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Abstract

Devising automatic tools to assist specialists in the early detection of mental

disturbances and psychotic disorders is to date a challenging scientific problem

and a practically relevant activity. In this work we explore how language models

(that are probability distributions over text sequences) can be employed to ana-

lyze language and discriminate between mentally impaired and healthy subjects.

We have preliminarily explored whether perplexity can be considered a reliable

metrics to characterize an individual’s language. Perplexity was originally con-

ceived as an information-theoretic measure to assess how much a given language

model is suited to predict a text sequence or, equivalently, how much a word

sequence fits into a specific language model. We carried out an extensive ex-

perimentation with healthy subjects, and employed language models as diverse

as N-grams —from 2-grams to 5-grams— and GPT-2, a transformer-based lan-

guage model. Our experiments show that irrespective of the complexity of the

employed language model, perplexity scores are stable and sufficiently consis-

tent for analyzing the language of individual subjects, and at the same time

sensitive enough to capture differences due to linguistic registers adopted by

the same speaker, e.g., in interviews and political rallies. A second array of

experiments was designed to investigate whether perplexity scores may be used

to discriminate between the transcripts of healthy subjects and subjects suf-
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fering from Alzheimer Disease (AD). Our best performing models achieved full

accuracy and F-score (1.00 in both precision/specificity and recall/sensitivity)

in categorizing subjects from both the AD class, and control subjects. These re-

sults suggest that perplexity can be a valuable analytical metrics with potential

application to supporting early diagnosis of symptoms of mental disorders.

Keywords: diagnosis of dementia, perplexity, automatic language analysis,

language models, early diagnosis, mental and cognitive disorders

1. Introduction

In economically developed societies the burden of mental disturbances is

becoming more evident, with negative impact on people’s daily life and huge

cost for health systems. Whereas for many psychotic disorders no cures have

been found yet, the treatment of people at high risk for developing schizophrenia5

or related psychotic disorders is acknowledged to benefit from early detection

and intervention [1]. To this end, a central role might be played by approaches

aimed at analyzing thought and communication patterns in order to identify

early symptoms of mental disorder [2].

The analysis of human language has recently emerged as a research field that10

may be helpful to analyze for diagnosing and treating mental illnesses. In fact,

in the last decade Natural Language Processing (NLP) techniques have become

a common tool to support research on psychotic disorders. Namely, if language

and its associated cognitive functions are first impaired before the full signs

of mental disorders become apparent, linguistic analysis assisted by computing15

systems may be helpful for early detection. Recent advances in NLP technologies

allow accurate language models (LMs) to be developed. These can be thought

of as probability distributions over text sequences, and can be used to estimate

in how far a text is coherent with (or, more precisely, predictable through) such

language models. In order to measure the distance between an actual sequence20

of tokens and the probability distribution we propose using perplexity, a metric

that is well-known in literature for the intrinsic evaluation of LMs. In this work
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we run experiments targeted at investigating how reliable perplexity is as a

tool for investigating individuals’ language, and we test whether the perplexity

computed employing a language model acquired based on speeches from healthy25

subjects can be useful in discriminating healthy subjects from people suffering

from mental disorders.

The work is structured as follows: in Section 2 we survey related work, and

review the approaches that have been proposed for building systems to automat-

ically recognize subjects affected by different forms of psychotic disorders based30

on linguistic analysis. In Section 3, we provide the essential background to the

experiments: we first introduce language models and perplexity (Section 3.1),

and illustrate the main traits of the neural architectures actually employed to ac-

quire language models (Section 3.2). We then describe the experiments devised

to explore whether perplexity is stable and can be reliably used to detect mental35

disturbances (Section 4): we first examine whether perplexity can be deemed as

reliable to analyze speech transcripts under an intra-subject and discourse-level

coherence perspective (Section 4.2); we then assess perplexity reliability under

an inter-subjects perspective by considering how stable are perplexity scores for

a given speaker when employing language models acquired or refined on other40

speakers’ transcripts (Section 4.3); finally, we test perplexity to discriminate

healthy subjects from subjects affected from Alzheimer Disease (Section 4.4).

In the final Section we elaborate on the results and illustrate future work to

improve the perplexity-based approach and make it a tool practically useful for

diagnostic purposes.45

Although in literature perplexity is not new as a tool to compare the language

of healthy and diagnosed subjects, this work is, to the best of our knowledge,

the first attempt at analyzing how suited perplexity is to analyze individuals’

spoken language. While in previous reports the reliability of perplexity has been

simply taken for granted, we investigate whether and to what extent perplexity50

scores are reliable before trying to use them to discriminate between mentally

impaired and healthy subjects. Moreover, as far as we know, no previous work

has compared perplexity scores computed through LMs as diverse as GPT-2 and
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N-grams to the ends of discriminating healthy subjects from subjects afflicted by

Alzheimer Disease. This difference has practical consequences for applications,55

mostly due to the different computational effort required both to train and

employ such models, and to the descriptive power of the learned models.

2. Related Work

Patients with psychiatric disorders such as schizophrenia show various se-

mantic disturbances, and may suffer from difficulties in handling linguistic mean-60

ings at different processing levels such as morphology, syntax, semantics, and

pragmatics [3]. The work in [4] provides a rich overview on disturbances at the

different levels. As far as we are concerned, disturbances related to schizophre-

nia typically produce abnormal usage of neologisms and word approximations,

disruptions in language cohesion [5], syntactically simpler constructions featured65

by reduced use of embedded clauses and grammatical dependents [6], inflectional

morphology variants and errors [7]. In the last decade, advances in NLP tech-

niques have allowed the construction of approaches to automatically deal with

tasks such as linguistic analysis and production, including also many of the

aforementioned linguistic levels. These approaches have identified markers that70

can help differentiate patients with psychiatric disorders from healthy controls,

and predict the onset of psychiatric disturbances in high risk groups at the level

of the individual patient.

Early work in this area started with generating vectors from co-occurrence

matrices [8, 9], treated with latent semantic indexing [10], or point-wise mu-75

tual information [11]. Such early distributional representations provided ex-

plicit (that is, directly meaningful and human-interpretable) information. The

number of dimensions of such vectors was determined by the size of the vocabu-

lary. On the other side, in implicit or latent representations, features were used

resulting from Latent Semantic Analysis (LSA). LSA is a multidimensional asso-80

ciative model based on the distributional hypothesis: word meaning is encoded

as a multi-dimensional (usually 300 or 400 dimensions) vector obtained by elab-
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orating large corpora to estimate the co-occurrence frequencies for each word.

A basic approach based on LSA, such as that described in the seminal work

by [12], is as follows. Each input token is represented through a corresponding85

LSA vector, Wi = {Ii1, Ii2, . . . IiN}. In turn, the vector representation for a

phrase P is then built as the mean of the vectors representing all words in P :

Pi = 1
N

∑N
k=1 Iik. The coherence between any two phrases is then computed

through the cosine similarity of their corresponding vectors. The assumption

underlying this approach is that meaningful texts will be featured by high coher-90

ence scores (in that words in the text being considered are semantically related

on a distributional perspective), whilst text with some sort of disorder (or ‘loose

associations’ among words) will be featured by reduced coherence scores. In [13]

an artificial dataset built by intentionally manipulating existing texts was used

to test the described notion of coherence: the minimum semantic distance and95

the mean semantic distance of adjacent sentences were found to be negatively

correlated with the disorder level introduced in the original. In this work LSA

(in conjunction with information on grammatical Part-of-Speech function, re-

ferred to as POS tags) has been used to predict the transition to psychosis in a

clinical high-risk cohort.100

More recently, LSA techniques have been superseded by neural approaches

aimed at learning latent representations of words called word embeddings [14].

The overall design aimed at characterizing coherence (or, equivalently, the dis-

order associated with sentences and documents), by comparing vector represen-

tations of text excerpts, has remained unchanged. Among the most relevant105

sets of word embeddings, we mention Word2vec [15], GloVe [16], ConceptNet

Numberbatch [17], fastText [18], LessLex [19], and NASARI [20].

A different approach to provide quantitative measures to language coherence

and complexity is graph-based: in this setting, nodes represent words, and the

word sequence is induced by directed edges. One main assumption underly-110

ing these approaches is that in coherent discourse neighboring words refer to

connected topics, whilst incoherent discourse is associated with difficulties in

making an ordered trajectory or path between topics. By employing tools from
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graph theory and information science it is possible to extract information on

graph properties, such as connectedness, subgraphs or graph components. More115

specifically, measures such as entropy can be employed to probabilistically de-

fine topics and topic transitions [21]. Such graph representations also allowed

grasping specific features of the normal and dysfunctional flow of thought (such

as divergence and recurrence), and to produce accurate sorting of individuals

affected by schizophrenia or mania [22]. In another study, techniques for speech120

graph analysis were employed to describe formal thought disorder, which has

been mathematically defined by the linear combination of connectedness graph

attributes and their degree of similarity to randomly generated graphs. Such

connectedness attributes were mapped onto a Disorganization Index, and used

to classify negative symptom severity [23].125

In what follows we survey a set of works employing ‘perplexity’ that are

specifically relevant to introduce our own proposal. Although originally con-

ceived to assess how language models are able to model previously unseen data,

perplexity can be used to compare (and discriminate) text sequences produced

by healthy subjects or by people suffering from language-related disturbances.130

To provide a hint of this approach, perplexity is a positive number that —given

a language model and a word sequence— expresses how unlikely it is for the

model to generate that given sequence. A richer description of the perplexity is

provided in Section 3.

In [24] N-grams of part of speech (POS) tags were employed to identify135

patterns at the syntactic level. Then, two LMs were acquired (one from pa-

tients’ data and the other from data from healthy controls): the categorization

of a new, unseen (that is, not belonging to either set of training data) sam-

ple was then performed through the perplexity computed with the two LMs

over the sample. The considered sample was then categorized as produced by140

a healthy subject (patient) if the LM acquired from healthy subjects (patients)

data attained smaller perplexity than the other language model. Perplexity

has been recently proposed as an indicator of cognitive deterioration [25]; more

specifically, the content complexity in spoken language has been recorded in
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physiological aging and at the onset of Alzheimer’s disease (AD) and mild cog-145

nitive impairment (MCI) on the basis of interview transcripts. LMs used in

this research were built by exploiting 1-grams and 2-grams information; as il-

lustrated in next section (please refer to Equation 2), such models differ in the

amount of surrounding information employed. Perplexity scores were computed

on ten-fold-cross-validation basis, whereby participants’ transcripts were parti-150

tioned into ten parts; a model was then built by using nine parts and was tested

on the tenth. This procedure was repeated ten times so that each portion of

text was used exactly once as the test set. Four examination waves with an

observation interval of more than 20 years were performed, and correlations of

the perplexity score of transcriptions dating to the beginning of the experiment155

were found with the score from the dementia screening instrument in partici-

pants that lately developed MCI/AD.

Perplexity has been employed as a predictor for Alzheimer Disease (AD)

on the analysis of transcriptions from DementiaBank’s Pitt Corpus, that con-

tains data from both healthy controls and AD patients [26]. More precisely,160

in [27] two neural language models, based on LSTM models, were acquired, one

built on the healthy controls and the other trained on patients belonging to

the dementia group. A leave-one-speaker-out cross-validation was devised and,

according to this setting, a language model M−s was created for each speaker

s by using all transcripts from the speaker’s group but those of s. Data from165

speaker s was then tested on bothM−s, thus providing a perplexity score pown,

and on the language model built upon the transcripts from the whole group to

which the speaker did not belong to, thus obtaining the perplexity score pother.

