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Abstract—Federated Learning (FL) is becoming popular in
different industrial sectors where data access is critical for
security, privacy and the economic value of data itself. Unlike
traditional machine learning, where all the data must be globally
gathered for analysis, FL makes it possible to extract knowledge
from data distributed across different organizations that can
be coupled with different Machine Learning paradigms. In this
work, we replicate, using Federated Learning, the analysis of a
pooled dataset (with AdaBoost) that has been used to define the
PRAISE score, which is today among the most accurate scores
to evaluate the risk of a second acute myocardial infarction. We
show that thanks to the extended-OpenFL framework, which
implements AdaBoost.F, we can train a federated PRAISE
model that exhibits comparable accuracy and recall as the
centralised model. We achieved F1 and F2 scores which are
consistently comparable to the PRAISE score study of a 16-
parties federation but within an order of magnitude less time.

Index Terms—Federated Learning, Machine Learning, Cardi-
ology, Healthcare, Performance Analysis, Decentralized machine
learning, Distributed machine learning, PRAISE score.

I. INTRODUCTION

RECENT years have been characterized by crucial ad-
vances in Artificial Intelligence (AI) systems. The ubiq-

uitous availability of data sets and processing elements sup-
ported these advances. The consequent deployment of ML
methods throughout many industries has been a welcome
innovation, albeit one that generated newfound concerns across
multiple dimensions, such as performance, energy efficiency,
privacy, criticality, and security. Concerns about data access
and movement are particularly felt by industrial sectors such
as healthcare, defence, finance, et cetera. This work will
mainly focus on healthcare and Federated Learning (FL), a
learning paradigm where multiple parties (clients) collaborate
in solving a learning task using their private data. Importantly,
each client’s local data is not exchanged or transferred to any
participant since, in its most common configuration, clients
collaborate by exchanging local models instead of moving the
data. The aggregator collects the local models and aggregates
them to produce a global model. The global model is then
sent back to the clients, who use it to update their local
models. Then, using their private data, they further update the
local model. This process is repeated until the global model

converges to a satisfactory solution or a maximum number of
rounds is reached.

Thanks to its capability to transform inherently distributed
and segregated data into shared knowledge, FL is becoming
popular in healthcare; we will survey the main related work
in Sec. II. Until recently, the usage of FL was restricted to a
specific paradigm of ML, namely Artificial Neural Networks
(ANN), often in the Deep Neural Network (DNN) variant,
in which models can be easily aggregated using simple as-
sociative operators, such as the average of the weights of
the DNN[1]. Unfortunately, ANN/DNN is not always the
best tool to analyze healthcare data, which is most often
given in the form of tabular data. A tabular dataset is a
type of data structure that organizes information into a table
format, with rows and columns. Each row represents a single
data point or record, and each column represents a specific
attribute or variable. The data in a tabular dataset is usually
numerical or categorical in nature and can be easily analyzed
and visualized using tools such as spreadsheets, databases,
or data visualization software. Examples of tabular datasets
include financial data and demographic data. Several factors
may undermine the use of ANN/DNN for (some) healthcare
tasks:

• ANN/DNN usually require very large data sets, which
are often not easy to collect under the strict privacy laws
that regulate health institutions;

• ANN/DNN is hardly explainable, and this is often not
acceptable in this field;

• while ANN/DNN performance superiority is undisputed
for several tasks, such as image classification, voice
recognition, and natural language models, they are not
particularly suited to tabular data[2];

• representation learning, which is one of the main driving
forces underlying the success of DNN, is much less useful
for tabular data since, very often the features have been
already engineered with great care and carefully tuned;

Recently Polato et al. [3] proposed several novel Federated
Learning algorithms not relying on ANN/DNN; they instead
extend distributed AdaBoost techniques to the FL case. Among
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other algorithms, the work introduces AdaBoost.F, a fed-
erated variant of the Samme algorithm1 [4], which can be
coupled with a weak learner to build a global model on the
federated dataset. A weak learner is a learning algorithm,
such as decision trees or a logistic regression, which is
not required to return very good models (instead, they are
required to return models that are better than the random
guess). It is worth noting that the very weak assumption
on the kind of models built by the clients of the federation
allows using the ML model that is best suited for the tabular
healthcare data at hand. The mentioned work analyzes the
performance of AdaBoost.F on several standard datasets
in a simulated distributed environment. To our knowledge, the
proposed methodology has neither been tested on a real-world
dataset in the healthcare domain nor in a distributed execution
environment.

