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• Interannual snow cover variation in
mountain environments alters the surface
albedo and can indicate climate change

• The availability of cloudless and high spa-
tiotemporal resolution satellite images is
typically limited, demanding modelling

• Our model reproduces fine scale snow
coverage and can be used to indicate the
drivers of snowmelt in mountain catch-
ments.
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Variations in the extent and duration of snow cover impinge on surface albedo and snowmelt rate, influencing the energy
and water budgets. Monitoring snow coverage is therefore crucial for both optimising the supply of snowpack-derived
water and understanding how climate change could impact on this source, vital for sustaining human activities and the
natural environment during the dry season.
Mountainous sites can be characterised by complex morphologies, cloud cover and forests that can introduce errors
into the estimates of snow cover obtained from remote sensing. Consequently, there is a need to develop simulation
models capable of predicting how snow coverage evolves across a season. Cellular Automatamodels have previously
been used to simulate snowmelt dynamics, but at a coarser scale that limits insight into the precise factors driving
snowmelt at different stages.
To address this information gap, we formulate a novel, fine-scale stochastic Cellular Automaton model that describes
snow coverage across a high-elevation catchment. Exploiting its refinement, the model is used to explore the interplay
between three factors proposed to play a critical role: terrain elevation, sun incidence angle, and the extent of nearby
snow. We calibrate the model via a randomised parameter search, fitting simulation data against snow cover masks
estimated from Sentinel-2 satellite images. Our analysis shows that:
- The three simple assumptions are sufficient to yield a close correspondence between model output and the esti-
mated snow cover masks.

- Across the study area, elevation and neighbouring snow appear to be particularly influential, with incidence
playing a relatively minor role for much of the process.

- Incidence, though, plays a significant role early in the process, and allows the identification of regions that receive
sufficient solar energy to trigger snowmelt.

- Discrepancies betweenmodel output and satellite data indicate other potential factors at play, the identification of
which will demand future attention.
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1. Introduction
Water related problems range from scarcity to flooding, calling for a
variety of modelling and predictive approaches that can include rainfall-
runoff models (Ditthakit et al., 2021) or the adoption of machine learning
techniques (Singh et al., 2022; Mohammadi et al., 2022). In a high-
mountain environment, the seasonal snowpack constitutes a key resource,
providing a delayed and steady water source that contributes significantly
to the hydrological cycle, therefore demanding careful modelling (Jenicek
and Ledvinka, 2020; Leavesley, 1989). In particular, snowmelt recharges
groundwater storage (Cochand et al., 2019), fundamental for supplies of
drinking water, along with industry and agriculture (Dietz et al., 2012).
For countries with an abundance of hydropower, the seasonal snowpack
also constitutes a valuable renewable energy stock (Vikhamar and
Solberg, 2003). As a consequence, monitoring and simulating annual and
seasonal variation in snow cover is vital to understand both the availability
and the sustainable management of this crucial water source (Butt and
Bilal, 2011; Pardo-Igúzquiza et al., 2017), hence contributing to Sustainable
Development Goal 6 (SDG6). Further, water management has become in-
creasingly topical in the light of climate change (Collados-Lara et al.,
2021), SDG13. High-elevation environments are particularly sensitive
to climate change, and its consequences can be rapidly perceived. Rising
temperatures increase the solar radiation absorbed by the snowpack,
thereby amplifying the initial warming and altering the surface albedo
(Thackeray and Fletcher, 2016). This in turn leads to earlier melting
(Xiao, 2021), in advance of the driest season when the demand for
water is acute, particularly so given the increasing frequency of
droughts (Faye, 2022). These processes have repercussions for the hy-
drological cycle (Kundzewicz, 2008) and demand exploration into
whether these planetary-scale changes are reversible or not: “Is the
hydrological cycle regionally accelerating/decelerating under climate and en-
vironmental change, and are there tipping points (irreversible changes)?”
was recently posed as one of 23 unsolved problems identified by the hy-
drology community (Blöschl et al., 2019).

The main focus of this paper is the Snow-Covered Area (SCA), an impor-
tant variable for physically-based models that aim to compute the energy
and water balance in snow-dominated environments (Barry et al., 1990).
On the one hand, the SCA controls surface albedo and, consequently, ther-
mal fluxes (Armstrong and Brun, 2008). On the other hand, it is a necessary
(but, we note, not sufficient) input for simulating the runoff due to snow-
melt (DeWalle and Rango, 2008) and how this could change under different
climate change scenarios. For example, we refer to Javadinejad et al.
(2020); Kumar et al. (2022) for regionally-specific changes in the snowmelt
runoff, under various projections for altered SCA and/or temperature
increase.

Multi-spectral satellite images have long been used in the mapping of
snow cover, with SCA identified through the Normalised Difference Snow
Index (NDSI) (Dozier, 1989; Hall et al., 1995). This index exploits the
distinct reflectance of snow and clouds from both visible and short-wave
infrared bands (for more details, see Section 2.1) and SCA can then be esti-
mated by counting the pixels classified above a specifiedNDSI threshold, or
via a (previously calibrated) relationship between the NDSI and the frac-
tional SCA (fSCA, that is the percentage of snow coverage per pixel), see
Salomonson and Appel (2004). This topic has received considerable atten-
tion, albeit with different aims. For example, Liang et al. (2008) have stud-
ied the accuracy of the MODIS algorithm for mapping snow cover under
different snow depth and land cover conditions, finding that both factors
perturb the algorithm accuracy. Dedieu et al. (2016) have used SCA to val-
idate estimates of the first snow-free day, obtained through calculating the
NDSI based on remote sensing observations (MODIS, SPOT-4/5, Landsat-8)
and comparing against ground-basedmeasurements. Di Marco et al. (2020)
have performed a comparison into MODIS and model-derived estimates of
SCA, considering how the impact of land use and solar illumination condi-
tions affect this comparison. Furthermore, the same study has identified the
minimum level of incoming short-wave radiation for precise use ofMODIS
SCA in forested areas.
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Manifestly, estimating and/or predicting SCA has numerous potential
applications, yet problems persist with its determination through remote
sensing. For example, Masson et al. (2018) have highlighted that for moun-
tainous sites, characterised by complexmorphologies, frequent cloud cover
and forests, the identified SCA is typically affected by errors. Thismotivates
the development and application of models capable of simulating snow
cover dynamics within high-elevation catchments, and in particular identi-
fying the key factors that determine snowmelt. Models of this nature can
then be deployed to provide a continuous map of snow cover across a
season, filling in the times when satellite images are either unavailable
or patchy, e.g. due to cloud cover.

According to application, a range of snow cover models have been de-
veloped, from simple degree-day models to complex and multi-layered
snow cover evolution models (Largeron et al., 2020). Snow cover estimates
from such models, though, are subject to significant uncertainty, a combi-
nation of input data errors and the simplifications necessary when imple-
menting complicated physical processes or attempting to understand
complex environments (Largeron et al., 2020). Precise mathematical
modelling of snowmelt is therefore challenging, with the precise influence
of the controlling factors difficult to deduce. For example, snow cover evo-
lution within high-elevation landscapes depends on the density, grain size,
and microstructure of snow, the mass and timing of snowfalls, as well as air
temperature, wind, (direct and diffuse) solar radiation, and topography.
Clearly, this represents a highly stochastic and complex dynamical system,
making it difficult to apply models at a refined spatial level, due to the
general unavailability or difficulty in introducing spatial microstructure
(e.g. across a catchment area) within the input data.

Cellular Automata (CA) models have been widely used for spatial envi-
ronmental modelling (Ghosh et al., 2017), in applications ranging from for-
est fire propagation (Karafyllidis and Thanailakis, 1997) to soil erosion by
water (D'Ambrosio et al., 2001). In the context of melting processes, Ma
et al. (2019) employed an (CA-like) Ising model to describe the ponds
that form during the melting of sea ice. This, though, takes place on an es-
sentially flat surface, whereas snow cover in mountain catchments will be
strongly influenced by factors like aspect and slope (Abudu et al., 2016).
The potential ofCA approaches for describing SCAdynamics has been high-
lighted by Leguizamón (2005), advantages including their formulation
without precise (and difficult to apply) mathematical formulae and ease
of simulation. Particularly, Leguizamón (2005) noted the potential to inte-
grate CAmodels with data from Digital Elevation Models (DEM) and the like,
thereby coupling to variables such as slope and insolation. Pardo-Igúzquiza
et al. (2017) have subsequently deployed CAmodels to estimate SCA across
an area of 2000 km2 in the Sierra Nevada mountain range, calibrating and
validating against MODIS fSCA (460 m resolution). Recent studies, though,
call for caution in the use of MODIS for validating spatially distributed
snow models, as it does not capture the spatial heterogeneity of snow
cover induced by solar radiation (Bouamri et al., 2021). In a further CA
study, Collados-Lara et al. (2021) have assessed the impact of climate
change on SCA, again for the Sierra Nevada mountain range. Summarising,
modelling SCA through CAmodels offer an attractive solution when sat-
ellite data are lacking, or when they have low resolution compared with
the operational resolution required by hydrological models (Pardo-
Igúzquiza et al., 2017).