The difference between the perplexity scores ∆s = pown − pother was computed

as a description for the speaker s. The classification of each speaker was then170

performed by setting a threshold ensuring that both groups obtained equal error

rate. The authors achieved 85.6% accuracy on 499 transcriptions, and showed

that perplexity can also be exploited to predict a patient’s Mini-Mental State

Examination (MMSE) scores. The approach adopted in this work is the closest

to our own work we could find in literature; however it also differs from ours175
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in some aspects. First, we investigated how reliable perplexity is in assessing

the language of healthy subjects. That is, we analyzed how perplexity scores

vary within the same individual, as an initial step toward assessing if perplex-

ity is suitable for examining text excerpts/transcripts that (like in the case of

the Pitt Corpus) were collected through multiple interviews and tests, spanning180

over years. Additionally, we were concerned with evaluating all excerpts from a

single individual to predict the AD diagnosis at the subject level, rather than

in predicting the class for each and every transcript. In order to assess the per-

plexity as a tool to support the diagnosis, we analyzed only data from subjects

for which at least two transcripts were available.185

Following the approach presented in [27], perplexity has been further in-

vestigated for the categorization of healthy subjects and AD patients [28]. In

particular, different LMs have been acquired on both control and AD subjects’

transcriptions from the Pitt Corpus [26]. Such LMs have been employed to eval-

uate in how far differences in perplexity scores reflect deficits in language use. In190

order to compute perplexity scores, the authors designed two experimental set-

tings: interrogation by perturbation, where LMs were asked to assess corrupted

texts so to simulate AD progression; and interrogation by interpolation, where

the perplexity values obtained by LMs acquired on healthy subjects transcripts

were combined with perplexity values computed through LMs trained on the AD195

patients. In the classification task, the authors achieved their best results by as-

signing higher relevance to scores computed through LMs acquired on AD class

rather than those trained on healthy subjects (AUC 0.941 and 0.872 accuracy

at equal error rate). Also interestingly, the experimentation provided evidence

about the correlation among perplexity scores and lexical frequency: provided200

that subjects affected by Dementia of the Alzheimer’s type tend to use higher

frequency words with less specificity than control individuals, language models

and perplexity were proved to be able to capture linguistic manifestations of the

cognitive impairment. Our approach differs from this one. Firstly, we explored

two different sorts of LMs (N-grams and GPT-2 models, fine tuned with 5, 10,205

20 and 30 epochs) so to collect experimental evidence on the level of accuracy
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recorded by different LMs used to compute the perplexity scores. Secondly, four

different decision rules were compared based on average perplexity scores from

control and impaired subjects, along with their respective standard deviations.

Moreover, while in [28] the categorization is performed at the transcript level,210

our focus is on the categorization of subjects. More in general, our study is

aimed at providing a full account on perplexity, and not only at investigating

how to employ it in a categorization task.

3. Background

Most approaches rely on a simple yet powerful descriptive (and predictive)215

theoretical framework which is known as distributional hypothesis. The distribu-

tional hypothesis states that words that occur in similar contexts tend to convey

similar meanings [29]. For example, if the word wi and the word wk often occur

in the same context, then they probably have close meanings; if they are inter-

changeable in the same contexts of occurrence, then they are synonyms. For220

example, in the sentences ‘We used the board to shut down the power plant’ and

‘We used the panel to shut down the power plant’, the words board and panel

are intended with the same meaning. Several techniques have been devised to

acquire the distributional profiles of terms, usually in the form of dense unit

vectors of real numbers over a continuous, high-dimensional Euclidean space.225

In this setting each word can be described through a vector, and each such

vector can be mapped onto a multidimensional space where distance (such as,

e.g., the Euclidean distance between vectors) acts like a proxy for similarity,

and similarity can be interpreted as a metric. As a result, words with similar

semantic content are expected to be closer than words semantically dissimilar.230

3.1. Language Models and Perplexity

Language Models (LMs) are a statistical inference tool that allows estimating

the probability of a word sequence W = {w1, . . . , wk} [30, 31]. Such probability
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can be computed as

p(W ) =

k∏
i=1

p(wi|w1, . . . , wi−1), (1)

which is customarily approximated as

p(W ) ≈
k∏

i=1

p(wi|wi−N+1, wi−N+2, . . . , wi−1). (2)

In the latter case only blocks of few (exactly N) words are considered to predict

the whole W : we can thus predict the word sequence based on N-grams, that are

blocks of two, three or four preceding elements (bi-grams, tri-grams, four-grams,

respectively). In general N-gram models tend to obtain better performance as N235

increases, with the drawback of making harder the estimation of P (wN |W1,N−1).

Another issue featuring these models stems from the fact that when increasing

the context size, it becomes less likely to find sequences with the same length

in the training corpus. In order to deal with N-grams not occurring in the

training corpus, called out-of-vocabulary N-grams, language models have to240

add an additional step of regularization to allow a non-zero probability to be

associated to previously unseen N-grams [32, 33]. The probabilities assigned

by language models are the result of a learning process, in which the model is

exposed to a particular kind of textual data. The goal of the learning process is

to train the model to predict word sequences that closely resemble the sentences245

seen during training.

As mentioned, LMs are basically probability distributions of word sequences:

perplexity was originally conceived as an intrinsic evaluation tool for LMs, in

that it can be used to measure how likely a given input sequence is, given a

LM [31]. This measure is defined as follows. Let us consider a word sequence of

k elements, W = {w1, . . . , wk}; since we are interested in evaluating the model

on unseen data, the test sequence W must be new, and not be part of the

training set. Given the language model LM, we can compute the probability of

the sentence W , that is LM(W ). Such a probability would be a natural measure

of the quality of the language model itself: the higher the probability, the better
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the model. The average log probability computed based on the model is defined

as

1

k
log

k∏
i=1

LM(W ) =
1

k

k∑
i=1

log LM(W ),

which amounts to the log probability of the whole test sequence W , divided

by the number of tokens in sequence. The perplexity of sequence W given the

language model LM is computed as

PPL(LM,W) = exp{−1

k

k∑
i=1

log LM(wi|w1:i−1)}. (3)

It is now clear why low PPL values (corresponding to high probability values)

indicate that the word sequence fits well to the model or, equivalently, that the

model is able to predict that sequence.

3.2. Neural Architectures to Acquire Language Models250

Modern neural networks organize neurons into layers, each unit being con-

nected to each unit of the subsequent layer through synapses or edges. Each

layer of the network accepts as an input the output of the preceding layer,

performs some transformation of the received data, and produces an output

according to the layer architecture. Different layers apply different transforma-255

tions; edges, in turn, are usually provided with a weight, a real-valued number

expressing the strength of the connection among two neurons, which is usually

exploited to alter data coming from the preceding layer.

Since neural networks deal with real valued representations of data, we have

to extract features from data, which is text in our case, and map them onto a260

numerical vector representation —usually called embedding— able to correctly

grasp the main characteristics of the input data. The role of vector represen-

tations is central to neural models, and in fact, modern neural networks are

provided with an embedding layer, which is responsible for the creation of a

fixed-length vector for each element of the input sequence. It is worth noting265

that these vector representations mitigate the data sparsity problem by building

11



RNN

<latexit sha1_base64="k+yye3G+FSDMiALqpC81rO3aX0Q=">AAACVHicbZDNSsNAEMc38avWr1bBi5dgEUSkJIIoeCnVgxdR0arQlDLZTuPiZhN2N9IS+ghe9Sl8C59B8OKTeHDTerDVgYEf/5lhZv5BwpnSrvth2VPTM7NzhfniwuLS8kqpvHqj4lRSbNCYx/IuAIWcCWxopjneJRIhCjjeBg/Hef32EaVisbjW/QRbEYSCdRkFbaSrXpu1SxW36g7D+QveD1Rq65ef7LX+dtEuW0d+J6ZphEJTDko1PTfRrQykZpTjoOinChOgDxBi06CACFUrG946cLaM0nG6sTQptDNUf09kECnVjwLTGYG+V5O1XPyv1kx197CVMZGkGgUdLeqm3NGxkz/udJhEqnnfAFDJzK0OvQcJVBt7Jrfkt6mxTzIFYrR8TO0pQ+bnon+CxgyJZ6blPEEJOpY7mQ8yjKA3MOaE/m5Oxm5v0ty/cLNX9far7qVXqdXJKApkg2ySbeKRA1Ijp+SCNAglIXkiz+TFere+7Cl7ZtRqWz8za2Qs7OVvQWe5lw==</latexit>xi

<latexit sha1_base64="ZIM38NmmyVNsGOOQpN1mAjjyJ8w="></latexit>yi

Hidden
State RNN

<latexit sha1_base64="R6/bSowkR2kqUFEKMScD9yIWOpQ="></latexit>x0

RNN RNN RNN RNN

<latexit sha1_base64="OC9ldaresxYk3luckDp1gFzBARM="></latexit>y0
<latexit sha1_base64="yDEHlaCb0Y2XKkYsMfpZGOMavgw="></latexit>y1

<latexit sha1_base64="4zJh9lbJ3So9myTcK1IkRt3MABs="></latexit>y2
<latexit sha1_base64="JW70heBmosFOfnitC5kBWaUPT0g="></latexit>y3

<latexit sha1_base64="r3KCAFTEs6TdK816wiBaFOUHwtM="></latexit>yn

<latexit sha1_base64="B+T5qTjlqFFyu9MCxCAVaHsh/VE=">AAACVHicbZDNSsNAEMc38avWr1bBi5dgEUSkJIIoeCnVgxdR0arQlDLZTuPiZhN2N9IS+ghe9Sl8C59B8OKTeHDTerDVgYEf/5lhZv5BwpnSrvth2VPTM7NzhfniwuLS8kqpvHqj4lRSbNCYx/IuAIWcCWxopjneJRIhCjjeBg/Hef32EaVisbjW/QRbEYSCdRkFbaSrXlu0SxW36g7D+QveD1Rq65ef7LX+dtEuW0d+J6ZphEJTDko1PTfRrQykZpTjoOinChOgDxBi06CACFUrG946cLaM0nG6sTQptDNUf09kECnVjwLTGYG+V5O1XPyv1kx197CVMZGkGgUdLeqm3NGxkz/udJhEqnnfAFDJzK0OvQcJVBt7Jrfkt6mxTzIFYrR8TO0pQ+bnon+CxgyJZ6blPEEJOpY7mQ8yjKA3MOaE/m5Oxm5v0ty/cLNX9far7qVXqdXJKApkg2ySbeKRA1Ijp+SCNAglIXkiz+TFere+7Cl7ZtRqWz8za2Qs7OVvSw25nA==</latexit>xn
<latexit sha1_base64="vFe0DzwbUxMtqJ+BfEu3jZogVAc="></latexit>x1

<latexit sha1_base64="GHH51VCddcWxww7W1iHrF3dlLF4="></latexit>x2
<latexit sha1_base64="eY/Lk0xb7MCAn0LAywmMC1I/AqU=">AAACVHicbZDNSsNAEMc3qZ/1W8GLl2ARRKQkiih4KdWDF1HRqtCUMtlO08XNJuxupCX0EbzqU/gWPoPgxSfx4Kb1YKsDAz/+M8PM/IOEM6Vd98OyCxOTU9Mzs8W5+YXFpeWV1VsVp5JijcY8lvcBKORMYE0zzfE+kQhRwPEueDjJ63ePKBWLxY3uJdiIIBSszShoI113m/vN5ZJbdgfh/AXvB0qV9atP9lp9u2yuWMd+K6ZphEJTDkrVPTfRjQykZpRjv+inChOgDxBi3aCACFUjG9zad7aM0nLasTQptDNQf09kECnViwLTGYHuqPFaLv5Xq6e6fdTImEhSjYIOF7VT7ujYyR93Wkwi1bxnAKhk5laHdkAC1cae8S35bWrkk0yBGC4fUbvKkPm56J+iMUPiuWm5SFCCjuVO5oMMI+j2jTmhv5uTsdsbN/cv3O6VvYOye+WVKlUyjBmyQTbJNvHIIamQM3JJaoSSkDyRZ/JivVtfdsGeHLba1s/MGhkJe/Eb2SS5YQ==</latexit>x3 …

Figure 1: (Left) RNN unit: takes xi as input, and computes the output representation yi as

a composition of xi and the hidden state of the preceding time step. (Right) Representation

of an RNN unrolled.

a continuous space, each word having its corresponding vector in the network

space.

