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profiles and chemometric 
filtering of urinary metabolomics 
for effective discrimination 
of prostate carcinoma from benign 
hyperplasia
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Chiara Cavaliere2, Federico Marini2, Carmela Maria Montone2, Susy Piovesana2, 
Aldo Laganà2 & Marco Vincenti1,3

Prostate cancer (PCa) is the most commonly diagnosed cancer in male individuals, principally affecting 
men over 50 years old, and is the leading cause of cancer-related deaths. Actually, the measurement 
of prostate-specific antigen level in blood is affected by limited sensitivity and specificity and 
cannot discriminate PCa from benign prostatic hyperplasia patients (BPH). In the present paper, 
20 urine samples from BPH patients and 20 from PCa patients were investigated to develop a 
metabolomics strategy useful to distinguish malignancy from benign hyperplasia. A UHPLC-HRMS 
untargeted approach was carried out to generate two large sets of candidate biomarkers. After 
mass spectrometric analysis, an innovative chemometric data treatment was employed involving 
PLS-DA classification with repeated double cross-validation and permutation test to provide a 
rigorously validated PLS-DA model. Simultaneously, this chemometric approach filtered out the 
most effective biomarkers and optimized their relative weights to yield the highest classification 
efficiency. An unprecedented portfolio of prostate carcinoma biomarkers was tentatively identified 
including 22 and 47 alleged candidates from positive and negative ion electrospray (ESI+ and ESI−) 
datasets. The PLS-DA model based on the 22 ESI+ biomarkers provided a sensitivity of 95 ± 1% and 
a specificity of 83 ± 3%, while that from the 47 ESI− biomarkers yielded an 88 ± 3% sensitivity and a 
91 ± 2% specificity. Many alleged biomarkers were annotated, belonging to the classes of carnitine and 
glutamine metabolites, C21 steroids, amino acids, acetylcholine, carboxyethyl-hydroxychroman, and 
dihydro(iso)ferulic acid.

Molecular biomarkers can be classified as preventive, diagnostic, and prognostic. In particular, a diagnostic 
biomarker may have several potential targets, among which the detection of asymptomatic and/or early-stage 
cancers1,2 and the differentiation between benign and malignant disease3–5.

Studies performed on tumorous prostate cells revealed that they show a distinct metabolic profile, typically 
characterized by altered production of prostate-specific antigen (PSA), citrate, and polyamines6. Current prostate 
carcinoma (PCa) screening mainly relies on determining the PSA serum levels and digital rectal examination 
(DRE). Based on the results of these screening tests, trans-rectal ultrasound (TRUS)-guided prostate biopsy is 
commonly performed to confirm the diagnosis7. Unfortunately, increased PSA values are scarcely specific for 
PCa1,8–10, contributing to over-diagnosis and unnecessary biopsies3,11–14. These drawbacks support the need for 
better-performing biomarkers and inherent ongoing research.
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A critical line of research for improving PSA diagnostic proficiency focused on its derived biomarkers, includ-
ing PSA density, PSA velocity, and the ratio of free to total PSA11. The urinary dosage of the prostate cancer 
antigen 3 (PCA3) was overexpressed in more than 95% of the PCa. Higher scores apparently correlate with tumor 
aggressiveness, sustaining this biomarker’s prognostic significance15. PCA3, alone or in combination with PSA7, 
is currently used and generally accepted by most urological societies13,14,16.

Metabolomics can be defined as the comprehensive and quantitative analysis of all the biological system 
metabolites under study17. Changes in metabolite concentration in biological fluids are frequently sympto-
matic of alterations in the physiological status of individuals7, making them valuable markers of pathological 
conditions18,19.

Among PCa metabolomics studies, a correlation was found between low spermine levels and citrate in 
prostate tissue and tumor aggressiveness2,20. Reduced levels of citrate, spermine, and myoinositol were found in 
prostatic secretion and seminal fluid from PCa patients21. Serum citrate, in combination with other metabolites 
(sarcosine, alanine, glycine, or polyamines), was proposed to differentiate PCa from benign prostatic hyperplasia 
(BPH)22. Another widely studied PCa potential biomarker is sarcosine, detected in prostate tissue, serum, and 
urine7,21–28. Its augmented concentration in urine21,27 and serum26 of PCa patients were further increased in case 
of metastatic tumors. However, a recent study questioned the use of sarcosine as PCa biomarker since reduced 
levels of sarcosine were found in PCa patients, and no correlation with tumor grade was observed28.