As a real-world example, we replicated a notable ML-based
risk stratification model in cardiology that recently appeared
in the Lancet [5]. The study proposed PRAISE2 an ML-based
score to predict all-cause death, recurrent acute myocardial
infarction, and major bleeding after Acute Coronary Syndrome
(ACS). Several (non-ANN) ML models have been trained in
a cohort of 19826 adult patients with ACS, including patients
across several hospitals. The cohort has been split into a
training cohort (80%) and an internal validation cohort (20%).
The PRAISE score is the best-performing model tested in an
external validation cohort of 3444 patients with ACS pooled
from a randomized controlled trial. The PRAISE score showed
a performance across all possible classification thresholds
(Area Under the ROC Curve or AUC) far better than the
previously known scores for the same classification task: 0.82
in the internal validation cohort and 0.92 in the external
validation cohort for 1-year all-cause death; an AUC of 0.74
in the internal validation cohort and 0.81 in the external
validation cohort for 1-year myocardial infarction; and an AUC
of 0.70 in the internal validation cohort and 0.86 in the external
validation cohort for 1-year major bleeding.

The PRAISE score authors concur in claiming that one of
the ingredients making it possible to define a high-quality ML-
based score has been gathering one of the most extensive data
sets on ACS ever built. The cohort of 19826 adult patients has
been manually gathered from different hospitals in different
countries (see [5]). Despite being made on anonymized pa-
tients, the gathering itself is reported as a very complex process
for the privacy and secrecy concerns related to managing
critical data from different hospitals in different countries. The
current paper attempts to use the dataset of the PRAISE score
to be analyzed through federated learning techniques expecting
it will provide better results, evidenced by the discussion
in Section IV. Following are the contributions made by the
authors:

• This work aims to simplify future studies, making it

1A multi-class variant of AdaBoost.
2PRAISE: PRedicting with Artificial Intelligence riSk aftEr acute coronary

syndrome. Available as Software-as-a-Service at https://praise.hpc4ai.it

possible to run ML processes on a virtually pooled dataset
using a privacy-preserving FL approach.

• Specifically, we aim to demonstrate that FL Ada-
Boost.F can build an almost equally good ML-based
model for the PRAISE score while maintaining the data
from different sites distributed and mutually secret to the
parties running the FL process.

• We also show that the non-ANN models still have a per-
formance edge over more popular ANN/DNN federated
models on this specific data set (and, we argue, on many
tabular data sets).

• We study the performance of test accuracy of Ada-
Boost.F (accuracy, F1, F2, precision, recall) and scal-
ability in two different execution environments: a cluster
of Virtual Machines on an OpenStack cloud and an HPC
cluster.

II. RELATED WORKS

Federated Learning (FL) has been proposed by McMahan
et al. [1] as a way to develop better AI systems without
compromising the privacy of final users and the legitimate
interests of private companies. Initially deployed by Google for
predicting text input on mobile devices, FL has been adopted
by many other industries, such as mechanical engineering and
health care [6]. Since then, FL has seen a growing interest from
the research community, which has identified a few different
and interesting settings.

In cross-device FL, the parties can be edge devices (e.g.,
smart devices and laptops); they can be numerous (order
of thousands or even millions). Parties are considered not
reliable and with limited computational power. To name a few
examples, cross-device FL setting has been adopted in [7] for
training a language model for next-word prediction in a virtual
keyboard for smartphones; in [8] it has been used to predict
emojis (again on a mobile keyboard), or combined with [9]
for learning models to be used with IoT devices.

In the cross-silo FL setting, the involved parties are instead
organizations; the number of parties is limited, usually in
the range [2, 100]. Given the nature of the parties, it can
also be assumed that communication and computation are no
real bottlenecks. Cross-silo FL settings have been adopted for
[10] investigating brain structural relationships across diseases
and clinical cohorts; it has also been used for optimizing
production through soybean yield prediction [11] or, combined
with differential privacy and secure multi-party computation,
for attacking important financial tasks such as optimal trade
execution, credit origination, or fraud detection [12].