Given the relevance of word order in natural language sentences, neural

models for NLP have to account for sequential properties in the input sequence.270

Recurrent Neural Networks (RNNs) are particularly suited to process sequen-

tial data such as natural language texts [34]. A graphical illustration of RNN

model is presented in Figure 1: the last hidden state depends on the entire

input sequence, that is, the prediction of the next word is conditioned on the

previous words in the sentence. The ability of conditioning the prediction of the275

next word to the preceding context, that is, dealing with sequences, is the most

appealing feature of the RNN architectures. Nevertheless, these models strug-

gle to model the context when facing long range dependencies. Unfortunately,

however, although they have been conceived to model sequential information,

RNNs are not able to model broad range dependencies [35].280

Given the difficulties in seizing long range dependencies, RNNs were replaced

by the Long Short-Term Memory networks (LSTM) [36]. LSTMs are RNNs

specifically designed to learn long range dependencies. This is obtained by

providing units with an explicit context memory that conveys the information

about the preceding context through the time steps. The context representation285

is achieved through two main operations: (i) forgetting information no longer

needed from the context, and (ii) adding new information probably needed for

next word prediction. Both sub-tasks are addressed through specialized neural
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Figure 2: Representation of an LSTM unit. Here, Ct−1 and ht−1 are the context represen-

tation and the hidden state coming from the preceding unit respectively. The input token

is represented by xt. The output of the cell corresponds to its hidden state at the current

time step ht. The updated representation of the context Ct and the hidden state ht are then

forwarded to the next LSTM unit.

units called gates, which manage the flow of information through the memory

state and the output of the LSTM cell. A graphical illustration of an LSTM290

unit is depicted in Figure 2.

The described structure makes LSTMs particularly suited to deal with se-

quences and long range dependencies. However, simple LSTM models cannot

naturally handle tasks in which input and output lengths are not equal, such as

machine translation or speech recognition involve dealing with sequences whose295

length is not fixed beforehand. The Sequence-to-Sequence (S2S) model has been

proposed to overcome such limitations [37]. The S2S model relies on LSTMs

to map an arbitrary length sequence x1, . . . , xn to another sequence y1, . . . , yk

where k may be different from n. In this setting, the input sequence is pro-

cessed by an encoder, which compresses the sequence to a fixed length vector300

representation C. The decoder is then initialized on the C vector, and predicts

the output token by token, accounting for the previously predicted token at

each time step. A graphical representation of the S2S architecture is depicted

in Figure 3.

Despite the ability of LSTM architectures to deal with long range dependen-305

cies, these models still struggle in representing larger pieces of text and suffer

from high training time due to the recurrent connections which build these
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Figure 3: Representation of an S2S setting. Here <EOS> represents the end of the sentence.

The input sequence x1, x2, x3 is processed by the encoder and compressed to the context

vector representation C. The context vector is then forwarded to the decoder which predicts

the output sequence y1, y2, y3, y4 by taking as input the previously predicted token at each

time step.

units. Additionally, the S2S architecture suffers from the loss of informative

load in compressing the whole input sequence into a single fixed length vector

representation. Transformers [38], together with the attention mechanism [39],310

alleviate these problems by both increasing the amount of exploited information

from the context, and getting rid of the recurrent connections. The attention

mechanism has been designed to alleviate the difficulties in S2S models; this

is done by allowing the decoder to directly exploit the encoder’s hidden states

rather than just using the final context representation provided by the encoder315

itself. Adopting an attention mechanism allows the model to selectively focus

on parts of the input that are likely to be the most useful for the task at hand.

The attention mechanism is particularly suited to address tasks which need to

take decisions relying on specific parts of the input data. Attention mechanisms

plays a key role in the Transformer architecture; in particular, this model fol-320

lows the S2S design pattern where the encoder processes the input sequence,

the output is then forwarded to the decoder which is concerned with the out-

put predictions. In this Section we will refer to the encoder-decoder model as

to the Transformer block. Since Transformers get rid of recurrent connections,

thereby allowing models to deal with sequences, the encoder represents the input325
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through a combination of word embeddings and information about the position

of words in the input sentence: in so doing, the model is able to account for

ordering information. After this first operation, the encoder unit is made of an

attention layer followed by a simple neural layer which is charged to compute

the context representation. The decoder unit combines the previously predicted330

word representations with the positional information to keep track of the order

of the words, and sends forward these vectors through an attention layer that

is aimed at selecting the most useful information among the predictions. After

these first steps the decoder combines the information from previously predicted

tokens with the context representation, coming from the encoder, through an-335

other attention layer. Lastly, a simple neural layer is concerned with computing

the output representation. Most popular models consist of several Transformer

blocks stacked one on another: this allows the model to increase its abstraction

capabilities (as the number of stacked blocks grows, the representation that can

be calculated is more and more abstract [40, 41]). A graphical illustration of a340

transformer block is provided in Figure 4.

Transformers have been widely adopted and improved to address diverse

Natural Language Understanding benchmarks, such as those in the GLUE [42]

and SuperGLUE [43] benchmarks. The successful adoption of models such as

BERT [44] and GPT-2 [45] in different application settings has attracted con-345

siderable efforts on improving such models [46, 47, 48, 49, 50]. One of the main

applications of Transformers is the language modeling task: predicting the next

word given the preceding context.

GPT-2 is a large language model based on Transformers and trained to pre-

dict the next word given the preceding context [45]. GPT-2, like traditional lan-350

guage models, predicts one token at a time, and the new prediction is appended

to the input sequence for next time step. Inspired by the work in [51], where

the Transformer-Decoder architecture was proposed, GPT-2 is made of stacked

decoder units only. More precisely, while the Transformer-Decoder block is very

similar to the decoder of the Transformer architecture, it gets rid of the encoder355

unit and of the contextual attention layer in the decoder. The GPT-2 model has
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Figure 4: High level representation of transformer block. The input sequence x1, x2, . . . xn

is combined with positional information to account for ordering properties. The input is

then processed from the attention layer of the Encoder and a simple neural layer aimed at

representing the whole input sentence. The Encoder output is then combined with previously

predicted tokens from the Decoder through another attention layer, and then, the last layer

computes the output representation for each input token.
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been trained on 40GB of Internet text carefully selected for quality, that is a se-

lection of documents curated or supervised by humans. One main trait featuring

the training data selection is that many different domains have been exploited

as data sources; this allows the neural network to model language properties360

avoiding a strong polarization towards a specific domain. Additionally, it is

worth noting that the number of stacked decoder units impacts performance, in

that increasing the number of levels produces an improvement on the language

modeling capabilities.

Neural language models are language models based on neural networks. Such365

models improve on the language modeling capabilities of N-grams by exploiting

the ability of neural networks to deal with longer histories. Additionally, neural

models do not need regularization steps for unseen N-grams and address the

data sparsity curse of N-grams by dealing with distributed representation. The

predictive power of neural language models is higher than N-grams language370

models given the same training set. Despite the great improvement of neural

language models on NLP tasks, these models are affected by training time higher

than N-grams language models.

4. Experiments

After having introduced the notion of perplexity and a brief description375

on modern neural architectures, we explore whether —and to what extent—

the perplexity of LMs attained through such architectures can be used as a

linguistic marker to detect language anomalies. Language anomalies detection

may be helpful in recognizing mental disturbances and other disorders.

Before exploring perplexity as a tool suitable to discern linguistic anomalies380

in impaired subjects, we perform a preliminary step, consisting of checking

whether perplexity scores can be considered as reliable. Informally stated, by

reliable we intend that similar text documents —such as repeated interviews to

the same subject over a limited time span, or descriptions by different subjects

about the same scene— should be featured by analogous perplexity scores (by385
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employing the same language model). We designed two experiments, the first

one aimed at exploring the intra-subject reliability of perplexity scores, and the

second one aimed at exploring inter-subjects reliability. In the former case we

recorded the coefficient of variation (CV) —that is the ratio between standard

deviation and average perplexity scores—, and in the latter one we measured390

the intraclass correlation coefficients (ICC) [52], that are two popular measures

in the psychiatric psychometry community.

The whole experimentation presented in this Section is thus concerned with

answering to two focal questions: 1) Whether perplexity scores are reliable

within the same subject, but still sensitive enough to account for different sorts395

of speech forms produced by a given speaker (Experiment 1), and across sub-

jects (Experiment 2); 2) whether the language of a specific class of subjects,

diagnosed as suffering from disorders impacting on common linguistic abilities,

can be automatically distinguished from that of healthy controls solely based

on perplexity accounts (Experiment 3). In the first experiment we analyzed400

whether the LMs acquired by training both N-grams and GPT-2 on transcrip-

tions of two different kinds of speech (two classes: political rallies vs. interviews)

from a single subject produce different perplexity scores when the LM is used

for analyzing similar (taken from same class) and different (from the other class)

documents. In the second experiment we have measured the perplexity scores405

featuring discourses by 8 well-known political figures: in this case our aim was

to assess whether perplexity scores computed based on models acquired on the

other 7 speakers’ transcripts are coherent in assessing the eight speaker. Fi-

nally, for the third experiment we have used the Pitt Corpus, from which we

selected the transcripts of responses to the Cookie Theft stimulus picture [53],410

and investigated whether the perplexity score allows discriminating patients

with dementia diagnosis (n = 194) from healthy controls (n = 99).

The code for replicating the experiments is available at https://github.c

om/davidecolla/semantic coherence markers.
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4.1. Compared LMs415

Three different experimental setups have been designed in order to com-

pare perplexity as computed by language models acquired by training with two

different sorts of architectures: N-grams, and GPT-2.