The key objective of this paper is to develop a novel and calibrated sto-
chastic CAmodel for the evolving SCA of some mountain catchment area.
Specifically, we focus on the fine spatial scale, so that subtle spatial variation
in the distribution of snow coverage can be captured by the model. This, in
turn, will allow the model to be used to determine whether there are dis-
tinct drivers of snowmelt that play particularly crucial roles as the snow
coverage evolves from fully snow covered to fully exposed. The strength
of theCA approach lies within the simplicity of the underlying assumptions,
in that we require just two easily-obtained inputs: the varying elevation
across the terrain, and the varying incidence angle across the terrain. Yet,
despite this simplicity, an impressive fit is obtainedwhen calibrated against
SCA estimates obtained from high-resolution satellite images (see Section 2
for more details).
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The remainder of this paper is organised as follows. In the next section
we describe the study site, the key data necessary to simulate and calibrate
the model, explain the model and describe our simulation study. We de-
scribe the results, exploring the relative necessity of different mechanisms
to describe the dynamics of snow melt at different stages of the process.
We conclude with a discussion, speculating on the cause of discrepancies
between model and imaging data and providing the direction for future
investigations.

2. Methods

2.1. Test site and input data

2.1.1. Study site
Dora del Nivolet is a 17 km2 high-elevation Alpine catchment located

within the Gran Paradiso National Park territory in the Valle d'Aosta Region
(Italy) (Fig. 1). Elevation ranges from2390 to 3430m a.s.l., with an average
slope of∼20∘. The left side of the Dora del Nivolet catchment is of mainly
south-east aspect and the right side is predominantly north-west facing.
This catchment presents a snow-dominated hydro-climatic regime: the sur-
face is typically snow-covered for roughly 6 months per year, from mid-
November to mid-May, while during the growing season the catchment
surface transforms into a typical alpine meadow as snow cover de-
creases. Notable are the extreme winds to which the terrain is exposed;
for example, in February 2022 wind velocities of over 200 km/h were
measured at Gran Paradiso National Park. Average daily temperatures
span from −15 °C during mid-winter to 20 °C during mid-summer.
The geology of the area mainly consists of gneiss, with bedrock emerg-
ing at high elevations and the talus prevailing at medium elevations.

2.1.2. Elevation
Topographical factors play a key role during snowmelt and it is possible

to obtain a detailed morphological description of the catchment region,
starting from a Digital Terrain Model (DTM). In this study we use a DTM
with 10 m resolution, provided through the Valle d'Aosta Regional
geoportal. A pre-processing algorithm is applied to fill DTM sinks, thus re-
moving small imperfections in the input data (Planchon and Darboux,
2002; Tarboton et al., 1991). We delineate the Dora del Nivolet catchment
area through the r.watershed and the r.water.outlet routines in QGIS soft-
ware. The catchment outlet point corresponds to the discharge gauging sta-
tion installed in themain stream, called “Dora del Nivolet river”. We use the
catchment area for clipping the filledDTM and export the clipped raster in .
TIFF format, generating the first input data (Fig. 1b) for the CAmodel de-
scribed in Section 2.2. Elevation is a crucial factor during the snow melt
Fig. 1. a Position and structure of the catchment area, Dora del Nivolet in the Valle d'Aost
low of 2390 m to 3430 m. c Incidence angle of the test site, calculated according to the

3

process, since it is inversely correlated with air temperature. Thus, while
temperature is not explicitly incorporated (e.g., Pardo-Igúzquiza et al.,
2017) as a model input data, it indirectly enters via the dependence on
elevation.

2.1.3. Incidence angle
Geomorphological attributes (including slope and aspect) considerably

impact on the energy reaching the snow-covered surface, through sunrays
triggering the phase transition that initiates snowmelt (Abudu et al.,
2016). We aggregate the effect of these attributes through calculating the
so-called incidence angle (I), defined as the angle between the sun's ray
and the normal to the surface. Incidence angle for our study area is calcu-
lated using the r.sun.incidout algorithm in QGIS software (Fig. 1c). Note
that estimation of the incidence angle across some landscape requires
four inputs: (i) a raster layer of elevation; (ii) a raster layer of aspect; (iii)
a raster layer of slope; and, (iv) the Day Of Year (DOY) and the hour for
which we want to calculate I. Inputs (ii) and (iii) are calculated using the
r.slope.aspect routine in QGIS software. Regarding the DOY, we select
139 (corresponding to May 19th 2018), representing the first date for
which the fraction of snow coverage across the site is lower than 1 and,
hence, suggesting the onset of snow melt. For the hour we select midday,
given that it is the time of the day for which the vast majority of pixels
will be reached by sun rays. Note that using a time of midday minimises
the presence of shaded pixels; those few (39, ~0.045 %) shaded pixels
are treated as pixels that do not (directly) receive solar energy (i.e. inci-
dence angle I = 90°). This incidence angle is then used as a proxy for the
amount of solar energy reaching the surface (see Section 2.2).

2.1.4. Snow cover masks
Data describing snow coverage evolution can be obtained through

consulting high time and spatial resolution satellite images. Here we
use the Sentinel-2 Level-2A (L2A) dataset for extracting snow cover
masks over a Period Of Interest (POI); our study takes this period as
May 25th 2018 to July 30th 2018, due to the availability of 5 cloudless
multi-spectral images representative of the phase-down of snow cover.
Snowy pixels in images are classified through the commonly used
Normalised Difference Snow Index (NDSI), defined as (Dozier, 1989):

NDSI≔
Rgreen−RSWIR

Rgreen þ RSWIR
;

where Rgreen denotes the reflectance in the green band (Sentinel-2 band
3) and RSWIR denotes the shortwave infrared reflectance band (Sentinel-
2 band 11). L2A data is of high quality, in which the effects of the
a region of north-west Italy. b Elevation profile of the catchment site, ranging from a
terrain aspect and sun position at 12:00, May 19th 2018.

Image of Fig. 1
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atmosphere on the light reflected from the surface are corrected through
an Atmospheric Correction (AC) algorithm (Richter and Schläpfer, 2011),
applied to the Level-1C (L1C) product. A number of recent papers have
employed L2A products for calculating NDSI (for example, Gascoin
et al., 2019, 2020). Moreover, Hofmeister et al. (2022) tested the utility
of AC on snow detection with Sentinel-2 and observed increased snow
detection performance at higher elevations when using atmospherically
corrected data. Further, Härer et al. (2018) noted that even if theNDSI is
an index which reduces the dependence on atmospheric conditions, ap-
plying AC might be necessary. Thus, we have used here the Sentinel-2
L2A dataset for the NDSI calculation.

Standard practice for producing a snow cover mask is to consider all
pixels with an NDSI value above a defined threshold. The commonly used
threshold is 0.4 (Dozier, 1989), but recent studies suggest that a location-
dependent threshold can provide superior results for higher spatial resolu-
tions (Salzano et al., 2021; Aalstad et al., 2020; Härer et al., 2018; Yin et al.,
2013). Following manual calibration of the NDSI threshold (see Fig. 2a and
Supplementary material) we observed that a value of 0.2 is more suitable
for the study area considered here, since it allows a more accurate estima-
tion of snowpatches. Fig. 2a indicates thatwhile a decrease in the threshold
from 0.6 or 0.4 to 0.2 may not lead to substantial differences, the underes-
timation of real snow cover area for higher thresholds is greater than that
for 0.2, potentially resulting in greater error of the snow cover masks.
Since these masks directly calibrate the model following the random pa-
rameter search algorithm, described in Section 2.3, we require them to be
as precise as possible: consequently, we set a threshold of 0.2. Note that
lower thresholds than this are excluded, as the Snow Detection algorithm
of the European Space Agency (ESA) determines that pixels with an NDSI
value below 0.2 have effectively zero snow probability.