Another important distinction in FL is the way data are
distributed between clients. Based on this assumption, it is
customary to distinguish between horizontal and vertical FL.
The most used assumption is the horizontal data distribution.
In this setting, the data is partitioned horizontally, i.e., each
client owns a subset of the rows of the total dataset. In contrast,
in vertical FL [13], one assumes that the rows are shared
between the parties, but each client has a different view of the
data (i.e., a different set of features for describing the rows).



Vertical FL is very appealing in cases where the objects in the
data sets overlap a lot, but their descriptions have little overlap.
It has been applied to several interesting tasks ranging from
5G communications [14], and proposed as a way to improve
small and medium enterprises’ credit ratings [13].

As mentioned, ANNs and DNNs are rarely used for pre-
diction tasks involving health care represented in tabular
form and, in the few cases where they are applied, they do
not show performances that are better than traditional ML
approaches [15], [16]. Even though they have the potential
to perform as well if not better than other approaches, they
are hard to tune, and this makes it difficult for their usage by
healthcare institutions.

An alternative to ANN/DNN-based FL has been recently
proposed in [17]. This alternative, based on the Extreme
Gradient Boosting (XBG) ensemble algorithm, is still based
on gradient descent, but it allows one to train decision tree
models locally. Interestingly, XBG has been used several times
in the medical literature on tabular health care datasets [18],
[19], [20], [21] showing promising results. While XBG-based
techniques address some of the problems outlined above,
they require the clients to adopt specific learning algorithms
(usually decision trees) and are thus inflexible.

The work presented in [3] introduces three FL adaptations
of the AdaBoost ensemble algorithm that work without ex-
changing gradients between the aggregator and the clients. The
approach allows parties to train any kind of model locally (in
principle, even different models on each site), thus overcoming
the main inflexibility of the XBG approach.

In this work, we will compare AdaBoost.F (one of the
FL variants introduced in [22]) and FedAvg, comparing their
performances in terms of prediction quality and communica-
tion and computation times.

In this paper, we will leverage OpenFL [23] as the base
framework for FL, but over the past few years, there have
been numerous attempts to apply federated learning (FL)
technology to healthcare and other industries. These efforts,
which range from open-source projects like TensorFlow Fed-
erated [24] and PySyft [25] to commercial offerings like IBM®

Federated Learning [26] and HP Swarm Learning [27], have
aimed to address the needs of researchers and practitioners
in a variety of settings. Some of these efforts have focused
on simulated environments for research purposes, while others
have been designed specifically for production use cases. Other
notable FL projects in the healthcare and other industries in-
clude FedML [28], FATE [29], Flower [30], Fed-BioMed [31],
FederatedScope [32], FLUTE [33], and FLARE [34].

III. METHODS

This section describes the methods and the tools used for
the experiments we report in Section IV. As mentioned, FL
has been traditionally based on some variation of the gradient
descent algorithm, whereas the PRAISE score model has
been built on AdaBoost derived models, i.e., a non-gradient

descent algorithm 3. We frame both, gradient descent and
other approaches in the FL paradigm; then, we describe a
recent extension of the OpenFL framework supporting both
approaches. Eventually, we argue on the potentiality of the
FL as a general privacy-preserving paradigm to extract shared
knowledge from datasets from different organizations, i.e. to
define a novel methodology to manage data distributed at the
edge.

A. FL with gradient descent
FedAvg is an iterative algorithm where a central node (the

aggregator) collaborates with the other parties (which are
termed collaborators or clients) to develop a shared model.
The aggregator starts the process by sharing a randomly
initialized neural network with the collaborators. At each
round, all collaborators perform one or more training epochs
on the given network using their local datasets. The updated
model is then shared with the aggregator. The aggregator
averages then the contributions using the weighted average:

wt+1 =
CX

c=1

nc

n
wt+1

c

where w is a vector containing the weights of the neural
networks, t denotes the current round, nc is the size of the
local dataset of client c and n =

P
c nc. The w vector is then

redistributed to all clients and a new round can start.
One of the difficulties in FL is dealing with clients having

examples from different distributions (i.e., they cannot be
assumed to be independent and identically distributed (IID)).
While we are not addressing this issue in this paper, it is
worth mentioning that a few algorithms have been proposed
to better cope with these cases. Among them, we can cite Fed-
Curv [35], FedProx‘[36], FedNova [37], and SCAFFOLD [38],
which substantially increase the complexity of the federation
protocol, but fall short in equally increasing the prediction
performance of the resulting models. We refer to the literature
for further details and comparative studies [39].