4.1.1. N-grams

Since N-grams implement the simplest language model with context, where

each word is conditioned on the preceding N -1 tokens only, we adopted N-

grams for the first experimental setup. For the sake of clarity we introduce the

formalization for Bigrams; such formulation can be further generalized to any

N . We define the probability of a sequence of words W1,n = {w1, w2, . . . , wn}

as:

P (W1,n) =

n∏
i=1

P (wi|wi−1)

where the probability of each Bigram is estimated by exploiting the Maximum

Likelihood Estimation (MLE) [54, Chap. 3].1 According to the MLE, we can

estimate probability of the Bigram (wi−1, wi) as:

P (wi|wi−1) =
C(wi|wi−1)

C(wi−1)
(4)

where C(wi|wi−1) is the number of occurrences of the Bigram (wi−1, wi) in the420

training set, while C(wi−1) counts the occurrences of the word wi−1 only. It is

worth mentioning that training Bigrams on a limited vocabulary may lead to

cases of out-of-vocabulary words, i.e., unseen words during the training process.

Out-of-vocabulary words pose a problem in calculating the probability of the

sentence in which they are involved: in such cases we are not able to compute425

the probability of the Bigram involving the unknown word, thus undermining

the probability of the whole sequence. In order to deal with out-of-vocabulary

words, each token occurring only once in the training set can be replaced with

the ‘unknown’ tag, unk. In so doing, during the test phase we are allowed

1In this setting, stopwords are customarily not filtered, as providing useful sequential in-

formation.
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to map each out-of-vocabulary word to the unknown word tag. Of course this430

procedure entails that the probability mass associated to unk tokens tends to

overestimate the role of such tokens, badly affecting the behavior of N-gram

based models. Conversely, modern architectures such as GPT-2 are less im-

pacted from out-of-vocabulary (OOV) issues: in fact, such models are acquired

by employing huge amounts of data (in the order of 40 GB of text [45]) by using435

sub-word tokenizers and encoding strategies.

Notwithstanding the strategy for handling out-of-vocabulary words, we may

still end up with unseen N-grams, formally occurring zero times in the training

set, thereby resulting in a null probability. We addressed the unseen N-grams

issue through the interpolated Kneser-Ney Smoothing technique [33]. The most440

effective smoothing techniques for N-grams involve exploiting lower-order rep-

resentations so to improve the precision of higher-order N-grams whenever is

needed. For example if the 3-gram (wi−2, wi−1, wi) has zero evidence, we may

either rely solely on the probability of its lower-order components, that are

the bigrams (wi−2, wi−1), (wi−1, wi) and the unigrams (wi), (wi−1), (wi−2) or445

combine the scores of its lower-order components to obtain the higher-order

representation. The Kneser-Ney algorithm belongs to the family of interpola-

tion strategies, and is based on the absolute discounting technique: to compute

a precise probability distribution, we may need to discount the counts for fre-

quent N-grams to save some probability mass to deal with unseen N-grams: in450

so doing, we subtract a small discounting factor d from the counts of N-grams

to employ such discount as probability for unseen N-grams.

In the present setting we experimented with N-grams ranging from 2- to

5-grams; the Kneser-Ney discounting factor d was set to 0.1.2

The vocabulary was closed on each experiment: that is, the N-grams models455

employed in each experiment were acquired with the vocabulary obtained from

the concatenation of the transcripts herein. Since the perplexity is bounded

2To compute N-grams we exploited the Language Modeling Module (lm) package from

NLTK version 3.6.1, https://www.nltk.org/api/nltk.lm.html.
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by the vocabulary size, fixing the cardinality of the vocabulary allows obtain-

ing comparable perplexity scores from N-gram models trained across different

corpora.460

4.1.2. GPT-2

The second experimental setup that we designed exploits the GPT-2 neural

model, in particular we used the GPT-2 pre-trained model available via the

Hugging Face Transformers library.3 In this setting, the input text has been

preprocessed by the pre-trained tokenizer and grouped into blocks of 1024 to-465

kens. The pre-trained model is specialized as Causal Language Model (CLM)

on the input texts, that is, predicting a word given its left context. Since the

average log-likelihood for each token is returned as the loss of the model, the

perplexity of a text is computed according to Equation 3.

4.2. Experiment 1: Intra-subject and discourse-level coherence470

The first experiment is aimed at investigating whether perplexity scores com-

puted based on a given LM are stable, and whether perplexity scores are able to

grasp factors specific to a given sort of speech. We have then targeted transcripts

of two different kinds of discourse: the interview and the political rally. While in

the former case both the questions put to the interviewee and his answers may475

be featured by different topics political rallies are events where people sharing

similar political beliefs gather to support their candidate, whose language is in

principle more regular, as not concerned with answering to specific questions.

As regards as the linguistic register differentiating such transcripts, interviews

should convey a sense of poise, balance, and posture, while the language adopted480

in rallies is expected to be more emphatic, direct, uniform and vehement. Our

second research question was then whether the employed language models were

able to recognize the two different linguistic registers.

3https://huggingface.co/gpt2
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Table 1: Statistics describing the transcripts employed in Experiment 1: for all considered

samples we report time duration, number of tokens, number of unique tokens, average number

of tokens and of unique tokens, and type-token ratio (TTR).

Category Transcript Duration Tokens Unique Tokens AVG Tokens AVG Unique Tokens TTR

Interview

I 1 : 28 : 52 7, 278 1, 098

8, 953 1, 185 0.13

II 1 : 28 : 23 6, 471 922

III 1 : 31 : 34 18, 514 1, 926

IV 0 : 45 : 40 6, 702 1, 032

V 1 : 01 : 51 5, 933 946

Rally

I 1 : 17 : 37 15, 200 1, 967

15, 051 1, 944 0.13

II 0 : 56 : 17 10, 501 1, 614

III 1 : 43 : 43 20, 865 2, 300

IV 1 : 13 : 01 14, 056 1, 945

V 1 : 18 : 19 14, 806 1, 896

4.2.1. Materials

We selected 10 transcripts by the former US President Donald Trump (this485

choice is mostly due to the large availability of his transcripts): 5 interviews

and 5 campaign rallies were downloaded from the Rev platform.4 Interviews

were recorded between June 2019 and November 2020, while campaign rallies

date to September and October 2020. The duration of both interviews and

rallies varies between 45 minutes and one hour and 43 minutes. The statistics490

describing all transcripts employed in the first experimental setting, including

time duration, token counts and type-token ratio (TTR, computed as the ratio

between the types, that is the total number of different tokens occurring in a

text divided by the total number of tokens) are reported in Table 1. While the

initial choice of the transcripts was random within each category, we tried to495

select text excerpts of similar duration.

4.2.2. Procedure

Two types of model were acquired, one for Political Rallies and one for

Interviews, and this schema was replicated for both N-grams and GPT-2. Each

4https://www.rev.com.
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LM was then tested on leave-one-out basis on transcripts in the same category500

as the training/fine-tuning, and in direct fashion on transcripts from the other

category. In the following we will simply refer to training, even though in

a strict sense training procedures were employed to acquire N-gram models,

while fine-tuning5 is associated to the refinement step of the base GPT-2 model

(more on fine-tuning in [55]). For example, in order to compute the perplexity505

score for excerpts from the Rally category with a language model obtained by

training/fine-tuning on the same category, 5 models were built by using 4 of

the 5 available transcripts (the fifth one was used for testing); results were

then averaged over these 5 runs. Conversely, to compute the perplexity score

on excerpts from the Interview category one LM was acquired from the Rally510

class, and used to test on all 5 transcripts. The same procedure was followed

for the training/fine-tuning on the Interview category: leave-one-out schema for

testing on transcripts from the same class, and only one model to compute the

perplexity of transcripts in the other class.

As regards as the LMs acquired through GPT-2, the selected transcripts515

were employed for the fine-tuning. Provided that most systems cited in related

literature adopt 20 epochs (an epoch being the hyperparameter that governs

the number of complete runs all throughout the training dataset), we explored

if either it is possible to obtain similar results with models tuned with less

epochs, or higher categorization through further fine-tuning epochs. We thus520

experimented with 5, 10, 20 and 30 epochs, together with the pre-trained model.

In order to compute the perplexity we adopted a sliding window of 50 tokens;

5Our distinction is compatible with a definition provided in literature: “In fine-tuning, we

begin with off-the-shelf embeddings like word2vec, and continue training them on the small

target corpus” [54, p.399]. Another popular description of the goals of fine-tuning comes from

the work in [44]: “During pre-training, the model is trained on unlabeled data over different

pre-training tasks. For fine-tuning, the [. . . ] model is first initialized with the pre-trained

parameters, and all of the parameters are fine-tuned using labeled data from the downstream

tasks. Each downstream task has separate fine-tuned models, even though they are initialized

with the same pre-trained parameters”.
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Table 2: Perplexity (PPL) scores along with standard deviation scores obtained with fine-

tuning on the transcripts from the Rally and Interview categories, averaged values for per-

plexity (PPL) scores, standard deviations and coefficient of variation (CV). The top four rows

illustrate the results on the N-gram models, while the bottom rows show the results obtained

by employing GPT-2 models, varying from 0 (pre-trained model) to 30 fine-tuning epochs.

Model
Rally Interview

Rally Interview Rally Interview

avg-PPL avg-stdev CV avg-PPL avg-stdev CV avg-PPL avg-stdev CV avg-PPL avg-stdev CV

N-grams

2-gr 296.81 2.71 0.01 304.18 15.78 0.05 282.77 4.19 0.01 270.35 13.17 0.05

3-gr 525.59 8.86 0.02 545.30 33.25 0.06 489.08 11.02 0.02 457.84 26.05 0.06

4-gr 709.04 11.89 0.02 730.75 43.77 0.06 645.93 14.49 0.02 592.29 33.68 0.06

5-gr 914.90 16.94 0.02 931.04 70.41 0.08 817.71 19.84 0.02 734.16 50.72 0.07

GPT-2

0 ep 27.16 1.20 0.04 24.15 1.55 0.06 27.16 1.20 0.04 24.15 1.55 0.06

5 ep 18.29 0.66 0.04 17.64 1.21 0.07 20.22 1.00 0.05 18.44 1.34 0.07

10 ep 16.36 0.55 0.03 17.02 1.35 0.08 18.59 1.01 0.05 17.22 1.19 0.07

20 ep 15.16 0.51 0.03 17.16 1.61 0.09 18.18 1.06 0.06 16.80 1.12 0.07

30 ep 14.86 0.50 0.03 18.05 2.02 0.11 18.50 1.14 0.06 17.12 1.19 0.07

window sizing was motivated by the fact that on average, the sentence length

for transcripts is around 50 words (namely, 53.63 for interviews and 51.67 for

rallies).525

We then expected to observe analogous perplexity scores on all transcripts

(as capturing common features underlying the language of the same speaker);

and to observe slightly higher perplexity scores with models trained/fine-tuned

on Interviews (Rallies) and used to test on Rallies (Interviews). In order to assess

the reliability of PPL scores, we recorded the coefficient of variation (CV), which530

is computed as the ratio between standard deviation of the perplexity scores and

the average of perplexity scores. A CV ≤ .1 would contribute to support the

hypothesis that perplexity provides stable and reliable scores.

4.2.3. Results

The results are presented in Table 2, where we recorded the average perplex-535

ity scores, their standard deviation and the coefficient of variation.

We observe that PPL scores grow monotonically from 2-grams to 5-grams;

as regards as GPT-2 based models, PPL scores tend to decrease from the base

model up to 20 fine tuning epochs, while they grow when computed though

models acquired by 30 training epochs. In this case also standard deviation540
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grows, which means that such models are overfitting to the fine-tuning data.