We calculate theNDSI via the built-in function provided by the free web
application EO Browser, powered by Sentinel Hub with contributions from
the ESA. We select a sequence of five images (on dates with no cloud
Fig. 2. a Snow coverage across a sampled area (shaded red) within the Dora del Nivolet
bands composite of Sentinel-2 satellite images. Right-most panel: snow cover mask
superimposed onto the true colour image. Following a comparison between the real sn
we find that a threshold of 0.2 is more suitable for this particular study area and provi
lead to an underestimate of the real snow coverage. This result holds across all datase
evolving snow coverage area, as estimated with the threshold of 0.2, across the period
is indicated as a percentage, in terms of proportion of catchment area pixels still covere
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cover) over the POI, revealing a gradually decreasing snow cover percent-
age, see Fig. 2b. In broad terms, we note that the initial snowmelt is concen-
trated to the north central region of the catchment area (highlighted region
in May 25th image of Fig. 2b). An uncovered tract emerges, predominantly
expanding upslope in a southwesterly direction (arrows in June 14th
image of Fig. 2b). By late July, minimal levels of snow coverage remain,
principally concentrated around regions of higher elevation. Snow
cover masks are downloaded as georeferenced (WGS 84 - EPSG: 4326).
TIFF files, where each mask is characterised by 366 × 371 pixels with a
latitude resolution of ∼0.00013 deg/pixel and a longitude resolution of
about ∼0.00018 deg/pixel (∼14 × 14 m2).

2.2. Model design

A stochastic cellular automaton has been built to simulate snow melt
across the study site. The key steps considered during the design of the
model were as follows:

i. Discretising the physical domain into a regular lattice of patches, where
each represents a square portion of terrain (of dimensions Δx × Δx);

ii. Designating the possible patch states (snow or grass);
iii. Defining an appropriate transition probability function P(x, t), that

determines the probability that a patch centred at x transitions
from one state to another between time t and t + Δt;

iv. Incorporating the environmental dependencies into the transition
probability function.

2.2.1. Discretisation of the physical domain
We design our model to describe snow coverage across a landscape

surface or domain, Ω. Our model takes the form of a stochastic cellular
automaton, where the physical domain is discretised onto a simulation
domain formed as a two dimensional regular lattice of non-overlapping
catchment. Left panel: snow cover is visualized for 19/06/2018 using a true colour
s are estimated via the NDSI threshold method described in the main text and
ow cover and the estimated snow cover masks obtained with different thresholds,
des more detail of the real snow cover. Higher thresholds (for example, 0.4 or 0.6)
ts used for the calibration (see Supplementary material). b Sequence showing the
of interest (see Section 2.1.4). The remaining snow coverage within the catchment
d by snow.

Image of Fig. 2
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and space-filling cells, called patches, see Fig. 3a. Specifically, the simu-
lation domain is formed from the union of a set that contains a total of N
patches, where patch i corresponds to a square portion of ground of di-
mensions Δx × Δx and centred at position xi. Note that we will drop
the subscript i where it can be done so without ambiguity. Note further
that the patch dimensions are according to the satellite-derived datasets
of snow coverage described in the previous section. In other words, Δx is
the spatial scale of each pixel in a snow cover mask of the study region
(Δx ∼ 14 m).
2.2.2. Patch states
Each patch is assigned a state that denotes whether the patch is cov-

ered by snow or bare ground (hereafter referred to as grass, though of
course it could also be rock or lake surface etc.). We denote the state
of a patch at x at time t by S(x, t), where S=1 represents snow coverage
and S = 0 represents grass. This simplification to a square lattice of bi-
nary state patches facilitates a straightforward comparison with the
satellite-imaged data where, as described above, each pixel can be
attributed as snow or bare ground. At the start of each simulation we as-
sume 100 % snow coverage across the domain, S(xi, 0) = 1 for i= 1..N.
Since snow melting is an inherently stochastic process (e.g. local
temperature fluctuations, shifting wind patterns etc.), we model the
transition from snow to grass at a patch as a Markov (i.e. memoryless)
stochastic process. Note further that we do not allow the reverse pro-
cess, i.e. from grass to snow. This, in effect, supposes a one-way process
across a season in which fresh snowfall is either negligible or rapidly
melts. The CA approach allows us to forsake a more physics-based de-
scription, permitting instead a phenomenological approach that facili-
tates straightforward simulation and calibration.
Fig. 3. aDomain representation. The catchment region is discretised onto a regular squar
× 14 m2). Patch state is binary: snow (white) or grass (green), with the transition dyna
squares for the patch indicated xi) and inputs based on elevation data and incidence a
data and simulation outputs are compared at equivalent stages of remaining snow cove
white or black pixels) is recorded, as is the length of the snow/grass interface (length
coincidence-based error, Ec. The interface-based error is simply the absolute differenc
coincidence-based error is the sum of the (absolute) difference between patch states, ag
white pixels indicate match between satellite data and simulation, while red (blue) ind
error is hence based on the sum of blue and red pixels, divided by the total numbe
hypothetical satellite dataset and three separate runs of the simulation model. Green a
the interface. Squares marked with crosses indicate a mismatch in the patch state. See t
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2.2.3. Snow to grass transition probability
For a patch located at position x, the probability that it melts during the

time interval [t, t + Δt] is assumed to be

P x; tð Þ ¼ e−ρf x;tð Þ; ð1Þ

ensuring P(x, t) is bounded between 0 and 1 for ρ≥ 0 and f(x, t)≥ 0. The
melt likelihood parameter ρ is an independent parameter that sets the like-
lihood of snow melt occurring during the time interval [t, t + Δt], and
we take this here to be a constant. Note that the exponential dependence
generates multiple orders of variation in the probability of snow melt,
allowing the different factors to have a potentially large impact on
snow melt.

2.2.4. Transition dependencies
The function f(x, t) forms the focal point through which factors that in-

fluence snow melting can be introduced. As noted above (see Fig. 3a),
here we consider a dependence on each of:

(i) elevation, E;
(ii) sun incidence angle, I;
(iii) neighbourhood state, N.

Dependence on the sun incidence angle accounts for the fact that
terrain more heavily exposed to sun will receive greater energy. As
described earlier, a patch at x is associated with an angle Θ(x) ∈
[0∘, 90∘], where Θ(x) = 0∘ (Θ(x) = 90∘) indicates orthogonal (parallel)
rays. This angle is straightforwardly rescaled onto a function a(x) ∈
[0,1], where a(x) = 1 (a(x) = 0) indicates that the patch at x receives
maximum (minimal) direct energy.
e lattice, with each patch the dimension of a pixel from the satellite image data (∼14
mics governed by the state of the Neumann set of nearest neighbours (hatched red
ngle data. b Measures used to fit the model against satellite image data. Satellite
r area (here, 70.3 %). At each stage, the map of snow or grass cover (respectively,
of purple/green lines). The two measures are the interface-based error, Ei, and the
e in interface length, normalised with respect to the total number of patches. The
ain normalised with respect to the total number of patches. In the difference map,
icates snow (grass) in satellite data but grass (snow) in simulation. The coincidence
r of patches. c An explicit calculation of coincidence and interface errors, for a
nd white squares represent grass and snow, respectively, while red lines indicate
ext for details.

Image of Fig. 3


K.J. Painter et al. Science of the Total Environment 857 (2023) 159195
Elevation is also expected to impact on the rate of snow melt, since
higher terrain is linked to lower air temperatures and greater snowfall.
Elevation is encoded into the model similar to incidence angle above,
i.e. through a rescaled function e(x) ∈ [0,1] in which a patch at x satis-
fying e(x) = 1 (e(x) = 0) corresponds to patches with lowest (highest)
elevation across the domain.

Dependence on neighbour state introduces a source of nonlocality:
snow melt in a patch could be more likely if surrounding patches have
already melted. This could be derived from a similarity between
neighbouring sites not explicitly included through dependence on ele-
vation or aspect: for example, similar initial snow depth, microclimate,
ground composition etc. It could also be viewed in the light of local heat
transfer, where the lower reflectance of grass compared to snow will
lead to the absorption of more solar energy in the neighbourhood, if sur-
rounding patches have already melted. Without specifying the precise
source of this neighbourhood dependence, for each patch i we keep
track of the (time-dependent) proportion of grass covered neighbours.
LettingN i denote the set of neighbouring patches (and N ij j the number
of neighbouring patches) with respect to the patch indexed by i, the pro-
portion of grass-covered neighbours for patch i will be

b xi, tð Þ ¼ 1 � ∑
j ∈ N i

1
N ij j S xj, t

� �
:

Note that the set of neighbours is based (for an internal patch) on the
4 nearest neighbours, i.e. according to a von Neumann neighbourhood
(e.g. see Ghosh et al., 2017).

Summarising, a(x), e(x) and b(x, t) are functions bounded between 0
and 1 and provide measures for the incidence angle, elevation and
neighbourhood state, respectively, for a patch at position x and time t.
We amalgamate these into a governing function, f:

f x, tð Þ ¼ 1þ αpapð Þ 1þ βqeqð Þ
1þ αpa xð Þpð Þ 1þ βqe xð Þqð Þ 1þ γrb x, tð Þrð Þ : (2)

The weighting parameters α, β and γ are dimensionless and non-negative,
their sizes reflecting the influence of incidence angle, elevation and
neighbourhood state on snowmelt, respectively. Regarding the nonlinearity
parameters p, q and r, we consider two model formulations. The basicmodel
simply assumes p = q = r = 1, a linear relationship which minimises the
fitting to just 4 parameters (the weighting parameters, along with the inde-
pendent parameter ρ). We also consider an extended formulation, where p,
q, r can also be varied to provide greater subtlety in the calibration.

