01)
mushrooms 1.000(0.00) 1.000(0.00) 1.000(0.00) 1.000(0.00) 1.000(0.00) 1.000(0.00)
ttt 1.000(0.00) 1.000(0.00) 0.986(0.02) 0.932(0.02) 0.986(0.00) 0.986(0.00)
vote 0.888(0.03) 0.908(0.02) 0.815(0.03) 0.933(0.02) 0.942(0.01) 0.939(0.02)
connect-4

∗ 0.851 0.896 0.730 0.849 0.849 0.917

AvgRank 2.61 1.67 3.89 3.06 3.78 -

Table 1: Test F1-score averaged across ten runs. (*) For connect-4 the hyper-
parameter T of FIND-RS-BP is set to 20, and the evaluation procedure has been
computed once. SVM is shown just for reference since it is not interpretable.

We can observe that FIND-RS outperforms most of the baselines, even on
the most challenging dataset, namely connect-4. As expected, FIND-RS-BP100

improves upon FIND-RS reaching the best average rank of 1.83.

The effect of cut-off pruning. Figure 1 shows how the training and test accura-
cies vary w.r.t. the degree of cut-off pruning performed in 3 different datasets.

1https://tinyurl.com/bdcwh35d

185

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  

https://tinyurl.com/bdcwh35d


We can set a threshold and select the minimum number of rules such that the
training accuracy is above that threshold. We show that setting a threshold
of 0.99 × tr acc, where tr acc is the training accuracy of the complete rule set
without pruning, can drastically reduce the number of rules, thus improving the
interpretability of the ruleset with no reduction in performance.
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Fig. 1: The plots (log scale) show the accuracy varying the number of kept rules
in the FIND-RS-BP pruning phase. Rules are sorted by importance. The black
circle highlights the accuracy corresponding to the 99% threshold.

5 Conclusions

We proposed a novel methodology that tries to approximate the Bayes optimal
classifier in the hypothesis space of MDNF. The method has demonstrated to
discover rules that are very accurate and still interpretable. We have also pro-
vided a methodology to reduce the number of rules of the final hypothesis, thus
improving interpretability with no performance loss. We are currently working
on a principled extension to multi-class classification and continuous variables.
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