Another difficulty in FL is handling a large number of
parties in the federation, which can be in the hundreds or even
more. These cases can be handled by including in a round a
random selection of clients.

B. FL without gradient descent
In this paper, we experiment with the AdaBoost.F al-

gorithm, first introduced in [22]. We report the pseudo-code
of the algorithms using the same notation as in the original
paper in Algorithms 1 and 2. These notations are: to identify
a message that carries x from a client to the aggregator,
we will use the function sendx(aggregator, x) (client-side).
The function broadcastx(x), which transmits x to all clients,
is used on the aggregator side. There is a receivex(s) in
the receiver for every sendx(aggregator, x) or broadcastx(x)

3Technically AdaBoost can be explained as an additive algorithm perform-
ing a coordinate-wise gradient descent of an exponential loss. The gradient
descent is however implicit and does not require gradients to be exchanged
nor calculated.



Algorithm 1: AdaBoost.F (aggregator)
Input: C: number of clients

T : dimension of the ensamble
K: number of classes

Output: ens(x) , vote([ht?]Tt=1, [↵
t]Tt=1,x)

1 for t 2 {1 . . . T} do
2 Z  k [receiveZ(c)]Cc=1 k1
3 ht  [receiveh(c)]Cc=1
4 broadcasth(ht)

5 Et  1
Z [receive✏(c)]Cc=1 . C ⇥ C errors matrix

6 ct?  argminc
PC

c0=1 E
t
cc0

7 ✏t?  
PC

c=1 E
t
cct?

8 ↵t  log
⇣

1�✏t?

✏t?

⌘
+ log(K � 1)

9 broadcast↵(↵t)
10 broadcastc(ct?)
11 broadcaststop(stop)

Algorithm 2: AdaBoost.F (client)
Input: A: weak learner

X 2 Rn⇥m: training data
y 2 {1, . . . ,K}n: training labels

1 d 1
2 while not stop do
3 sendZ(aggregator, kdk1)
4 h A

⇣
X,y, d

kdk1

⌘

5 sendh(aggregator, h)
6 h receiveh(aggregator)
7 ✏ 

⇥
d>Jy 6= hc(X)K

⇤|h|
c=1

8 send✏(aggregator, ✏)
9 ↵?  receive↵(aggregator)

10 c?  receivec(aggregator)
11 d [di exp(�↵?Jhc?(xi) 6= yiK)]ni=1

from a sender, where s denotes the sender. Other notations
represent weighted error (✏t), weight of the weak hypothesis
(↵t), distribution d and ht? represents “global” weak classifier.

The training phase of AdaBoost.F is similar to the one
of AdaBoost, but it happens in a distributed manner. At each
iteration, a new weak hypothesis is learned from each client
and sent to the aggregator. The aggregator collects the weak
hypotheses and broadcasts them all to all clients. The clients
evaluate the received hypotheses on the local dataset and send
the weighted errors ✏ to the aggregator, which is then able to
aggregate these values into a matrix Et. Values in Et are then
used to find the best hypothesis for the current round ct⇤ and
to compute the current ↵t term. By propagating these pieces
of information to the clients, they are then able to update their
local copy of the ensemble and to update the local examples’
weights d. Overall, the algorithm has strong resemblances with
the original AdaBoost algorithm; one interesting difference is

Fig. 1: The Intel® OpenFL software stack.

the fact that d is kept un-normalized in the client. This is im-
portant to make it possible to compute a global normalization
factor in the aggregator.

C. The Intel® OpenFL framework
OpenFL is an open-source tool for cross-silo FL based

on Python 3, designed to be flexible, extensible, community-
driven, and easy to learn for data scientists. The potential of
OpenFL has already been showcased in [40], where the tool
was used to build the world’s largest federation to date.