The coefficient of variation is on average lower than 0.1 (we recorded .06 CV

on the scores from GPT-2-based models, and .04 for the scores from N-gram

models).

As regards as our second research question, whether perplexity allows recog-545

nizing different linguistic registers, we recorded a twofold result. In fact, while

PPL scores acquired from rallies show reduced CV scores when tested on tran-

scripts from the same class (Table 2), models acquired on interviews provide

lower CV values when tested on rallies. This result may be explained to some

extent with the observation that data available to train/fine-tune such models550

were roughly half of data available for rallies. We defer to future work a deeper

investigation and experimentation on this point.

4.3. Experiment 2: Inter-subject coherence on different speakers

The second experiment was aimed at assessing whether perplexity scores

are stable across subjects. Five transcripts with no specific topic for eight well-555

known past and present political figures were selected, and a language model for

each subject was trained/fine tuned. The perplexity score was then computed

for the speeches from each speaker, based on the others’ language models (thus

7 LMs were used to compute the PPL scores for each one of the 8 speakers). In

this case we expected to record analogous PPL scores by employing the models560

trained on the other speakers: a good agreement through models trained on

different speakers would support the reliability of the PPL metrics.

4.3.1. Materials

In this case the context was less uniform than in the previous experiment,

in that we collected political rallies, speeches on spot topics, such as economy,565

health systems, general challenges for the Western economy, a talk given in

the frame of the World Economic Forum in Davos (Switzerland), civil rights,

and so forth. Statistics describing time duration, number of tokens, number of
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unique tokens and type-token ratio describing the transcripts employed in this

experiment are presented in the Appendix, in Table A.6.570

4.3.2. Procedure

A speaker vs. speaker setup was implemented, that is all transcripts for

each subject were employed to fine-tune a GPT-2 model or to acquire N-grams.

The models obtained from each subject were then used to compute perplexity

scores for the transcripts from other subjects. Similar to the former experiment,575

in all experimental conditions involving language models based on GPT-2 we

compared results obtained through models refined with 5, 10, 20 and 30 fine-

tuning epochs, with a sliding window sized to 50 tokens.

The transcripts of each speaker were ‘rated’ (with PPL scores) through the

models acquired from the other seven speakers. The set of ratings collected580

for all speakers were then compared, to investigate to what extent the series of

PPL scores can be deemed as reliable. To explore the reliability of the perplex-

ity scores we employed the Intraclass correlation coefficients (ICC) [52]. In this

setting, ICC values above 0.9 are recognized to indicate excellent reliability [56].

Six ICC variants may be overall considered, according to the choice of raters,585

and to whether a single measurement or the average of 2 or more measurements

are employed [52], so that ICC models are featured by two parameters, as in

ICC(X,Y). The former variable specifies the model, that is how raters are cho-

sen. Model 1: each subject is assessed by a different set of randomly chosen

raters; model 2: each subject is assessed by each rater, and raters are randomly590

sampled; model 3: each subject is assessed by each rater, and the set of raters

is fixed. The second variable reports whether reliability should be computed

based on a single measurement, or by employing the average of 2 or more mea-

surements provided by different raters. We therefore chose the ICC(3,1) metric,

that is each subject was assessed by all raters, and the set of raters kept con-595

stant (as indicated by the first argument, ‘3’); also, a single measurement was

employed (as indicated by the second argument, ‘1’).
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4.3.3. Results

The detailed PPL scores and standard deviations recorded in the second

experiment are presented in Table A.7 in Appendix A.2, which reports figures600

averaged over the 5 transcripts available for each subject. In Table 3 we provide

the ICC scores obtained from those runs. The ICC scores show high (> 0.8) cor-

relation for N-gram based models, and very high correlation (> 0.9) for GPT-2

based models. Thus we obtained good to optimal reliability for perplexity scores

computed through the models at stake. As regards as N-gram models, the imple-605

mentation employing closed dictionary over all subjects obtained substantially

increased reliability scores with respect to the näıve implementation employing

a dictionary closed given a single speaker. By inspecting the results obtained

by both GPT-2 and N-grams-based models, we observe high ICC scores, that

reduce as long as fine-tuning proceeds. This trend may be explained by noticing610

that when we extend fine-tuning, language models tend to be less general and to

over-fit the language of an individual speaker, thereby becoming progressively

less able to account for the language of all other ones. On the whole, these

scores show that different GPT-2 based models do provide reliable PPL scores

when used to assess the speeches of individual subjects. In this task there is no615

need for biasing models towards a specific subject’s language, and fine tuning

turns out to be detrimental to the reliability of PPL scores.

4.4. Experiment 3: Predictive and discriminative features of PPL

For this experiment we used publicly available data from the Pitt Corpus.6

These data were gathered as part of a larger protocol administered by the620

Alzheimer and Related Dementias Study at the University of Pittsburgh School

of Medicine [26]. In particular, we selected the descriptions provided to the

Cookie Theft picture, which is a popular test used by speech-language patholo-

gists to assess expository discourse in subjects with disorders such as dementia.

This experiment was designed to investigate whether perplexity scores on the625

6https://dementia.talkbank.org/access/English/Pitt.html.
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Table 3: Intraclass correlation coefficients characterizing the perplexity scores obtained in the

second experiment, in which each speaker was rated through LMs acquired/fine tuned based

on transcripts from all other speakers.

Model ICC(3,1) score

2-grams 0.88

3-grams 0.86

4-grams 0.83

5-grams 0.80

GPT2-5 0.98

GPT2-10 0.97

GPT2-20 0.94

GPT2-30 0.91

collected descriptions allow discriminating patients from healthy controls.

4.4.1. Materials

The dataset is composed of 552 files arranged into Control (243 items) and

Dementia (309 items) directories. These correspond to multiple interviews to 99

control subjects, and to 219 subjects with dementia diagnosis. Text documents630

herein were transcribed according to the CHAT format,7 so we pre-processed

such documents to extract text. In so doing, the original text was to some extent

simplified: e.g., pauses were disregarded, like hesitation phenomena, that were

not consistently annotated [57, 58].

In Figure 5 we illustrate an excerpt, encoded in the CHAT format, taken635

from the Pitt Corpus. The transcriptions of the subject were selected —i.e.,

we retrieved only the lines starting with *PAR—, discarding the texts from the

investigator. The CHAT transcription format is very rich and informative; for

example, incomplete words are completed in a post-processing stage and marked

through brackets, “bro” is represented as “bro(ther)”; pauses of the speaker are640

7https://talkbank.org/manuals/CHAT.pdf.
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*INV: what I want you to do is look at the picture and just tell me
anything you see going on .

%mor: pro:int|what pro:sub|I v|want pro:per|you inf|to v|do cop|be&3S
v|look prep|at det:art|the n|picture coord|and adv|just v|tell
pro:obj|me pro:indef|anything pro:per|you v|see n:gerund|go-PRESP
adv|on .

%gra: 1|3|LINK 2|3|SUBJ 3|0|ROOT 4|3|OBJ 5|6|INF 6|3|COMP 7|6|OBJ 8|7|CPRED
9|8|JCT 10|11|DET 11|9|POBJ 12|8|CONJ 13|14|JCT 14|12|COORD 15|14|OBJ
16|14|OBJ 17|18|SUBJ 18|14|COMP 19|18|OBJ 20|18|JCT 21|3|PUNCT

*PAR: well the kids are in the kitchen with their mother &uh &uh takin(g)
cookies out o(f) the cookie jar .

%mor: co|well det:art|the n|kid-PL cop|be&PRES prep|in det:art|the
n|kitchen prep|with det:poss|their n|mother part|take-PRESP
n|cookie-PL adv|out prep|of det:art|the n|cookie n|jar .

%gra: 1|4|COM 2|3|DET 3|4|SUBJ 4|0|ROOT 5|4|JCT 6|7|DET 7|5|POBJ 8|4|JCT
9|10|DET 10|8|POBJ 11|4|XJCT 12|11|OBJ 13|12|NJCT 14|13|JCT 15|17|DET
16|17|MOD 17|14|POBJ 18|4|PUNCT

Figure 5: Excerpt from the Pitt Corpus: first interview with the subject #6 of the control

group encoded in the CHAT format. The lines beginning with *INV and *PAR refer to the

transcriptions for Investigator and Participant, respectively. Lines starting with %mor and

%gra report both morphological and grammatical analysis of the transcript line. Interjections

such as “uh” are marked with &, while incomplete words such as “takin” are completed in

the transcript as “takin(g)”.

marked through dots in brackets, for example (.) indicates a short pause while

(...) refers to a longer pause; interjections are marked with the symbol &, for ex-

ample “&uh” or “&ehm”. Such elements were discarded; experiments exploiting

this sort of information were left for future work. In particular lengthened syl-

lables, long pauses and interruption symbols were eliminated, alongside a wide645

variety of sounds such as cries, sneezes, and coughs. Other meaningful aspects

were preserved in the final file, such as repetitions, interjections and retracings,

considering these events as important features for the model to capture. No in-

formation on intonational contours and other markers of the utterance planning

process was available in the input files.650

To the ends of collecting enough text to be analyzed, we dropped the inter-

views of subjects that participated in only one interview. We ended up with

material relative to 74 control subjects (for which overall 218 transcripts were

collected), and to 77 subjects with dementia diagnosis (overall 192 transcripts).

The statistics describing number of tokens, number of unique tokens and655
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Table 4: Statistics describing the transcripts employed in Experiment 3. For each class we

report the average number of tokens per interview, the average number of unique tokens per

interview, the number of participants, the overall number of transcripts and the type-token

ratio (TTR).

Class AVG Tokens AVG Unique Tokens Participants Transcripts TTR

Control 437 26 74 218 0.07

Alzheimer’s Disease 409 25 77 192 0.08

type-token ratio for the transcripts employed in the Experiment 3 are presented

in Table 4.

4.4.2. Procedure

This experiment is aimed at testing the discriminative features of perplex-

ity scores: more specifically, we tested a simple categorization algorithm to660

discriminate between mentally impaired and healthy subjects. We adopted the

experimental setup from the work in [27]: two language models LMC and LMAD

were acquired by employing all transcripts from Control and Alzheimer’s dis-

ease groups, respectively. Such models are supposed to grasp the main linguistic

traits of both groups speeches, thus representing the typical language adopted665

by subjects belonging to Control and AD classes. For both groups we adopted

a leave-one-subject-out setting, whereby language models were refined with files

from all other subjects within the same group except for one, which was used

for testing. For each subject s we acquired the model LMs on the transcripts

from the same group of s, except for those of the subject s. Each transcript670

in the corpus was then characterized by two perplexity scores PC and PAD,

expressing the scores obtained through language models acquired on Control

and AD groups, respectively. More precisely, if a subject s was a member of the

AD class, the scores PC for its transcripts were obtained through LMC , while

the scores PAD were computed by exploiting LMs. Vice versa, if the subject675

s was from the Control group, the scores PC for her/his transcripts were ob-

tained through LMs, while the scores PAD were computed by exploiting LMAD.