Altered levels of free amino acids in urine and serum samples were detected in PCa patients, with particu-
larly relevant alterations observed for ethanolamine, arginine, and branched-chain amino acids9. Decreased 
urinary glycine levels, threonine, and alanine were noticed in a different study8. A multiplatform untargeted 
metabolomics study revealed the possible role of amino acids, urea, purine, and tricarboxylic acids metabolisms 
in prostate carcinoma pathogenesis11. A recent metabolomics study from our laboratories tentatively identified 
various amino acid and carnitine derivatives as potential PCa biomarkers29. The correlation between altered 
steroidal biosynthesis and PCa is also well established30–35. Previous studies were carried out in our laboratories 
using partial least square discriminant analysis (PLS-DA) to differentiate PCa from BPH based on an endogenous 
steroids panel quantified in urine34. Lastly, a recent metabolomics study based on serum samples collected from 
PCa and BPH patients and healthy controls highlighted that lipids and lipid-related metabolites may play a crucial 
role in the recognition of prostate malignancies36.

The present study compares the urinary metabolomics of a population of PCa patients with an analogous 
population of individuals afflicted by benign prostatic hyperplasia (BPH). This comparison is based on an untar-
geted UHPLC-HRMS (Orbitrap®) approach followed by in-depth statistical data analysis involving meticulous 
variable selection, PLS-DA classification modelling37, and repeated double cross-validation (r-dCV) of the clas-
sification model38. Such a statistically rigorous methodology allowed us to identify tens of promising biomark-
ers of different classes for PCa differential diagnostics and uncover some potential biochemical mechanisms 
underlying PCa metabolomics.

A few examples in the scientific literature investigate PCa metabolomics with an untargeted approach and 
different model computation and validation strategies. They include a study by Andras et al.14 in which a PLS-
DA model was calculated after dividing the samples in a training and test set, an investigation by Zhang et al.39 
that used orthogonal PLS-DA, and a study by Xu et al.36 in which a PLS-DA model was developed on 18 vari-
ables selected by variable importance in projection (VIP) and permutation tests. Similarly, Dereziński et al.9 
and Kumar et al.22 used a test set to validate discriminant function analysis (DFA) models. Tanzeela et al.40 used 
the r-dCV to validate a random forest—linear discriminant analysis model to assess the diagnostic potential of 
urinary volatile organic compounds (VOCs). Lastly, a work published in 2019 by MacKinnon et al. applied the 
dCV on a large set of urine samples, combined with different variables selection strategies, including the vari-
able importance in projection (VIP), the regression coefficients of the PLS model, and the competitive adaptive 
reweighted sampling (CARS)41.

Results
The 22 (ESI+) plus 47 (ESI–) candidate biomarkers arising from the original UPLC-HRMS data’s statistical 
analysis are reported in Tables 1 and 2, respectively.

The PCA model performed on the ESI + final dataset (of dimensions 40 × 22) showed good separation between 
PCa and BPH patients classes in the second principal component (PC2 in Fig. 1A). In particular, positive PC2 
values are recorded for 18 out of 20 BPH patients, while negative PC2 values are observed for 19 out of 20 
patients affected by PCa. The corresponding loadings plot (Fig. 1B) shows a strong polarization of the variables 
along the same direction. Sample 1 apparently overexpresses the PC2 score, as is confirmed in the Q-residuals 
vs Hotelling’s T2 plot (Supplementary Fig. S5A), in which sample 1 shows a high T2 value (equal to 4.2) but < 1 
Q-residual. A possible explanation for this overexpression may rely on the anomalously low urinary creatinine 
value (close to 5 mg dL−1). Since the contribution plot (Fig. S5B,C) did not reveal any specific inconsistency for 
sample 1, it was decided not to discard it from the dataset.

The PLS-DA r-dCV model provided a sensitivity of 95 ± 1% (corresponding to the correct prediction rate for 
PCa population) and a specificity of 83 ± 3% (corresponding to BPH correct prediction rate). The classification 
error rate is equal to 9 ± 1%. The accuracy of the model is 89 ± 2%. The sample scores along the canonical vari-
able are reported in Fig. 2.