Fig. 1 shows an overview of the OpenFL architecture. Note
that the vanilla OpenFL only supports neural networks, as
most of the FL frameworks in the market. Our re-engineering
effort to support AdaBoost.F targeted specifically the soft-
ware component coloured in blue and marginally the orange
ones. This way, the user interaction with the framework is
only marginally affected. A detailed description of the re-
engineering effort, including design choices and implemen-
tation details, will be published elsewhere.

There are two key actors in a federation. Each collaborator
accesses its own data to train a replica of the ML model. A
central aggregator collects and merges the updates produced
by each collaborator. While collaborators live at the edges of
the federation, the aggregator usually runs on a data centre or
in the cloud. This is necessary due to its high network usage
and its reachability and reliability requirements.

D. Federated pooling and FL-as-a-Service
Edge computing is a distributed computing paradigm that

brings computation and data storage closer to the data sources
[41]. Edge computing developed with the expectation of
keeping part of the computation close to the data sources
reducing latency and bandwidth requirements in processing
inherently distributed data streams (as opposite to BigData
batch processing typical of cloud computing). FL addresses the
same conceptual architecture, where data is mainly processed
near the data sources, where the two presented FL settings
(cross-device and cross-site) define their features in terms
of scalability, computing power, energy efficiency, security
and reliability. In this work, we mainly focus on cross-site
scenarios, which fit a consortium of trusted data owners (e.g.,
hospitals) connected with a secure and reliable network that do
not wish to share their private data. In this respect, FL might be



considered an example of edge computing that extends original
motivations beyond execution performance.

The PRAISE score offers a prediction performance far better
than similar scores [5]. Notice that the pooled dataset used to
train the PRAISE score model is orders of magnitude larger
than those driving similar studies, typically gathered within
a single organization. A basic assumption underneath all FL
algorithms is that they can approximate a traditional model
trained on a pooled dataset, making it possible to train models
on an increasingly larger dataset from different organizations.

There are two assumptions subject to empirical verification.
First, a consortium of organizations, each of them owning
private data, can train a model virtually pooling all datasets
via FL and this model exhibits a comparable prediction
performance of the best-known model that can be built from
the union of all datasets stored in a single data lake. Second,
the kind of models that can be trained is not limited to ANN
but encompasses explainable ML models, such as decision
trees. Formally proving these assumptions goes far beyond
the scope of the present work. Nevertheless, the empirical
validation makes it possible to envision entirely novel data
operation for edge systems enabling data analysis: federated
pooling.

Generally speaking, the two basic operations on data are
read and write. Concurrent systems (e.g., parallel, distributed)
require an additional atomic-read-write primary operation to
enforce data integrity on shared data, which is needed to
support data sharing primitives among concurrent activities
(e.g., transactions). A further step in distributed systems is
reaching a consensus among parties, i.e., agreeing on some
data value needed during computation. A distributed consensus
protocol makes it possible to implement a distributed ledger
to distinguish a digital object from its copy.

Federated pooling can make a further step in distributed data
management since it can virtually pool many datasets for a
specific data analytic task. Federated pooling does not subsume
data operations (read, write, compare-and-swap); it is stateless
because it does not permanently affect data. For this, it can be
re-executed many times and with different organizations, thus
finely controlled and billed. We envision federated pooling as
the basic API of a new kind of service for edge computing:
FL-as-a-Service (FLaaS).

IV. EXPERIMENTS

This section compares boosting algorithms and neural net-
work models on a real-world binary classification problem,
assessing their prediction accuracy and training time perfor-
mance. We also compare federated algorithms against their
non-federated counterpart, which serves as a baseline for the
prediction performance.

In particular, we trained a simple Feed-forward Neural
Network (FNN) model and an AdaBoost ensemble on the
PRAISE dataset [5], containing 19826 adult patients suffering
from Acute Coronary Syndrome (ACS) with one year of
follow-up. This dataset is the union of two previously existing
registries, BleeMACS (NCT02466854) and RENAMI [42] and

contains 25 features categorical and ordinal, and three cate-
gorical outcomes: all-cause death, recurrent acute myocardial
infarction, and major bleeding one year after discharge. We
only trained the models for this study to predict the all-cause
death outcome.