Note that a ¼ 1
N ∑

N
i¼1a xið Þ and e ¼ 1

N ∑
N
i¼1e xið Þ denote the mean inci-

dence angle and mean elevation averaged across the domain, respectively.
The factor in the numerator of Eq. (2) is therefore a normalisation, so
that f(x, t) = 1 for an average patch at t = 0, irrespective of (α,β,γ). An
average patch at t = 0 refers to a patch with incidence angle and eleva-
tion at the mean values, and with only snow-covered neighbours: i.e.
a xð Þ ¼ a, e xð Þ ¼ e, b x, 0ð Þ ¼ 0. We note further that f(x, t) is decreasing
with respect to each of a, b and e and will therefore be maximum for a
patch satisfying (a(x),e(x),b(x, t)) = (0,0,0) (no direct sun, highest alti-
tude and snow-covered neighbours) and minimum for a patch satisfying
(a(x), e(x),b(x, t)) = (1,1,1) (fully exposed, lowest altitude and grass-
covered neighbours). Given the decreasing dependence on f in Eq. (1),
snow melt in a given timestep is then least likely (most likely) for the
former (latter).

The numerical simulation algorithm for simulating the model was
implemented in Matlab© and is described in Appendix B. We note that
the code (along with necessary inputs) has also been made available to
download at https://github.com/kjpainter/SnowMeltNivolet.

2.3. Model analysis and fitting

Overall the model requires a set of fixed inputs obtained from data
(elevation and incidence angle of each patch, geometry of the domain),
6

along with a set of governing parameters. The parameters fall into two
principal classes: those describing discretisation of space and time
(Δx, Δt), and those that govern the probability of snow melt in a patch
(ρ,α,β,γ,p,q, r).

In terms of discretisation parameters, Δx corresponds to the resolution
of snow covermasks (here,Δx∼ 14m). ForΔtwe assume this to be dimen-
sionless in the present study. This exclusion of explicit time is a simplifica-
tion that allows us to focus on the spatial pattern of snowmelt – e.g. where
melt occurs at different stages – rather than the snowmelt rate. This in turn
simplifies the model fitting (described below). In the discussion we provide
further commentary on this point.

Appropriate parameters (ρ,α,β,γ,p,q,r) will vary according to the geo-
graphical and geomorphological features of the study site. The phenomeno-
logical nature of the model precludes direct estimates of these from
observations, and it is probable that there is no unique optimal parameter
set (i.e. parameters that give a globally best-fit against the estimated snow
cover masks). Therefore, our analytical approach here will be to assess
the goodness of fit across a spectrum of models of increasing complexity,
through adopting a randomised parameter search and trial process. Specif-
ically, we proceed as follows:

i. Classify the models to be tested, through designating a region of
(ρ,α,β,γ,p,q,r) parameter space to explore;

ii. Randomly sample parameter space to generate a set of parameter
combinations to test;

iii. Perform simulations at each parameter combination in the set, re-
cording information on the evolving snow/grass distribution;

iv. Assess the goodness of fit for a particular parameter combination
though comparing simulation data against the coverage estimated
from satellite-derived snow masks.

v. Assess the goodness of fit of a particular model through evaluating
performance across top-ranking parameter combinations.

2.3.1. Sequence of models to be tested
The initial aim is to explorewhich of the considered dependencies allow

for better or worse recapitulation of the snow melt distribution estimated
from remote sensing. To this end, the first study will focus on a basic
model scenario (p, q, r fixed such that p = q = r = 1), in which we syste-
matically explore eight sub-models of varying level of complexity. These
are as follows:

• The null model, 0-model, where none of the dependencies are incorpo-
rated. This serves as a baseline case for reference.

• Single-layer models, I-, E-, N-models, where only one of incidence angle
(I), exposure (E) or neighbour (N) dependency is included

• Double-layer models, IE-, IN-, EN-models, where two of incidence angle,
exposure and neighbour dependency are included.

• A triple-layer model, IEN-model, where all three dependencies are
included.

Each model is implemented by setting the permissible range of the
relevant weighting parameter. For example, for the null model the
only parameter allowed to vary is the snowmelt likelihood parameter
ρ, with each of the dependency weighting parameters α, β, γ set to
zero. For the IN-model, on the other hand, each of ρ, α and γ are positive,
with only β set to zero. The second study will then compare the basic
IEN-model with an extended IEN-model, where in the latter case
the parameters p, q and r are allowed to vary. Summarising, each of the
models to be tested corresponds to exploring a particular regime of the
(ρ,α,β,γ,p,q,r) parameter space.

In the absence of observations that can set parameter values, we set
ranges for each of the parameters that will allow both a broad region of pa-
rameter space to be explored, while also allowing simulations to be per-
formed within computationally reasonable times. Note that the adoption
of the exponentially decaying form (1) already allows probabilities to
vary across numerous orders of magnitude as certain parameters are

https://github.com/kjpainter/SnowMeltNivolet
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altered. The choice of ρ determines the probability of snowmelt in a single
timestep for an average patch at the start of snow melt (t= 0). Setting ρ ∈
[2,10] allows this probability to vary betweenO(10−1) andO(10−5): prob-
abilitiesmuch higher than∼10−1 will lead to almost immediate snowmelt
across the entire domain (unrealistic), while probabilities below ∼10−5

demand exorbitant computation time (unfeasible).
Parameters α, β, γ, when “switched on”, are set at (0,9). These ranges

allow each mechanism to generate a tenfold variation in the size of f, and
(given the exponential form) even larger variation in the size of the proba-
bility (1). Under the extended formulation we assume p, q, r can take on
values between 0 and 3. The sub-models and permitted parameter ranges
are summarised in Table 1.

2.3.2. Parameter space sampling
For each model listed in Table 1, simulations are conducted at given

(ρ,α,β,γ,p,q, r) parameter combinations. First, 5000 parameter combina-
tions are randomly generated through sampling from the relevant region
of parameter space. To establish a relatively even distribution of sample
points within the parameter space, a Latin Hypercube Scheme is adopted
(McKay et al., 1979); operationally, we adopt the lhsdesign routine in
Matlab©.We note that the density at which the parameter space is sampled
will depend on the dimensionality of the parameter space: thus, for exam-
ple, the parameter space of the triple layermodel is sampled at a lower den-
sity than each of the double layer models. Nevertheless, we sample the
same number of parameter combinations for each model, so that statistics
are compared across an equivalent number of simulations.

2.3.3. Simulation protocol
The stochastic nature of the model means that the precise output will

vary with each simulation, even under the same inputs. Consequently, for
each model at each parameter combination, 5 simulations are performed
and the results are averaged. Note that exploratory analyses demonstrated
that thefit under a particular parameter combinationwould varyminimally
across these 5 simulations (for example, see Appendix C), hence this num-
ber was deemed an acceptable compromise between accuracy and compu-
tational cost. Overall, with the number of models (9), the number of tested
parameter combinations for each model (5000) and the number of simula-
tions for each parameter combination (5), more than 200,000 simulations
of the model were performed for the analysis presented here. We note
that the results of an analysis with fewer parameter combinations (1000)
and fewer simulations per parameter combination (3) gave qualitatively
similar behaviour, suggesting that our exploration was sufficiently deep
to generate meaningful conclusions.

2.3.4. Error measures and goodness of fit
To assess the goodness offit for a particularmodel at a particular param-

eter combination, it is necessary to specify error functions that compare sim-
ulation output with the satellite derived SCA estimates. Let Ssiz%(xi) denote
the snow coverage (1 = snow, 0 = grass) from satellite image masks (see
Section 2.1.4) at pixel or patch xi, when snow coverage is at z% of the do-
main. The corresponding snow coverage from the stochastic simulation
Table 1
Parameter ranges for the random sampling of parameter space and the fitting against sate
ied in all models. Parameters α, β, γ define the weighting of the dependency on inciden
effectively removes that dependency frommodelling of snowmelt, generating a sequenc
but allowed to vary for the extended model and hence provide further refinement to th

Parameter Basic Basic Basic Basic

Null I E N

ρ [2,10] [2,10] [2,10] [2,10]
α 0 (0,9] 0 0
β 0 0 (0,9] 0
γ 0 0 0 (0,9]
p, q, r 1 1 1 1
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model at xi is recorded at the equivalent stage of domain coverage, and de-
noted by Sssz%(xi).