Additionally, since we were interested in studying the scores featuring each sub-
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ject, we synthesized the perplexity scores PC and PAD of each subject with the

average of her/his transcripts scores, thus obtaining PC and PAD.680

In order to discriminate AD patients from healthy subjects, we adopted a

threshold-based classification strategy. Three different approaches were explored

to estimate such threshold:

(i) in the first setting we used the average perplexity scores characterizing all

control subjects employed in the training process;685

(ii) in the second setting we computed the threshold as the average perplexity

score of all the subjects belonging to the AD class;

(iii) in the third setting we estimated two different thresholds by exploiting the

difference PAD − PC , by initially following the approach reported in [27]

and [28].690

For each subject, the threshold estimation process was computed through a

leave-one-subject-out setting, and repeated for the three approaches from (i) to

(iii). In the first setting the threshold was estimated on all the subjects from the

control group except for the test subject s: for each subject s we computed the

threshold as the average of PC scores for all subjects in the control group except695

for s —if s was from the healthy controls group—. In case the perplexity score

PC for the subject s was higher than the healthy controls threshold, we marked

the subject as suffering from AD; as healthy otherwise. Similarly, in the second

setting we computed the threshold as the average of PAD scores for all subjects

in the AD group except for s. In case the perplexity score PAD for the subject700

s was higher than the average of AD class threshold, we marked the subject

as healthy; as suffering from AD otherwise. The rationale underlying the first

two settings is that each subject may be characterized more accurately by LMs

acquired on transcript from the same group: in other words, we expected lower

perplexity scores to be associated to control (AD) subjects, rather than subjects705

belonging to the other class, with LMs trained or fine-tuned on transcripts from

control (AD) subjects.

Following the literature, in the third setting we characterized each subject
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with the difference D = PAD − PC . We defined two thresholds, DAD which

was computed as the average of all the difference scores from patients in the AD

group and DC , defined as the average of all the difference scores from healthy

controls. In both cases we considered all the patients belonging to the group

except for the test subject s (s was held out with the only purpose to rule out

her/his contribution from DAD or DC). Different from literature —where equal

error rate is used—, we employ DAD and DC as compact descriptors for the

classes AD and C, respectively. The rationale underlying this categorization

schema is that a subject is associated to the class that exhibits most similar

perplexity score to her/his own. We categorize a subject s by choosing the class

associated to the threshold (either DAD or DC) featured by smallest margin

with the PPL score computed based on a given LM for the transcripts from s,

Ts according to the following formula:

class(s) = argmin
x∈{C,AD}

∣∣PPL(LM, Ts)−Dx

∣∣ . (5)

This setting (involving DAD and DC) will be referred to as D.

Furthermore, we refined the decision rule D to account for standard devia-

tion information. Together with the average DAD and DC , we computed also710

σAD and σC as the standard deviations of the difference scores D for impaired

and control groups. We explored the 3σ rule, which is a popular heuristic in em-

pirical sciences: it states that in populations that are assumed to be described

by a normally distributed random variable, over 99.7% values lie within three

standard deviations of the mean, 95.5% within two standard deviations, and715

68.3% within one standard deviation [59]. On this basis we explored the three

options by adding 1, 2 and 3 standard deviations to average scores: the best

results were obtained by employing 2 standard deviations. Our thresholds were

then refined as follows:

D
∗
AD = DAD + 2 · σAD, and

D
∗
C = DC − 2 · σC .
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The updated decision rule for categorization was then reshaped as

class(s) = argmin
x∈{C,AD}

∣∣∣PPL(LM, Ts)−D
∗
x

∣∣∣ . (6)

This setting, involving D
∗
AD and D

∗
C , will be referred to as D

∗
.720

A twofold experimental setting has been devised, including experiments with

N-grams and GPT-2, adopting a window size set to 20 in order to handle shorter

text samples (the shortest text in the training data contains only 23 tokens).

In the case of N-grams, the models were acquired for 2-grams to 5-grams; the

GPT-2 model was fine-tuned employing 5, 10, 20 and 30 epochs.725

4.4.3. Evaluation Metrics

To evaluate the results we adopted the Precision and Recall metrics (speci-

ficity and sensitivity) along with their harmonic mean, F1 score, and accuracy.

Precision (specificity) is defined as P = TP
TP+FP , while Recall (sensitivity) is

defined as R = TP
TP+FN . Informally stated, Precision computes the fraction of730

results that are actually correct: it is computed as the number of correct re-

sults (true positives, TP) divided by the sum of correct results (TP) and items

mistakenly returned as results (false positives, FP). Recall computes how many

correct results were individuated. In Recall, we have the number of correct

results divided by the sum of correct results (TP) and items mistakenly not735

recognized as results (false negative, FN). While precision provides an estima-

tion of how precise a categorization system is, recall indicates how many results

were identified out of all the possible ones. F1 measure is then used to provide

a synthetic value of Precision and Recall, whereby the two measures are evenly

weighted through their harmonic mean: F1 = 2 · P ·R
P+R740

Accuracy was computed as ACC = TP+TN
P+N , that is as the fraction of correct

predictions (the sum of TP and TN) over the total number of records examined

(the sum of positives and negatives, P and N).

Finally, in order to record a synthetic index to assess accuracy and F1 scores

on the two groups at stake, we used the harmonic mean among these three
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values. It was computed as

HM(Acc.,F1AD,F1C) =
1

n

n∑
i=1

1

xi

where n was set to the number of xi values being averaged.

4.4.4. Results745

The overall accuracy scores are presented in Figure 6, while detailed figures

across different experimental conditions are presented in Table A.9, in Appendix

A.4.

Let us start by reporting the results from N-gram models. The overall most

effective strategy is D
∗

(Eq. 6), based on a threshold using the difference be-750

tween AD patients and healthy controls, extended with the 3σ rule. The best

performing model is based on Bigrams, and obtained .93 accuracy, .92 F1 score

on the AD class, and .93 F1 score on the C class. The models employing PPL

scores from the control group (indicated as PC in Figure 6 and in Table A.9)

obtained the lowest accuracy scores in all conditions, well below the random755

guess, while the accuracy yielded by the PAD strategy is always above .5. In

general we observe that increasing the length of the Markovian assumption re-

duces the accuracy of N-gram models for all decision rules (employing more

context seems to be slightly detrimental for such models), with the exception of

the D strategy.760

The results obtained by the GPT-2 models reveal overall higher accuracy,

ranging from .71 for the best model acquired with 5 epochs of fine-tuning to

1.00 for all further fine-tuning steps. The same profile describes the F1 scores

recorded on the sub-tasks focused on AD and control subjects, respectively,

varying from around 0.69 for the best model acquired with 5 epochs of fine-765

tuning (D strategy on the AD class) to 1.00 for all other models and sub-tasks.

If we consider the efficacy of thresholding strategies and associated decision

rules, the refined difference rule D is the best performing strategy for GTP-2

based models, as witnessed by the rightmost column in Table A.9. Such scores

report the harmonic mean among accuracy, F1 score on categorization of AD770
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Figure 6: Plot of the accuracy scores for the third experiment on the categorization of

AD/control subjects. The histograms in the top sub-figure show the accuracy on N-grams,

while the histograms at the bottom report results obtained through GPT-2 models. Different

colors correspond to N-gram of differing order and to different fine-tuning epochs, respectively.

The histograms illustrate the scores obtained through D
∗
, D, PC and PAD decision rules,

respectively.
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Table 5: Study to compare the effectiveness of the thresholding and categorization strategies

for each LM. The top scoring strategy is reported for each model.

N-gram models categorization strategy mean HM score

2-grams D
∗

0.93

3-grams D
∗

0.91

4-grams D
∗

0.89

5-grams D
∗

0.89

GPT-2 models: epochs categorization strategy mean HM score

5 epochs D 0.71

10 epochs D,D
∗

1.00

20 epochs D,D
∗

1.00

30 epochs D,D
∗

1.00

subjects and on categorization of control subjects. A compact view on data

from the same column is provided in Table 5, illustrating the best strategy for

each model at stake.

To frame our results with respect to literature, let us start from the accuracy

of the baseline clinical diagnosis obtained in the first version of the study by775

Becker and Colleagues [26]: it was 86%, and after considering follow-up clinical

data this datum raised to 91.4%, with a 0.988 sensivity and 0.983 specificity.

This is what subsequent literature considered as the gold standard against which

to compare experimental outputs. We recall that such data are particularly rele-

vant as human evaluation included various analytical steps, such as medical and780

neurologic history and examination, semistructured psychiatric interview, and

neuropsychological assessments. Experimental results provided in subsequent

work approach those ratings by employing solely transcripts of descriptions to a

rather simple picture. A relevant work attained 85.6% accuracy through LSTM

based models [27] in the categorization of individual transcripts. Such results785

were then replicated and improved in the work by [28], where the best reported

model experimentally obtained a 0.872 accuracy.
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General Discussion

Provided that our experimental results seem to outperform the accuracy

scores reported in literature, we feel that one main relevant result of this ex-790

perimentation is that evidence was provided that perplexity scores are reliable

at both intra-subject and inter-subject levels, and suited to categorize the lan-

guage of subjects affected by cognitive impairments. In doing so, only speakers’

transcripts were used.

Additionally, we realized that a short, controlled elicitation task can poten-795

tially outperform natural linguistic data obtained from speakers. The quality

of our results needs be checked in different settings (further languages, varied

experimental conditions: much experimental work still needs to be done), but

this fact provides evidence that specialists may be effectively assisted by systems

employing a technology based on language models and perplexity scores. Also,800

by comparing language models as different as N-grams and models based on

the more recent GPT-2, we observed that Bigrams outperform a GPT-2 model

fine tuned for 5 epochs. This fact may provide insights on the possible trade-off

between accuracy of the results and computation time and costs.

While perplexity proved to be overall a viable tool to investigate human805

language, we found consistent differences in the outputs of the models at stake,

mostly stemming from intrinsic properties of the LMs, from the amount of

context considered by the models, from the size of available training data, and

from the amount of training employed to refine models themselves. One first

datum is that even though N-grams can be hardly compared to GPT-2-based810

models, nonetheless it may be helpful trying to discern the scenarios in which

such models provide better results. In Experiment 1, which can be considered

as a rather favorable experimental setting for N-gram models, recorded CV

scores are on par or smaller than those obtained through GPT-2 based models.

In Experiment 2 the ICC scores characterizing N-gram-based model output815

(ranging from 0.88 to 0.80) show valuable reliability. As anticipated, this is

probably the most challenging setting for N-grams, in that the samples are

featured by a consistent number of unique tokens and nearly doubled TTR with
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respect to documents employed in Experiment 1. Also, selected documents

span various topics and a significant time frame, going from the mid Sixties820

to 2020. It was somehow surprising, then, that in Experiment 3 the accuracy

level attained by the best-performing N-gram model (2-grams) achieved a 0.93

harmonic mean improving on the best GPT-2-based model (HM=0.73; please

refer to Table A.9), fine tuned for 5 epochs and employing the D decision rule.

This result may be understood in the light of the rather regular language825

used for the descriptions to the Cookie Theft picture, that thereby turned out

to be less demanding for the N-gram LMs. In these respects, a lesson learned

is that N-grams can be employed in scenarios where the task is less difficult on

lexical and linguistic accounts (recorded TTR values roughly range on 0.08, 0.25

and 0.13 for the Experiments 1, 2 and 3, respectively): in some instances of such830

problems adopting N-gram models may be convenient (considering both training

and testing efforts) with respect to the more complete and computationally

expensive Transformer models. Few data may be useful to complete this note

on the trade-off between accuracy and computational effort. Our experiments

were performed on machinery provided by the Competence Centre for Scientific835

Computing [60]. In particular, we exploited nodes with 2x Intel Xeon Processor

E5-2680 v3 and 128GB memory. The first experiment took on average 12 hours

for each GPT-2 LM, and about 5 minutes for all the N-gram models. The second

experiment lasted about 32 hours for each GPT-2 LM and about 12 minutes

for all the N-gram models, while the third experiment took around 8 hours for840

each GPT-2 setting and about 12 minutes for all the N-gram models.