As a first step, we pre-processed the dataset to mitigate the
high imbalance in the outcomes (using SMOTE [43]) and to
handle missing data in the features (using the median value
along each column). Then we split the dataset to use 80% of
the rows for training, leaving the remaining ones for validation.
The FNN model is a two-layer perceptron with 35 inputs, 35
hidden units, a single output and a binary cross-entropy loss.
We trained it for 100 rounds of one epoch each, using Adam
[44] (lr = 10�3, �1 = 0.9, �2 = 0.999, ✏ = 10�7) as the
optimizer and FedAvg [1] as the aggregation strategy. The
federated AdaBoost ensemble is built by running 100 rounds
of the AdaBoost.F algorithm [3], using a decision tree with
at most 10 leaves as the weak learner.

All FL runs have been orchestrated using the Intel® OpenFL
framework [23] with a single aggregator and up to 16 collabo-
rators. We tested two different configurations to asses both the
strong and weak scaling of the training processes. To test the
strong scaling, we divided the entire dataset into n i.i.d. subsets
without replacement and assigned a subset to each of the n
collaborators involved in the federation. This configuration
keeps the same amount of total rows for each experimental
configuration. Conversely, to test the weak scaling, we sampled
16 subsets of the complete datasets and assigned one of them
to each collaborator. In this setting, the size of the problem
increases linearly with the number of collaborators involved
in the federation.

We took both learning performances and training times
for each setting. Learning performances have been measured
on a virtualized environment on top of the OpenStack-based
HPC4AI cloud infrastructure [45], with the aggregator running
into a VM with 4 cores and 8GB RAM and up to 16
collaborators hosted in VMs with 8 cores and 8GB RAM
each. Conversely, times have been measured on the C3S HPC
facility [46], allocating an entire bare metal node with 2 Intel®
Xeon E5-2697 sockets (18 cores, 2.30GHz) and 128GB RAM
to each component of the OpenFL deployment.

A. Results
We analyze the performance of the algorithms in terms of

prediction quality and computational/communication times.
To assess the prediction performances, we used the five

metrics reported in Table III: accuracy, F1 score, F2 score,
precision, and recall. Despite being the most known and
used metric, accuracy is a very bad indicator of a model’s
performance when the dataset is not balanced, as in this case.
The accuracy of a constant model always predicting false
would score 97% on the PRAISE dataset. F1 and F2 scores are
better candidates in these cases since, by averaging precision
and recall, they require the classifier to recover most of the
positive cases (to score a high recall) and to be correct on
them (to score a high precision). The main difference between



TABLE I: Prediction performance of the FNN model. Values
reported are the average ± stdev of 5 runs. The first run in the
strong scaling setting is equivalent to the non-federated case.

Clients Accuracy F1 Score F2 Score Precision Recall

Strong scaling setting

1 .39 ± .47 .14 ± .08 .22 ± .04 .17 ± .09 .72 ± .39

2 .56 ± .47 .19 ± .09 .26 ± .06 .15 ± .09 .61 ± .36

4 .88 ± .01 .23 ± .01 .30 ± .01 .17 ± .01 .39 ± .02

8 .72 ± .38 .20 ± .06 .27 ± .04 .16 ± .06 .48 ± .29

16 .90 ± .01 .24 ± .01 .29 ± .01 .12 ± .01 .35 ± .02

Weak scaling setting

1 .56 ± .47 .16 ± .07 .22 ± .03 .12 ± .07 .56 ± .40

2 .69 ± .37 .17 ± .05 .25 ± .04 .12 ± .06 .49 ± .30

4 .72 ± .38 .20 ± .07 .27 ± .05 .15 ± .06 .49 ± .29

8 .90 ± .04 .18 ± .10 .24 ± .13 .13 ± .08 .30 ± .17

16 .55 ± .46 .17 ± .08 .26 ± .06 .11 ± .06 .63 ± .34

TABLE II: Prediction performance of AdaBoost.F. Values
reported are the average ± stdev of 5 runs. The first run in the
strong scaling setting is equivalent to the non-federated case.