We consider two errormeasures, based on the spatial coincidence and the
snow-grass interface, see Fig. 3b. Spatial coincidence is simply the mean of
the absolute difference between satellite image and simulation output.
For a satellite image indicating z% coverage, we set

Ez%
c ¼ 1

N

XN

i¼1

Sz%si xið Þ−Sz%ss xið Þ�� �� ð3Þ

A value Ecz%=0 indicates perfectmatch between the satellite image and
themodel at z% snow coverage. For the interface error we first compute the
total length of the interface between snow and grass patches/pixels,
denoting these lengths by Lsiz% and Lssz% for the satellite image and stochastic
simulation at z%coverage, respectively. The error based on interface length
is then computed as

Ez%
i ¼ 1

N
Lz%si −Lz%ss
�� ��: ð4Þ

Again Eiz% = 0 indicates that the snow/grass interfaces calculated for
the satellite image and simulation output are of the same length at z%, al-
though we note that this could occur even if Ecz% > 0. The two errors are
combined into an amalgamated error function

E ¼ 1
Zj j

X

z∈Z
λEz%

c þ 1−λð ÞEz%
i : ð5Þ

The parameter 0 ≤ λ ≤ 1 weighs the relative contribution of coinci-
dence and interface errors: note that the majority of the analysis/presenta-
tion of the results is according to the value λ = 0.75 (default), but results
are also presented for λ = 1 and λ = 0. The rationale for the default
value is included in the Results below, with more detail in Appendix C. Z
denotes the set of masks used in the calibration of the model to satellite im-
aging data, while Zj j denotes the number of elements in this set. Note that
themajority of the analysis will be based on calibration against all available
snow cover masks, for our case study

Z ¼ 96:0%, 70:3%, 59:1%, 18:0%, 4:3%f g: (6)

Calibrations will also be performed against a single snow cover mask,
for example choosing Z ¼ 59:1%f g if collaborating against the estimated
snow melt near the middle of the POI.

Note that the rationale for an overall error that combines coincidence
and interface match is illustrated through the hypothetical scenario
shown in Fig. 3c. Coincidence is the obvious measure, yet relying solely
on this can beflawed, as shownby comparing runs 1 and 2.While run 1 dis-
plays an identical snow melt shape, displacement in the shape leads to
poorer coincidence than the speckled output from run 2. The additional
comparison of interface length introduces a cost to significantly distinct
shapes. A more optimal output may be of the form of run 3, where neither
coincidence nor interface error is excessively high.
llite-based estimates of snow coverage. The snowmelt likelihood parameter ρ is var-
ce angle, elevation or neighbouring state, respectively; setting any of these to zero
e of submodels. The nonlinear parameters p, q, r are set to 1 within the basic models,
e fitting procedure.

Basic Basic Basic Basic Extended

IE IN EN IEN IEN

[2,10] [2,10] [2,10] [2,10] [2,10]
(0,9] (0,9] 0 (0,9] (0,9]
(0,9] 0 (0,9] (0,9] (0,9]
0 (0,9] (0,9] (0,9] (0,9]
1 1 1 1 [0,3]
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Coincidence and interface error measures, Eqs. (3) and (4), are calcu-
lated for each simulation and at each stage of snowmelt used in the fitting,
i.e. based on the choice of Z.

2.3.5. Ranking of parameter sets and models
Given a value of λ and the specification of Z, for each simulation of the

model the error can be calculated from Eq. (5). To obtain the goodness of fit
under a certain parameter combination, this error is then averaged across
the 5 simulations. Following the full set of simulations over 5000 parameter
combinations for a model, the parameter combinations are ranked from
lowest (i.e. best fitting) to highest (i.e. worst fitting) error. Inevitably,
many of the (randomly sampled) combinations originate from regions of
parameter space that generate a poor fit with respect to the estimated
SCA masks. Consequently, a model’s capacity to fit data is examined
based on its performance within the 1 % top-ranked parameter combina-
tions. Errors (e.g. see Appendix C) are noted to deviate only within a few
percent across these 1 % parameter combinations, while it also ensures
enough combinations are usedwithin the analysis to avoid the issues of sen-
sitivity that could arise when a specific parameter combination is used.
Note that results when using the top 0.5 % or top 2 % were qualitatively
equivalent.

3. Results

3.1. Fitting of the basic model

The null model excludes dependence on incidence angle, elevation or
the neighbourhood, i.e. an environment of uniform elevation and indepen-
dent patches. Hence, the mean number of time steps until a given patch
transitions into grass varies only with ρ. Snow melt in the null model
(representative simulation in Fig. 5a) is characterised by a random tran-
sition to grass in “salt and pepper” fashion, and (unsurprisingly) a poor
fit against satellite data. Therefore, we adopt this as the baseline and
errors for the various models analysed are reported in terms of improve-
ment over the null model.

We explore how the different factors contribute to distinct snow melt
characteristics. To this end, we compare the models based on a ranking ac-
cording to only coincidence-based error (λ = 1) or only interface-based
error (λ = 0). Results are presented in Fig. 4a, b. Overall, incorporation
of elevation data leads to the best spatial correlation between satellite-
derived snow masks and simulation (top four models all include elevation
data, Fig. 4a), while dependence on neighbourhood state leads to the best
interface-based error (top four models all incorporate neighbourhood de-
pendence, Fig. 4b). Directly examining simulation output offers further in-
sight and, to aid explanation, a set of representative simulations for each
single layer model is included in Fig. 5.
Fig. 4. a Coincident-based and b Interface-based error improvement for each model, wi
1% ranked parameter sets in eachmodel class, following the sampling of the parameter s
theweighting parameters (α,β,γ) in the top 1% ranked parameter sets for the IEN-model,
of α (aspect), β (elevation) and γ (neighbourhood). Note that for all simulations, calibra
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Incorporating elevation and/or incidence angle data biases melt to-
wards particular regions, Fig. 5b, c. Incidence angle concentrates the initial
snow melt north-west of the Dora del Nivolet valley, along with other ter-
rain with a sun-facing aspect. Elevation, meanwhile, concentrates snow-
melt along the lower altitude valley along which the stream runs. These
regions are broadly consistent with early snow melt observed in satellite
images, yielding reasonable coincidence-based error. However, inci-
dence angle or elevation on their own will continue to result in a highly
speckled pattern, as melting at one site has no direct impact on melting
at neighbouring patches. This lies in contrast to satellite images, where
initial points of snow melt expand to form large tracts of uncovered
ground. Speckling manifests in a higher snow-grass interface, compared
to satellite data, and consequently poor error when the interface-based
measure is taken into consideration.

Dependence on the neighbourhood explicitly assumes a greater like-
lihood of melt if neighbouring patches have melted. This leads to points
of melt that expand and fuse, Fig. 5d, and this patch to patch linking of
snowmelt can dramatically improve the interface error; for example, we
observe a close to 100 % improvement against the null model, Fig. 4b.
However, in the absence of a localising bias this occurs uniformly across
the domain and a poor coincidence-based error results when only
neighbourhood dependence is incorporated. Consequently, an error
that balances the two measures is needed to derive suitable parameter
sets. For the remaining analyses we use the default λ = 0.75 in
Eq. (5), see Appendix C for full details.

Representative simulations of best-fit parameter sets for each double
layer model and the triple layer model are provided in Fig. 6. The com-
bination of neighbourhood and at least one of elevation or incidence
angle allows plausible calibration of the model against data, Fig. 6b–d:
elevation and/or incidence angle provides the initial localising bias, with
neighbourhood dependence expanding melt into spatially extended tracts
of exposed ground. Excluding a neighbourhood effect, though, continues
to generate speckling, Fig. 6a, and hence less improvement with respect
to interface error.

The best-fitting model is the IEN-model, to be expected given that
other models arise as a limiting case (e.g. the EN-model arises as α
approaches zero). More surprising, though, is the relatively small differ-
ence between the EN-model and IEN-model: compare the similar snow
melt pattern in Fig. 6c, d and the minimal difference in errors (Fig. 4a,
b). Examining the weighting parameters (α, β, γ) in the basic IEN-
model across the top 1 % parameter sets, Fig. 4c, the mean of α (inci-
dence angle) across best matching sets is significantly smaller than
those of β and γ (elevation, neighbours). Thus, excluding incidence
angle (setting α = 0) has a relatively small impact on the pattern of
snow melt. This suggests that a reasonable “minimal model” for snow
melt could perhaps be limited to just neighbourhood and elevation de-
pendence. We note further that the top 1 % parameter sets for the
th respect to the null model. Specifically, we compute the mean error across the top
pace. In a the ranking is according to Eq. (5) with λ=1,while in b λ=0. cValues of
based on λ=0.75 in Eq. (5). The dashed-red lines indicate themean values for each
tion is against all available snow cover masks, i.e. Z is given by Eq. (6).