5. Conclusions

The studies reported in this article have explored how suited perplexity is to

function as a marker for measuring coherence in spoken language, and whether

it can be used to support automatic linguistic analysis for clinical diagnoses.845

The diagnosis of dementia is a complex process that is long and labor intensive,

involving a neuropsychiatric evaluation that includes medical and neurologic
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history and examination, semistructured psychiatric interview, and neuropsy-

chological assessments [61, 62]. Being able to define a linguistic marker to de-

tect symptoms of mental disorders would thus provide clinicians with automatic850

procedures for language analysis that can contribute to the early diagnosis and

treatment of mental illnesses in an efficient and noninvasive fashion.

Two main research questions were addressed in this work. First, we have

been exploring whether perplexity can be considered as a reliable metrics to an-

alyze spoken language at large. To answer this question we designed an experi-855

ment to compare perplexity scores for different speeches from the same speaker

(transcripts from an healthy subject were considered in this phase): two sorts

of language —political rallies and interviews— were analyzed. In the second

experiment we investigated the coherence of perplexity scores by comparing the

speeches of eight well-known politicians. Each speaker’s perplexity was rated860

through perplexity scores based on LMs acquired from the other seven speakers.

The results of these studies seem to corroborate the hypothesis that perplexity

can be measured in a reliable manner for the individual subject, while at the

same time accounting for different linguistic registers. Differences in scores ob-

tained through the application of different language models were detected and865

discussed. The perplexity computed through simpler LMs may be a good op-

tion when either language variability is reduced or training data ensure good

coverage of the considered language. Conversely, simpler models may be misled

by out-of-vocabulary terms: interestingly enough, however, even in these cases

perplexity scores were consistent with the individual subject language character-870

istics. Reliability is a precondition to employ perplexity scores to assess trends

in language production by a given subject, and also to compare perplexity scores

across subjects. In turn, being able to compare perplexity scores associated to

different subjects speeches may reveal in how far their language is accounted

for by a given language model. Furthermore, the perplexity scores obtained by875

employing the base model GPT-2 were compared to those computed through

the fine-tuned GPT-2 model, confirming that the fine-tuning step is a valuable

tool for obtaining more accurate and reliable perplexity scores.
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As to our second research question, we investigated whether and to what

extent perplexity scores allow categorizing transcripts of healthy subjects and880

subjects suffering from Alzheimer Disease (AD). In this experiment we used

a publicly available dataset, the Pitt Corpus. A widely varied experimental

setting was designed to investigate the predictive and discriminative power of

perplexity scores, and to assess how the resulting categorization accuracy varies

in function of the amount of training/fine-tuning employed to acquire the LMs.885

We compared (2, 3, 4 and 5) N-gram models, 0 to 30 (GPT-2) fine-tuning

epochs, and four different thresholding strategies, as well. Novel thresholds were

proposed, and compared to those reported in literature: the newly proposed

categorization strategies ensure consistent improvements over state-of-the-art

results.890

A final remark relates to an outlook on future work. Different language mod-

els can attain results possibly featured by analogous accuracy with a fraction of

training/fine-tuning efforts: e.g., we conducted preliminary tests, not reported

here for brevity, also on LSTMs that revealed poor performance, paired with

a computational load higher than for the GPT-2 architecture.8 Also, differ-895

ent categorization algorithms may be adopted to discriminate patients from

control subjects; refinements to both employed LMs and overall categorization

strategy may result in substantial improvements. Yet, further experiments are

needed to assess perplexity on larger samples, and on different sorts of spoken

language: as mentioned, the language required to comment the Cookie Theft900

picture is quite a regular one. A richer, fuller characterization of the discrim-

inative power of perplexity scores will involve experimenting also on different

languages, and the associated language models. However, the findings from this

proof-of-concept study have several implications: perplexity has been exten-

8More specifically, perplexity scores computed through LSTMs were highly volatile (with

standard deviation values often overcoming mean perplexity values), even increasing the num-

ber of training epochs, which required almost twice the time necessary to train the GPT-2

base model.
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sively used to carry out experiments on general language from healthy subjects.905

Experimental evidence seems to support the hypothesis that perplexity scores

can be reliably employed to assess how much language excerpts are consistent

with a given language model. Also, when we moved to the challenging task of

predicting whether the author of a transcript was afflicted by dementia or a

healthy subject, we obtained valuable results, especially if we consider that our910

predictions were based solely on perplexity scores, with a substantial reduction

in the amount of information with respect to the clinical evidence collected all

throughout the diagnosis steps employed by human experts to face the same

categorization task [26].
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Appendix A. Sources of experimental material and detailed results915

Appendix A.1. Material used in Experiment 1

The list of transcripts employed for training/fine tuning and testing, along

with links to the www.rev.com platform can be found in the bundle containing

the whole project, available at the URL https://github.com/davidecolla/s

emantic coherence markers.920
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Appendix A.2. Material used in Experiment 2

The list of transcripts employed for training/fine tuning and testing, along

with links to the www.rev.com platform can be found in the bundle containing

the whole project, available at the URL https://github.com/davidecolla/s

emantic coherence markers.925
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Appendix A.3. Statistics describing data and detailed results for Experiment 2

Appendix A.4. Detailed results for Experiment 3
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Table A.6: Figures describing the transcripts employed in Experiment 2: time duration,

number of tokens, number of unique tokens (along with average number of tokens and average

number of unique tokens) and type-token ratio (TTR) are reported for each such speech

transcript.

Subject Transcript Duration Tokens Unique Tokens AVG Tokens AVG Unique Tokens TTR

Joe Biden

I 0 : 32 : 23 4, 647 1, 074

6, 315 1, 343 0.21

II 0 : 41 : 39 5, 446 1, 140

III 0 : 25 : 00 9, 490 1, 895

IV 0 : 43 : 36 6, 801 1, 381

V 0 : 34 : 05 5, 211 1, 226

Donald Trump

I 1 : 17 : 37 15, 200 1, 967

15, 051 1, 185 0.13

II 0 : 56 : 17 10, 501 1, 614

III 1 : 43 : 43 20, 865 2, 300

IV 1 : 13 : 01 14, 056 1, 945

V 1 : 18 : 19 14, 806 1, 896

Barack Obama

I 0 : 56 : 39 5, 594 1, 479

5,957 1,271 0.21

II 0 : 38 : 15 6, 298 1, 252

III 0 : 38 : 45 5, 526 1, 153

IV 0 : 45 : 55 6, 981 1, 312

V 0 : 36 : 07 5, 390 1, 159

Bernie Sanders

I 0 : 35 : 33 4, 164 969

4,458 1,046 0.23

II 0 : 29 : 51 3, 785 849

III 0 : 34 : 54 4, 451 1, 088

IV 0 : 43 : 27 5, 387 1, 039

V 0 : 44 : 46 4, 501 1, 286

Bill Gates

I 0 : 35 : 53 3, 503 944

2,514 812 0.32

II 0 : 17 : 20 1, 679 577

III 0 : 24 : 07 2, 350 779

IV 0 : 22 : 04 2, 152 744

V 0 : 30 : 07 2, 896 1, 018

Nelson Mandela

I 0 : 40 : 17 3, 844 1, 113

6,403 1,410 0.22

II 0 : 29 : 45 1, 740 617

III 3 : 00 : 00 15, 682 2, 702

IV 1 : 43 : 21 7, 741 1, 654

V 0 : 40 : 16 3, 020 963

Martin Luther King

I 0 : 42 : 51 5, 197 1, 102

6,508 1,379 0.21

II 0 : 46 : 56 6, 471 1, 315

III 0 : 43 : 48 6, 287 1, 456

IV 0 : 40 : 38 8, 256 1, 697

V 0 : 47 : 54 6, 332 1, 324

Boris Johnson

I 0 : 51 : 42 4, 397 1, 123

3,202 943 0.29

II 0 : 20 : 35 2, 758 764

III 0 : 17 : 47 1, 960 659

IV 0 : 17 : 00 2, 375 896

V 0 : 38 : 22 4, 530 1, 273
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Table A.7: Detailed results obtained in Experiment 2 (between subjects reliability): each

sub-table reports results for N-gram models. For each experiment we report perplexity scores

along with their standard deviations. More specifically, we report the scores obtained by

employing 2-grams to 5-grams models. Each row reports the scores obtained through the LM

trained on speeches by the subject in the first column and tested on the other speakers.

2-grams

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 262.42 4.03 223.76 6.94 199.50 5.86 209.92 17.74 181.64 16.15 191.22 13.16 197.47 26.94

D. Trump 276.71 18.05 — — 268.72 7.02 230.47 4.43 241.55 23.36 205.11 21.21 219.05 19.62 225.97 36.59

B. Obama 242.32 14.15 281.05 3.99 — — 202.07 5.96 219.87 17.27 188.89 18.43 198.19 16.07 205.93 29.94

B. Sanders 202.26 9.93 231.57 4.33 197.19 5.50 — — 191.61 10.02 166.92 14.74 172.84 11.60 179.69 18.10

B. Gates 221.97 11.75 253.93 3.69 215.63 5.47 197.46 3.48 — — 177.97 16.40 186.61 12.56 194.60 24.05

N. Mandela 215.75 14.05 245.86 5.17 200.55 8.16 192.64 7.10 199.97 7.89 — — 183.76 16.17 190.32 24.37

M. L. King 232.65 12.95 267.86 3.33 225.78 5.87 199.83 6.48 215.69 14.60 187.93 18.35 — — 201.88 26.07

B. Johnson 222.69 12.78 253.65 3.46 215.32 7.38 197.24 6.29 207.91 13.94 179.03 17.05 187.25 12.98 — —

3-grams

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 406.05 8.04 335.23 22.01 262.33 8.07 263.84 32.53 210.22 17.30 247.03 37.22 244.37 37.09

D. Trump 454.56 40.38 — — 461.33 37.33 332.98 8.51 329.39 50.45 250.27 25.36 310.56 63.55 301.00 54.22

B. Obama 358.21 27.74 445.25 9.07 — — 266.61 14.83 278.93 33.74 217.98 19.41 257.84 44.90 256.96 40.79

B. Sanders 271.69 16.91 323.58 5.99 273.11 14.96 — — 228.20 19.08 185.62 14.71 209.38 26.40 212.36 24.03

B. Gates 310.96 21.20 377.88 6.84 316.11 19.48 252.86 6.72 — — 202.51 16.94 235.63 32.85 236.38 32.09

N. Mandela 279.08 21.42 330.54 7.52 265.66 10.72 233.46 9.95 235.10 15.99 — — 219.70 29.87 220.96 30.05

M. L. King 333.91 24.66 410.89 6.77 339.45 23.40 257.78 13.92 269.14 28.06 215.84 19.19 — — 248.40 35.49

B. Johnson 301.58 20.95 357.49 5.50 301.67 15.95 247.23 6.66 250.34 25.24 201.36 17.66 230.76 28.22 — —

4-grams

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 511.58 10.26 408.86 29.02 313.72 8.29 308.91 44.85 239.39 17.26 294.40 49.96 283.25 47.23