Clients Accuracy F1 Score F2 Score Precision Recall

Strong scaling setting

1 .95 ± .00 .19 ± .07 .15 ± .06 .35 ± .10 .13 ± .05

2 .95 ± .00 .23 ± .03 .19 ± .03 .36 ± .04 .17 ± .03

4 .94 ± .00 .19 ± .02 .16 ± .02 .26 ± .04 .15 ± .02

8 .94 ± .00 .20 ± .04 .17 ± .03 .28 ± .06 .16 ± .03

16 .94 ± .00 .19 ± .03 .17 ± .03 .25 ± .04 .16 ± .03

Weak scaling setting

1 .95 ± .00 .09 ± .02 .06 ± .01 .33 ± .05 .05 ± .01

2 .95 ± .00 .10 ± .02 .07 ± .01 .45 ± .05 .05 ± .01

4 .95 ± .00 .15 ± .04 .12 ± .04 .32 ± .06 .10 ± .10

8 .95 ± .00 .17 ± .02 .14 ± .01 .28 ± .04 .13 ± .01

16 .94 ± .00 .20 ± .03 .18 ± .02 .27 ± .04 .16 ± .02

these two metrics is about the relative importance of precision
and recall: F1 gives them the same importance, while F2 is
better for cases where precision is to be considered twice as
important as recall.

Table I reports the results obtained with the FNN model,
while Table II refers to the AdaBoost.F ensemble.

We start by noticing that, from the point of view of
accuracy, AdaBoost.F dominates by reaching 95% accuracy
in most experiments. As mentioned, however, accuracy is a bad
metric in this particular case, and the high accuracy values
suggest that the ensemble model probably categorises most of
the examples as negatives. The rest of the metrics confirm
this intuition: recall values are much lower in the case of
AdaBoost.F than in the case of the FNN model. Accuracies,
in the case of the FNN model, are much more erratic,
showing both a higher variance as the number of collaborators
grows and a higher variance in the 5 experiment repetitions.
However, the important metrics (F1 and F2) show much better
performances of the FNN models w.r.t. the ensemble model.
Indeed, as far as we can tell, results reported in table I are even
better than those shown in the state-of-the-art technique [5]

TABLE III: Summary of statistics used to evaluate prediction
performances.

Measure Definition Description

Accuracy TP+TN
TOT Fraction of the examples correctly clas-

sified.
Precision TP

TP+FP Fraction of examples predicted as pos-
itive that are actually positive.

Recall TP
POS Fraction of positive examples that are

correctly predicted as positive.
F1 score 2 precision·recall

precision+recall Harmonic mean of precision and recall.

F2 score 5 precision·recall
4precision+recall Weighted harmonic mean of precision

and recall (giving precision twice the
importance of recall).

(the paper that introduced the dataset and the PRAISE score).
While these are indeed good news, we refrain from calling

these models better because the models in [5] have been
thoroughly evaluated under a multitude of aspects, not just F1

and F2. Nonetheless, we plan to investigate these models in the
future further. Another interesting facet of the reported FNN
results is that the F metrics do not follow a growing pattern as
the number of collaborators grows. They show an inverted v
shape, which is difficult to explain. In fact, at least in the weak
scaling setting, we would have expected the performances to
continue to grow since adding more collaborators amount,
in this latter case, to increasing the dataset size. A possible
explanation might be that the FL procedure finds it difficult to
leverage all the available data when the number of involved
parties grows (to the point of making adding new parties to
the federation no longer worthwhile).

In summary, from the point of view of prediction quality,
quite unexpectedly, the FNN model appears to be better than
the ensemble of trees acquired by AdaBoost.F. Whether
they are overall better models is, however, to be decided
since, for the specific case of health institutions, other factors
(above all, the interpretability of the results) might prevail in
evaluating the possible solutions.

As stated earlier, this dataset is highly imbalanced, so it is
tough to get good F1 and F2. However, it was an unexpected
observation that the best F1 scores are for models acquired in
the federated case, even in the strong scaling setting. Contrary
to our expectations, the classical case (corresponding to the
first line of the strong scaling experiments) was not the best.
From the point of view of training the model, this is the easiest
configuration, where all data are located in a single point, and
there are no privacy issues. This is a further point to be further
investigated, but a possible explanation could be that the FL
process acts as a regularization factor preventing the model
from overfitting the training set.