Image of Fig. 4


Fig. 5. Representative simulations of the “best-fit” parameter set solution for the null and single layer models. For eachmodel class, the best-fit parameter set was selected as
the top-ranked set following the parameter space sampling and calibration against satellite data, according to the mean of the errors (Eq. (5)) when averaged
over 5 simulations for each tested parameter set, using λ = 0.75 and calibrating against all snow cover masks, Eq. (6).
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basic IEN-model demonstrate reasonable fluctuation about the mean
values of each of α, β, γ, despite the overall fit/error being similar.
This suggests that the model is not sensitive to the precise choices of
the parameters, rather it is the relative values of these parameters
with respect to each other that is of importance.

3.2. Fitting against single snow cover masks

The analysis above followed a calibration against all satellite snow
cover masks (for our case study, a total of 5). This is logical in the context
of capturing spatial snow melt across a season, but may also generate cer-
tain biases. Data is only available when cloud cover is negligible, leading
to a nonuniform distribution of masks across time. For instance, we have
two relatively close datasets (70.4 % and 59.1 % coverage, 5 days apart)
followed by one at 18.1 % coverage (20 days later). Further, calibrating
against all datasets across the period of interest implicitly assumes that
the weighting of the individual contributing factors remains constant
throughout snowmelt.

To understand the impact of these assumptions, we perform a series of
calibrations against a single snow cover mask, e.g. setting Z ¼ 96%f g in
9

Eq. (5). In this way, we examine whether better fitting is possible when
the strength of different influences is allowed to change across the course
of the season. Fig. 7 synthesises the results of the analysis.

Notably, optimising the model against the earliest available snow
cover mask (96.0 % coverage) significantly increases the weighting
with respect to incidence angle, Fig. 7a. Typical model output when
calibrated at this early stage leads to a more spatially restricted snow-
melt, concentrated in the upper central region and broadly consistent
with satellite data. Optimising the model against mid-POI satellite im-
ages leads to weighting parameters dominated by elevation and
neighbourhood, with results very similar to those when calibrating
against the full set of snow cover masks. This reflects the greater
data available within this period. When it comes to optimising against
the latest stage of snowmelt, however, we once again observe a greater
weighting for incidence angle.

Summarising, fitting against single satellite images suggests that an
optimal model (and future extension of the framework) could include
temporal variation across the course of the season, in terms of the influ-
ence of the different factors, whereby incidence angle becomes more
significant during early and late stages of snow melt.

Image of Fig. 5


Fig. 6. Representative simulations of the “best-fit” parameter set solution for the double and triple layer models. For eachmodel class, the best-fit parameter set was selected
as the top-ranked set following the parameter space sampling and calibration against satellite data, according to the mean of the errors (Eq. (5)) when averaged
over 5 simulations for each tested parameter set, using λ = 0.75 and calibrating against all snow cover masks, Eq. (6).
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3.3. Fitting of the extended model

The above analysis concentrated on the basic framework, i.e. Eq. (2)
with p= q= r=1. With a maximum of 4 parameters in the fitting, this
allowed (relatively) fine scale exploration of the parameter space, but
may also limit the degree to which the various controlling factors
could influence snowmelt. Under the extended form, greater subtlety
can be obtained (see Fig. 11 in the Appendix). Briefly, altering p and q
concentrates or disperses the spatial heterogeneity generated from inci-
dence angle and elevation, while changing r alters the characteristic
scale of melted tracts that spread from initial points of melt.

We analyse whether the extended model provides benefit in terms of
calibration, now also allowing each of p, q and r to range between 0 and
3 when it comes to the random sampling of parameter space, in addition
to the earlier ranges for (ρ,α,β,γ) (see Table 1). The basic model is a sub-
class of the extended model, so it is natural to expect the extended form
to perform as well or better, in the idealised case of full parameter space
exploration. However, given that the extended model contains almost
twice the number of parameters to fit (7 against 4), sampling of param-
eter space for the same number of parameter sets (near equivalent com-
putational cost) results in sparser exploration and uncertain benefit
gain.
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Results and typical simulations are presented in Fig. 8a. Comparing
errors for the top 1 % fitting sets in the extended-IEN model, against
those in the basic model counterpart, we find significant gain from
using the extended model: an almost 5 % error improvement across
the top 1 % fitting sets, Fig. 8a (left panel). Furthermore, when compar-
ing coincidence and interface errors at various stages of snowmelt, the
top ranking parameter set in the extended model showed near universal
improvement in coincidence and interface match, Fig. 8a (middle and
right panel).

To analyse how this improvement manifests itself at the spatial level,
in Fig. 8b–e we compare representative simulations from the extended
and basic model, under ‘best-fit’ parameter sets, against satellite snow
cover masks. In particular, the extended model is found to replicate sub-
tleties observed in the satellite derived images. For example, we observe
that snow melt becomes more concentrated to the upper middle portion
of the domain during early snow melt (ellipses at 96.0 %), earlier snow
melt on the south slope in the northwest high elevation terrain (ellipses
at 70.3 %), and more clearly defined stripes extending southwesterly
(circles at 59.1 %).

Nevertheless, some notable discrepancies remain and we highlight
these via the differencemap (Fig. 8e). Most prominently, our model consis-
tently overestimates snowmelt ratewithin the south eastern corner (square

Image of Fig. 6


Fig. 7. Fitting of the basic IEN-model against single snow cover masks, where a Z ¼ 96:0%f g, b Z ¼ 70:3%f g, c Z ¼ 59:1%f g, d Z ¼ 18:0%f g, e Z ¼ 4:3%f g. Top row
shows the weighting parameters in the top 1 % ranked sets (according to Eq. (5) with λ = 0.75), where the dashed red line shows the mean. Second row shows a
representative simulation for the best fit parameter set, at the relevant stage of remaining snow cover. Third row shows the corresponding snow cover predicted from
satellite data.
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at 70.3 %). Another notable discrepancy lies in the distinct snowmelt in the
southwest (southwest square region at 18.0%), wherewhile themodel pre-
dicts “fingers of melt” that extend southeast, satellite data indicates stripes
that curve into a southwest to northeast orientation. Furthermore, our
model underestimates the snow melt in the high altitude northwest corner
(square at 18.0%), but overestimates themelt occurring along the southern
boundary (rectangle at 4.3 %). Potential explanations for some of these
discrepancies are discussed below.

4. Discussion

Monitoring snow cover is crucial for understanding the hydrology of
mountain environments (Largeron et al., 2020), with the snow pack consti-
tuting a preciouswater source that demands carefullymanagement (SDG6).
Satellite images can provide only instantaneous snapshots of snow cover
and clouds frequently obscure detail. As such, there exists an information
gap that could befilled by a predictivemodel, sufficiently refined to predict
evolving snow coverage at the operational resolution required by hydrolog-
ical models (Pardo-Igúzquiza et al., 2017). In this study, we have developed
afine-scale stochastic cellular automatonmodel that describes how the spa-
tial pattern of snow cover evolves across a mountain catchment. Notably,
our case study represents a somewhat extreme example: an elevation gain
of more than 1000m across the catchment, complex topography, and expo-
sure to extreme climatic conditions (Gisolo et al., 2022).

An advantage of themodel lies in its formulation, requiring just two eas-
ily available spatial inputs: elevation and incidence angle. Both are rela-
tively easy to acquire from regional or national geoportals and GIS
software, and hence the model can be directly applied to other locations.
Accordingly, at each point of time, the probability of snow melt within a
particular patch is assumed to be governed by just three factors: elevation
(E) (a partial proxy for temperature), sun incidence angle (I), and the re-
maining snow coverage in neighbouring patches (N). Temperature and
sun (largely, solar radiation) have been considered as drivers of snowmelt
in a range of models (Zhou et al., 2021), while a dependency on the state
of neighbouring cells is a fundamental feature of CAmodels (Ghosh et al.,
2017); as such, our model forms a mixed cellular automaton (Pardo-
Igúzquiza et al., 2017).
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The model is calibrated against snow coverage masks estimated from
Sentinel-2 satellite images. The employment of this relatively recent remote
sensing product, already successfully used for creating high-resolution op-
erational snow cover maps (Gascoin et al., 2019), limits some of the prob-
lems highlighted in a recent study that investigated the use of the MODIS
product for snow detection (Bouamri et al., 2021). Noting that a number
of recent studies have suggested that a location-dependent threshold can
provide superior results for higher spatial resolution data (Salzano et al.,
2021; Aalstad et al., 2020; Härer et al., 2018; Yin et al., 2013)), a manual
calibration (see Fig. 2 and Supplementarymaterial) suggested that a thresh-
old of 0.2 ismore appropriate for the study area considered here. Neverthe-
less, this value may be different for other sites and a similar analysis would
be necessary during the preliminary phase of data processing. Despite this,
it is worth noting that the model itself appears to be robust against the pre-
cise threshold: a model calibration against snow cover masks estimated
under different thresholds yielded a quasi-identical ranking of sampled
parameter sets and consistent capacity to fit the different snow cover
masks obtained using different thresholds (see Appendix, Fig. 12).