D. Trump 595.73 59.19 — — 601.17 52.71 425.11 11.01 407.96 74.91 297.95 28.24 393.33 91.56 366.84 72.73

B. Obama 434.45 36.32 553.74 10.74 — — 314.58 19.09 325.33 46.01 247.72 19.14 305.16 58.41 297.27 51.33

B. Sanders 316.38 20.87 385.39 6.63 318.39 18.59 — — 257.53 25.42 205.20 13.84 239.21 32.71 238.26 30.06

B. Gates 371.64 27.30 463.54 8.60 378.35 24.81 296.05 7.08 — — 227.73 16.36 275.74 41.42 270.49 40.51

N. Mandela 319.85 24.56 387.17 8.18 308.12 13.59 264.24 10.35 263.71 21.80 — — 249.01 34.04 245.99 35.71

M. L. King 403.33 32.13 509.82 8.58 409.59 29.81 302.47 17.95 312.81 39.24 244.41 18.76 — — 286.18 45.07

B. Johnson 357.56 26.52 435.98 7.46 359.13 20.68 287.57 7.20 286.85 33.98 224.76 17.14 268.16 35.35 — —

5-grams

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 624.81 13.72 491.81 35.69 369.76 9.27 360.01 58.55 273.18 18.93 346.38 59.97 327.28 58.93

D. Trump 750.16 76.77 — — 765.22 68.36 529.26 14.38 499.48 103.94 354.69 34.56 486.85 115.52 444.11 95.07

B. Obama 516.13 44.54 671.90 14.05 — — 367.86 24.24 378.35 59.87 282.25 20.26 357.79 69.76 343.16 63.57

B. Sanders 364.42 25.11 452.64 8.10 369.41 22.24 — — 290.97 32.57 227.70 13.57 272.37 38.10 267.51 37.06

B. Gates 438.15 33.74 558.68 11.50 449.35 30.61 344.39 7.59 — — 256.98 16.87 320.80 49.22 309.31 50.31

N. Mandela 367.01 28.55 452.77 9.31 357.29 17.00 299.51 10.97 296.75 28.68 — — 282.82 39.02 274.89 42.54

M. L. King 478.32 39.58 618.46 11.63 489.60 36.37 352.03 23.17 362.62 51.94 277.48 19.59 — — 329.21 56.26

B. Johnson 418.83 32.46 523.31 10.17 424.61 25.77 332.46 7.98 328.72 43.92 252.02 17.48 310.22 41.90 — —
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Table A.8: Detailed results obtained in Experiment 2 (between subjects reliability): each sub-

table reports results for a GPT-2-based language model (differences stem from the number

of fine tuning epochs employed to acquire each such model). For each experiment we report

perplexity scores along with their standard deviations. Each row reports the scores obtained

through the LM trained on speeches by the subject in the first column and tested on the other

speakers.

GPT-2 5 epochs

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 22.48 0.90 21.28 1.94 26.32 3.74 18.39 2.58 29.23 2.41 28.17 3.05 42.49 7.85

D. Trump 23.27 1.72 — — 20.42 2.37 26.39 3.84 17.96 2.24 31.01 2.43 28.48 3.15 42.93 8.04

B. Obama 24.61 1.79 22.58 0.98 — — 26.37 3.75 18.28 2.56 29.39 2.36 28.10 3.07 43.03 7.87

B. Sanders 27.47 1.84 25.60 1.16 23.40 1.83 — — 19.92 2.83 29.61 2.51 29.54 3.32 46.23 8.42

B. Gates 25.16 1.73 23.26 0.95 21.82 1.96 26.84 3.83 — — 28.71 2.32 27.96 2.92 43.30 7.93

N. Mandela 28.54 1.97 26.38 1.25 24.45 1.89 28.62 3.84 19.63 2.51 — — 28.63 3.12 45.80 8.45

M. L. King 25.39 1.76 23.51 1.09 21.68 1.76 26.21 3.63 18.45 2.46 28.03 2.50 — — 42.86 7.86

B. Johnson 26.20 1.79 24.75 0.99 22.76 1.90 27.30 3.80 19.34 2.84 28.93 2.40 28.62 3.01 — —

GPT-2 10 epochs

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 21.24 0.87 20.15 1.94 25.72 3.84 17.84 2.51 30.23 2.35 28.11 3.18 41.71 7.89

D. Trump 23.46 1.88 — — 20.49 2.79 28.04 4.17 18.33 2.26 34.65 2.64 30.39 3.74 45.40 8.72

B. Obama 23.60 1.89 21.41 0.97 — — 26.10 3.92 17.84 2.49 30.54 2.32 28.41 3.29 43.01 8.01

B. Sanders 26.06 1.65 24.30 1.11 22.39 1.68 — — 19.27 2.66 29.25 2.38 28.66 3.30 44.52 8.13

B. Gates 24.34 1.67 22.31 0.96 20.99 1.94 26.41 3.94 — — 29.53 2.21 28.04 3.07 43.13 8.07

N. Mandela 28.78 1.99 26.37 1.31 24.54 1.87 28.60 3.98 19.65 2.40 — — 28.74 3.09 46.15 8.66

M. L. King 25.22 1.78 22.88 1.19 21.33 1.70 26.13 3.66 18.27 2.32 28.54 2.54 — — 43.32 8.20

B. Johnson 25.03 1.61 24.00 0.88 21.89 1.77 26.54 3.77 18.85 2.87 28.91 2.33 27.93 2.90 — —

GPT-2 20 epochs

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 20.60 0.94 19.69 2.11 26.36 4.10 17.79 2.42 32.29 2.42 29.16 3.58 42.70 8.33

D. Trump 25.38 2.42 — — 21.91 3.62 32.55 4.86 20.23 2.91 43.10 2.76 35.18 5.08 52.92 10.60

B. Obama 24.10 2.24 21.44 1.07 — — 27.46 4.25 18.25 2.51 33.17 2.50 30.18 3.81 45.92 8.77

B. Sanders 26.19 1.59 24.29 1.18 22.30 1.46 — — 19.36 2.58 30.44 2.40 29.34 3.59 45.62 8.44

B. Gates 24.90 1.92 22.21 1.08 21.18 2.16 27.42 4.19 — — 31.54 2.13 29.53 3.57 45.88 8.75

N. Mandela 29.64 2.11 26.70 1.40 25.15 1.99 29.26 4.18 20.06 2.31 — — 29.64 3.21 48.01 9.48

M. L. King 27.10 2.09 23.72 1.48 22.55 1.90 28.16 3.88 19.34 2.28 31.31 2.83 — — 48.12 9.61

B. Johnson 24.68 1.59 24.20 0.82 21.69 1.75 26.68 4.02 18.92 3.16 29.87 2.34 28.31 3.02 — —

GPT-2 30 epochs

Subject
J. Biden D. Trump B. Obama B. Sanders B. Gates N. Mandela M. L. King B. Johnson

PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev PPL stdev

J. Biden — — 21.18 1.03 20.14 2.36 27.98 4.49 18.42 2.53 35.04 2.59 31.11 4.09 45.47 9.18

D. Trump 28.07 3.07 — — 24.07 4.63 37.73 5.76 22.67 3.76 52.84 3.02 41.10 6.74 62.44 13.05

B. Obama 26.10 2.71 23.14 1.24 — — 30.12 4.73 19.69 2.78 37.07 2.85 33.41 4.54 51.18 9.91

B. Sanders 27.16 1.73 24.88 1.32 22.91 1.44 — — 19.93 2.55 31.91 2.48 30.70 3.95 48.29 9.21

B. Gates 26.83 2.35 23.47 1.31 22.57 2.55 29.68 4.58 — — 34.83 2.11 32.38 4.28 51.16 9.75

N. Mandela 31.40 2.33 27.94 1.53 26.47 2.15 30.84 4.47 21.01 2.43 — — 31.60 3.59 51.74 10.70

M. L. King 30.26 2.50 25.79 1.82 24.78 2.25 31.23 4.33 21.32 2.51 36.00 3.20 — — 55.62 11.67

B. Johnson 25.43 1.71 25.17 0.82 22.33 1.79 27.75 4.26 19.60 3.50 31.33 2.51 29.53 3.20 — —
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Table A.9: Detailed results for Experiment 3. The table reports Accuracy (Acc.) scores,

Precision (P), Recall (R) and F1 for both tasks of identifying AD and Control subjects. The

rightmost column reports the harmonic mean (HM) of the accuracy, F1 score on the AD and

C classes. Best results are marked in boldface.

Model Acc.
Dementia (AD) Control (C)

HM(acc,F1AD,F1C)
P R F1 P R F1

2-grams

PC 0.44 0.41 0.21 0.28 0.46 0.69 0.55 0.39

PAD 0.55 0.54 0.75 0.63 0.57 0.34 0.42 0.52

D 0.67 0.68 0.66 0.67 0.66 0.68 0.67 0.67

D
∗

0.93 0.99 0.87 0.92 0.88 0.99 0.93 0.93

3-grams

PC 0.43 0.40 0.22 0.28 0.44 0.65 0.53 0.39

PAD 0.56 0.55 0.70 0.62 0.57 0.41 0.47 0.54

D 0.74 0.76 0.71 0.74 0.72 0.77 0.75 0.74

D
∗

0.91 1.00 0.83 0.91 0.85 1.00 0.92 0.91

4-grams

PC 0.42 0.38 0.23 0.29 0.43 0.61 0.51 0.38

PAD 0.54 0.54 0.65 0.59 0.54 0.43 0.48 0.53

D 0.76 0.81 0.70 0.75 0.73 0.82 0.77 0.76

D
∗

0.89 1.00 0.78 0.88 0.81 1.00 0.90 0.89

5-grams

PC 0.42 0.38 0.23 0.29 0.43 0.61 0.51 0.38

PAD 0.52 0.53 0.62 0.57 0.52 0.42 0.46 0.52

D 0.77 0.86 0.66 0.75 0.72 0.89 0.80 0.77

D
∗

0.89 1.00 0.79 0.88 0.82 1.00 0.90 0.89

GPT-2 5 epochs

PC 0.65 0.64 0.70 0.67 0.66 0.59 0.62 0.65

PAD 0.38 0.42 0.58 0.49 0.29 0.18 0.22 0.33

D 0.71 0.76 0.62 0.69 0.67 0.80 0.73 0.71

D
∗

0.49 0.50 0.09 0.15 0.49 0.91 0.64 0.30

GPT-2 10 epochs

PC 0.78 0.70 0.99 0.82 0.98 0.57 0.72 0.77

PAD 0.62 0.63 0.58 0.61 0.60 0.65 0.62 0.62

D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D
∗

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GPT-2 20 epochs

PC 0.81 0.73 1.00 0.84 1.00 0.61 0.76 0.80

PAD 0.78 0.91 0.64 0.75 0.71 0.93 0.81 0.78

D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D
∗

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GPT-2 30 epochs

PC 0.81 0.73 1.00 0.84 1.00 0.61 0.76 0.80

PAD 0.81 0.96 0.65 0.78 0.73 0.97 0.83 0.80

D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D
∗

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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