Fig. 2 and 3 report the execution times of 100 training
rounds for the FNN model and the AdaBoost.F ensemble
in the strong and weak scaling settings, respectively. In the
strong scaling setting, the size of the pooled dataset is constant;
data is equally partitioned among envoys, whereas in the weak
scaling setting, the size of data associated with each envoy is
constant; the more envoy, the more data. The baseline is the
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Fig. 2: AdaBoost.F and FedAvg training time for 100 rounds executed on the C3S machines in the strong scaling setting.
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Fig. 3: AdaBoost.F and FedAvg training time for 100 rounds executed on the C3S machines in the weak scaling setting.

strong scaling setting with a single envoy, which is identical
to a non-federated process. The most relevant thing to notice
is that training an FNN with FedAvg is between 5 and 30
times longer than training an ensemble of decision trees with
AdaBoost.F in both settings. However, this gap is much
more evident when considering only the actual computation
time, as the overhead introduced by serialization and commu-
nication is much more evident with AdaBoost.F. Plus, the
communication time appears to be the actual bottleneck in the
overall execution, as the total training time increases with the
number of federation members. This finding suggests that the
benefit of using AdaBoost.F will be much more evident
with a more efficient FL framework, whose development is
already in the research plan.

Analyzing the two algorithms’ strong and weak scaling
behaviour, it is worth noting that the FNN model follows a
common trend in both settings. Indeed, the total time to so-
lution decreases with more collaborators in the strong scaling
setting, while it remains almost constant in the weak scaling
one. Conversely, with AdaBoost.F the time to solution
decreases only up to 8 collaborators in the strong scaling
setting, and it linearly grows up in the weak scaling setting.
This behaviour is justified by the fact that the second phase of
the algorithm requires each collaborator to evaluate n decision
trees on the local data to determine the best one, where n is

the number of collaborators in the federation. A more efficient
version of the algorithm, aiming to reduce the computation
overhead to select the best model at each round, is currently
in plans.

V. CONCLUSION

Federated learning is an essential tool to allow building ma-
chine learning models across parties that need to maintain the
privacy of their local datasets. The most used FL algorithms
are based on some variation of the gradient descent algorithm
and are used to train neural networks. However, neural net-
works are not always desirable models and are often harder to
train when tabular data is involved. In this work, we have
investigated how the FedAvg algorithm and AdaBoost.F
compare for the task of predicting all-cause mortality. This
exploratory study constitutes a proof-of-concept of a more
general paradigm, the federated pooling, which allows to
compose complex “virtual” pooled datasets while leaving the
actual data undisclosed at the edge.

We compared the performance of these two methods from
the point of view of prediction performances as well as from
the point of view of computation and communication time.
While we expected AdaBoost.F to be a better solution for
this specific use-case, we found mixed results: the decision
trees trained by AdaBoost.F are faster to train, but the
resulting ensemble does not perform as well as the FedAvg



model prediction-wise. Computationally AdaBoost.F seems
to require less resources, but it does not scale well as the
number of involved parties grow (a less demanding algorithm
is being developed by the original authors, but we couldn’t
test it as it has not been released yet).

For future work in addition to further investigate the un-
expected good performances of the FNN model, we would
also like to investigate this dataset’s two other target variables,
such as RENAMI and BARCMB. We would also like to better
understand the power consumption of these two techniques.
Finally, we will work on developing a FLaaS infrastructure
for federated pooling in the continuum, which will serve as
a framework to experiment with novel ML/DNN models and
datasets coming from a diverse set of use-cases.
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S. Manzano-Fernández et al., “P2y12 inhibitors in acute coronary
syndrome patients with renal dysfunction: an analysis from the renami
and bleemacs projects,” European Heart Journal-Cardiovascular Phar-
macotherapy, vol. 6, no. 1, pp. 31–42, 2020.

[43] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[45] M. Aldinucci, S. Rabellino, M. Pironti, F. Spiga, P. Viviani, M. Drocco,
M. Guerzoni, G. Boella, M. Mellia, P. Margara et al., “HPC4AI: an AI-
on-demand federated platform endeavour,” in Proceedings of the 15th
ACM International Conference on Computing Frontiers, 2018, pp. 279–
286.

[46] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, S. Rabellino, and
S. Vallero, “OCCAM: a flexible, multi-purpose and extendable HPC
cluster,” in Journal of Physics: Conference Series, vol. 898, no. 8. IOP
Publishing, 2017, p. 082039.