Despite its relative simplicity, the model is capable of yielding an im-
pressive fit against satellite data. A reasonable fit can even be obtained
within a “bare-bones” framework that uses just E and N, without consider-
ing I. A somewhat similar finding has been obtained by Saydi et al. (2019)
when comparing the performance of a Snowmelt Runoff Model (SRM) that
incorporates solar radiation with those based on a temperature-index, for
the Urumqi River basin in the Xinjiang Uyghur Autonomous Region of
China. Explicit consideration of solar radiation was found not to signifi-
cantly improve model performance, since it is effectively a temperature-
dependent energy source. However, we remark that when all three depen-
dencies are included (i.e., also including the incidence angle), particularly
within the extended IEN-model formulation, our model was capable of cap-
turing additional subtle features of SCA changes. Our analysis reveals that I
plays an important role during early stages of the process, suggesting it
provides the identification of regions that receive sufficient solar energy
to trigger snowmelt. Inevitably any extensions carry a computational
cost: stepping up from the basic to the extended model involves an al-
most doubling of the dimension of the parameter space, so the searching
of suitable parameter sets becomes more challenging. Nevertheless, the

Image of Fig. 7


Fig. 8. Fitting of the extended model. a Statistics following a 5000 set sampling of the parameter space, comparing the extended IEN-model against its basic counterpart.
Ranking (using all available snow masks and λ = 0.75 in Eq. (5)) the top 1 % parameter sets, the extended model consistently outperforms the basic model with an
almost 5 % error improvement. Comparing the best fitting set for each of the extended and basic model, coincidence and interface errors are near-universally improved
across all stages of snow melt. b Representative simulation using the best-fit parameter set for the basic model; c representative simulation using the best-fit parameter set
for the extended model; d snow cover masks from satellite images; e difference between extended model and SI data, where red (blue) pixels indicate melt in the
extended model (SI), but not in the SI (model), while white pixels indicate a match. A video showing the spatial evolution of snow melt is included in the Supplementary
information and made available at https://youtu.be/M5FwGGA-2cE.
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extended model was still found to offer benefit in terms of improved fit
to data, even for approximately equivalent computer resources (the
same number of sample points). This suggests that further explorations
would benefit from adoption of the extended model framework.

Of course, E, I and N constitute only a fraction of the factors that are
likely to play a role in the snowmelt process. Many others (e.g. blown
snow, frozen ground, rain-on-snow etc.) can be conceived, but at present
the majority of models do not include such processes and thereby allow in-
vestigation into whether they will improve the accuracy of snowmelt simu-
lations (Zhou et al., 2021). Indeed, in the context of the present site
(expanded on further below), a number of discrepancies arise between
the fitted model and the snow cover masks which could be attributed to
missing key ingredients; in particular, we note that the catchment test site
used in the present study is exposed to extreme winds, potentially accumu-
lating snow or covering/uncovering particular patches.
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Extending themodel to include all potential factors that influence snow-
melt – e.g. snow depth/density/structure – would, however, generate a
complex model, with a high dimensional parameter space. In light of this,
the simplicity behind complexity (Salcido, 2011) feature of CAmodels allows
a significant degree of complexity to be condensed into a single nondescript
term, the neighbourhood. The assumption that melting in a neighbouring
patch increases melting likelihood can be partly attributed to processes of
surface albedo feedback and local heat transfer: surface albedo feedback
drives warming at high elevations, with proximity to less reflective (and
hence more energy absorbing) surfaces, such as grass, accelerating local
snowmelt (Hernández-Henríquez et al., 2015, Ingram et al., 1989). Indeed,
best-fitting parameter sets under the various models consistently require
non-negligible weighting for the strength of neighbourhood influence, sug-
gesting that this mechanism is a necessary component for a good-fitting
model. Neighbourhood influence introduces nonlocality into the model,

Image of Fig. 8
https://youtu.be/M5FwGGA-2cE
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at a spatial scale linked to the spatial scale of patches. Here the patch
dimensions are those of the employed snow cover masks (∼14 × 14 m2)
and the neighbourhood constitutes just the four nearest neighbours
(a vonNeumann neighbourhood). An important future investigation, there-
fore, would be to explore neighbourhoods of different dimensions and
observe how the weighting of neighbourhood dependence varies with the
spatial scale of patches, e.g. through fitting against lower or higher res-
olution satellite data. In this regard, various studies (despite their differ-
ent aims) have shown that such considerations can impact on the output
of CA (e.g., Pan et al., 2010; Moreno et al., 2009; Chen and Mynett,
2003). This in turn would provide further insight into the feasibility of
using CAs to describe SCA changes across distinct spatial scales and lo-
cations: from the complex and fine scale catchment area considered
here to the much larger areas explored in previous models (e.g. Pardo-
Igúzquiza et al., 2017), or lower elevation sites, areas with smoother
and more gradual slopes, distinct aspect etc.

Regarding the inputs, while elevation is a naturally fixed variable,
the reduction of incidence angle to a constant-in-time function sim-
plifies reality, where the position of the sun changes across the course
of the day and year. Our streamlining process has involved setting inci-
dence angle via a midday position at the initial stage in the snow-melt
season; it would be possible, of course, to extend to a time-dependent
incidence angle, although this would inevitably demand greater prepro-
cessing of data. Encompassing time-variable inputs will expand the
range of model application and, in particular, allow climatological
variability to be included. For example, through extending to include
temperature and precipitation variation, the model could be used to ex-
amine the sensitivity of snowmelt under a range of climate-change in-
duced scenarios (Pardo-Igúzquiza et al., 2017,Collados-Lara et al.,
2021), contributing towards SDG13. Arriving at this stage will require
further optimisation, and in particular a fitting of the model to describe
how snow coverage fraction evolves over time. The present study has
downplayed the temporal component, concentrating on the spatial
characteristics of snow melt. Taking this further step would demand
re-evaluation of certain model assumptions, in particular those placed
on parameter ρ. ρ can be viewed as an independent (i.e. independent
of elevation etc.) rate controlling parameter, where lower ρ generates
(on average) faster snowmelt at a particular site. We have treated ρ as
constant across the course of a simulation, but the hidden assumption
here is that, for a patch surrounded by snow, the likelihood of snow
melt when there is 10 % coverage across the catchment will be the
same as that when there is 90 % coverage. This, of course, fails to ac-
knowledge that a 10 % SCA stage corresponds to much later in the sum-
mer, by which time mean air temperatures have considerably risen and
snowmelt will be occurring at a greatly accelerated rate. This could be
incorporated through extending ρ to be a function of time, marking pro-
gression into warmer months.

The phenomenological nature of the model precludes direct estima-
tion of parameters from experiments. This is somewhat a weakness of
CA (and similar frameworks), in that the defining parameters do not
straightforwardly link to a measurable quantity. An advantage, how-
ever, lies in that we subsequently assess the model according to its abil-
ity to fit data when parameters are randomly selected from a broad
region of parameter space. The subsequent analysis showed that numerous
parameter combinations yield a similar degree of fit (see Appendix,
Section C), suggesting that themodel is not sensitive to a specific parameter
combination, rather it is the relative weight of the various influencing
factors that are of importance.

5. Conclusions

We have calibrated a CAmodel against estimated snow cover for the
“Dora del Nivolet” catchment in the Gran Paradiso National Park, North
Italy. The fitted model shows an impressive fit against data, recapitulat-
ing both general (for example, spatially extended melt tracts that form
in the lower valley and extend upwards over time) and subtle (for
13
example, localised melt and stripes on sun-facing slopes) features of
the snowmelt process. However, some notable discrepancies remain be-
tween the SCA predicted in best-fitting simulations, and that deduced
from satellite data. Notably, these discrepancies may be used to high-
light some potential missing factors within the model, which we expand
on below.

• The first (and probably the most prominent) model/data disparity lies in
that the model predicts much faster snowmelt around the south-east cor-
ner of the catchment. From the perspective of the model, this is natural:
the region has (relatively) low elevation, reasonable exposition to sun
and lies adjacent to the region of initial snow melt. From the model as-
sumptions, therefore, there is nothing to lead to delayed snowmelt for
this region. Located at the upper end of the central valley through
which the Dora del Nivolet runs, it is possible that prevailing winds act
to channel precipitation and/or accumulate snow, leading to greater
depth/density of snow. Further, mountain lakes here may generate local
microclimates hard to be captured by the model.

• A second discrepancy lies in characterising the snowmelt across the more
gently sloping terrain that leads up towards the south and west ridge
boundaries of the catchment. Snow melt in this region appears to be
highly intricate, with satellite data revealing a complex pattern of
“fingering” as melt extends into the higher ground. While our model par-
tially captures this fingering, it does not replicate the late stage “curving”
of remaining snow stripes. Here, our model may be somewhat limited by
its resolution and neighbourhood configuration: each patch covers ap-
proximately 200 m2, elevation and incidence angle averaged across this
area and the influence of just the four nearest neighbours is considered.
It is possible, therefore, that more subtle variation in the nearby terrain
may be at play.

• Overall, the present study downplays the temporal component, concen-
trating on the spatial characteristics of snowmelt. Therefore, it is to be ex-
pected that certain discrepancies will arise due to neglecting the temporal
climatological variability across the study catchment.

• Finally, another possible source of discrepancy could be through the
simple “binary” assumption, i.e. that patches are either snow or bare
ground. Providing each patch with a continuous variable, e.g. repre-
senting the mass of snow covering a particular patch, would take the
model in the direction of predicting how the spatial distribution of
meltwater changes over spring and summer. Therefore, a further ex-
tension of the model would be to move beyond the current assumption
of binary state patches.

Regardless of these caveats, we believe that the approach outlined in
this paper provides a promising starting point for understanding the drivers
of snow cover dynamics at a fine spatial scale, within complex topographi-
cal environments.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.159195.
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Appendix A. Tables for symbols and model inputs

In Table 2 we provide a list of symbols/acronyms used during the text.
In Table 3 we provide a list of variables, inputs and parameters for the CA
model formulated in Section 2.2.

Table 2
Acronyms and symbols used in the text.
A
C
D
D
D
E
fS
E
I
L
L
N
N
P
R
S

a(
e(
b(

S(
ρ
α
β
γ
p
q
r
Δ

C
 Atmospheric Correction

A
 Cellular Automata

EM
 Digital Elevation Model

OY
 Day Of Year

TM
 Digital Terrain Model
(patch) Elevation

CA
 fractional Snow Cover Area

SA
 European Space Agency
(patch) sun Incidence angle

1C
 Level-1C Sentinel-2 product

2A
 Level-2A Sentinel-2 product
(patch) proportion of Nearby snow coverage

DSI
 Normalised Difference Snow Index

OI
 Period of Interest

CP
 Representative Concentration Pathways

CA
 Snow-Covered Area

DG
 Sustainable Development Goals
S
Table 3
List of inputs, variables, functions and parameters for the CAmodel.
Notation
 Range/value
 Interpretation
x)
 [0,1]
 Incidence angle (rescaled) of patch centred at x

x)
 [0,1]
 Elevation (rescaled) of patch centred at x

x, t)
 [0,1]
 Proportion of nearby snow coverage of patch centred at x at

time t

x, t)
 {0,1}
 State of patch (0 = grass, 1 = snow) centred at x at time t
[2,10]
 Independent snow melt likelihood

[0,9]
 Weighting for impact of incidence angle

[0,9]
 Weighting for impact of elevation

[0,9]
 Weighting for impact of nearby snow coverage

[0,3]
 Nonlinearity parameter for incidence angle

[0,3]
 Nonlinearity parameter for elevation

[0,3]
 Nonlinearity parameter for nearby snow coverage
x
 ∼14
(metres)
Patch dimensions
t
 1 (unitless)
 Time step
Δ
Appendix B. Simulation algorithm

The simulation code is implemented inMatlab. Essentially, in each time
step: (i) remaining snow-covered patches are located and randomly ordered
into a sequence (S); (ii) for the first patch in the sequence, its melt
14
probability is calculated from Eqs. (1) and (2) and a uniform random num-
ber between 0 and 1 is generated to determine whethermelting occurs; (iii)
we proceed through the sequence until all elements in S have been tested;
(iv) time is updated and we return to (i). Code is available at GitHub and a
pseudo-algorithm is provided below. We note that while parameter ranges
were chosen such that simulations would generally be computable within a
reasonable timeframe, certain combinations may push the model into a re-
gime requiring exorbitant c.p.u. time (via minuscule probability of snow-
melt in certain regions). The maximum number of total time steps for a
particular simulation was therefore capped (here, at 105) to prevent simu-
lation jams of this nature and parameter set combinations falling foul are
excluded.
Appendix C. Error analysis of the IEN-model and default λ

We briefly summarise the analysis following the randomised search
of parameter space, focusing on the basic IEN-model. As described in
methods, for each sample parameter set the model is simulated 5 times
and errors are computed according to Eq. (5) under varying λ and using
the full set of snow masks in the calibration, i.e. Eq. (6). Fig. 9 charts statis-
tics of this analysis, where from top to bottom row we vary λ from 1 (only
coincidence-based error) to 0 (only interface-based error). The left panels in
Fig. 9 chart errors (means ± standard deviation). Notably, we observe
small standard deviations, indicating low variation about the mean error
for each simulation at a specific parameter set and suggesting 5 simulations
for each parameter set is sufficient to obtain a reasonable error estimate.
Restricting to the mean errors computed across the top 1 % of parameter
sets generates good fitting parameter sets with mean errors lying within a
few percent of each other.

To determine a suitable default value for λ we (i) explore the values of
the weighting parameters across the top 1 % parameter sets at each λ,
and (ii) examine representative simulation output from top performing
sets at each λ. The weighting parameters for the top 1 % sets are shown
in the right hand panels of Fig. 9. Notably, we observe broadly consistent
results for λ between 0.5 and 1, indicating a commonality between the pa-
rameter sets contributing to the top 1 % sets. For lower λ, however, signif-
icantly different weighting parameters are observed, along with more
variance. This is substantiated when examining representative simulation
output for top performing sets, where Fig. 10 shows the simulation output
at 59.1 % snow coverage, for the top 5 ranked parameter sets under each
λ. Subtle distinctions aside, simulations in the top 3 rows are highly consis-
tent and provide a reasonable match against the snow coverage estimated
from satellite images at an equivalent stage. Low λ, however, generate
less consistent results, with some highly ranked parameter sets producing
debatable match against the data (e.g. see bottom left panel). Accordingly,
we use a value of λ=0.75 that generates both good calibration against the
experimental data set and provides reasonably consistency across simula-
tions with varying parameters.

Unlabelled image


Fig. 9. Error analysis for 5000 randomly sampled parameter sets for the basic IEN-model, calibrated against satellite data according to Eq. (5) with Eq. (6) and a λ=1, b λ=
0.75, c λ=0.5, d λ=0.25, e λ=0. (Left column, main axis) Mean error± standard deviation for the top 50 fitting parameter sets, reported as the error improvement over
the null model; (Left column, inset axis) Mean error for the full 5000 sets. (Right column) Weighting parameters (α,β,γ) for the top 50 parameter sets, along with their mean
values (red dashed) ± standard deviations (blue dotted).
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Fig. 10: Representative simulation output for the 5 best parameter sets, selected following the error analysis reported in Fig. 9, with the ranking according to
Eq. (5) for a λ = 1, b λ = 0.75, c λ = 0.5, d λ = 0.25, e λ = 0. Output shown at the 59.1 % snow coverage stage, with the weighting parameters for each
simulation indicated by the bar chart at the top right.
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Fig. 11. Representative simulations showing the greater subtlety generated through the extendedmodel formulation, i.e. Eq. (2) with varying (p,q,r). a As p is varied, we see
either dispersion or concentration of the spatial heterogeneity that stems from variable incidence angle (other parameters α= 5, β= γ = q= r= 0, ρ= 20/3). b As q is
varied, we see either dispersion or concentration of the spatial heterogeneity that stems from variable elevation (other parameters β=5, α= γ= p= r=0, ρ=20/3). cAs r
is varied, we see a variation in the characteristic spatial scale ofmelt patches due to neighbourhood dependency (other parameters γ=5, α= β= p= q=0, ρ=20/3). Note
that simulation output corresponds to the stage with 70.3% remaining snow coverage.

Fig. 12. Analysis of the sensitivity of the model fitting according to snow cover masks obtained with different NDSI thresholds. a Errors for 50 randomly sampled parameter
sets, where the error for each parameter set is obtained by averaging over 5 simulations of the extendedmodel whenfitted against snow covermasks estimated using an NDSI
threshold of 0.2, 0.4 or 0.6. Regardless of the position within parameter space, the three errors obtained for each sampled parameter set lie within at most a few percent.
Consequently, the model is robust with respect to the actual NDSI threshold used during data acquisition: best-fit parameter sets remain best-fit following amodel calibration
against the different snow cover masks. b Example model output (bottom row) for the same simulation, compared against the snow cover masks estimated for a specific date
(14/06/2018). Regardless of the NDSI threshold, the characteristic pattern of snow melt is consistently captured by the model.
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