The bars represent the average values obtained during the r-dCV process for samples (A) and variables (B), 
while the interval ranges correspond to the confidence intervals (at 95% confidence, estimated non parametrically 
from the distributions obtained by r-dCV). For most of the samples, the scores maintain the same sign during the 
r-dCV process, confirming the stability of the model. For four samples (n. 8 (PCa), 17 (PCa), 26 (BPH), and 31 
(BPH)), the confidence interval of the corresponding score crosses the zero-line, resulting in a more uncertain 
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classification. However, it should be stressed that, in all of the cases, the largest part of the confidence interval falls 
within the correct side of the plot (negative scores for BPH and positive for PCa). On the other hand, there are 
three samples (nr. 6 (BPH), 21 (PCa), and 23 (BPH)) that are consistently mispredicted and mostly responsible 
for the observed classification error. Similarly, all variable weights along the canonical variable (Fig. 2B) keep 
the same sign across all the r-dCV procedures, providing further confirmation of the model robustness, even 
if they show a relatively high confidence interval. This means that during the entire cross-validation process all 
the variables consistently proved to be overexpressed for one of the two categories (PCa or BPH, corresponding 
to positive and negative sign, respectively—see Fig. 2A) no matter which samples were selected in each step of 
the reiterated validation.

The diagnostic accuracy of the model can also be graphically visualized through a receiver operating char-
acteristic (ROC) curve, i.e., a plot of the sensitivity vs. 1-specificity, and summarized by the value of the area 
under the curve (AUROC): the closer the value of the AUROC is to 1, the better the classification model. Taking 
advantage of the r-dCV procedure, analogously to what already discussed for the other figures of merit, it was 
possible to calculate, based on the outer loop samples, as many ROC curves as the number of dCV repetitions 
(50), so to estimate the mean and CI for the curves on external validation samples and, consequently of the 
AUROC values. The mean ROC curve for the PLS-DA model built on the ESI + variables is displayed in Fig. 3. 
The corresponding value of the AUROC is 0.963 ± 0.011.

The importance of building a multivariate model can be highlighted by comparing the performances of 
the PLS-DA model built on the ESI + variables with those of individual metabolites, which are summarized in 
Supplementary Table S1. Indeed, it can be observed how the best performing individual metabolite, i.e., dihy-
drocortisol, has a predictive accuracy of 76 ± 2, corresponding to an AUROC of 0.810 ± 0.016. This can also be 
graphically visualized in Fig. 3, where the mean ROC curves estimated on the outer loop samples in r-dCV for 
the individual metabolites are displayed.

Analogously to what was observed for the ESI + dataset, the PCA model built on the ESI– dataset showed 
good separation between the two groups of patients (BPH and PCa) along the PC2, where positive values are 
recorded for the PCa samples (18 out of 20) and negative values for BPH samples (19 out of 20) (Fig. 4). The 
PCA loadings depicted in Fig. 4B (the variables corresponding to the numerical labels are reported in Table 2 as 
“ID” column) show a less pronounced polarization along PC2 than is observed in Fig. 1B.

The r-dCV PLS-DA model developed on the 47 ESI– candidate biomarkers listed in Table 2 provided a sensi-
tivity equal to 88 ± 3%, a specificity score of 91 ± 2%. The classification error rate was equal to 11 ± 2%. Finally, the 
accuracy of the model was 89 ± 2%. Figure 5 reports the scores and loadings values, together with their confidence 
bars, obtained during the r-dCV model computation. As far as the samples are concerned (Fig. 2A), for most of 
the individuals, the confidence interval of the scores falls consistently on the same side of the plot (negative for 
PCa and positive for BPH). The only exceptions are samples n. 4 (BPH), 5 (PCa), 16 (BPH), 23 (BPH), 26 (BPH 
27 (PCa), and 33 (PCa), which show an uncertain classification. This may be due to them having a borderline 

Table 1.   List of ESI + metabolites, together with their MW, chromatographic retention time, Kegg and HMDB 
IDs and NMDB classification, when available.

ID Compound Molecular weight RT HMDB ID KEGG ID Classification

1 Pyroglutamic acid 129.0427 7.48 HMDB0000267 C02237 Alpha aminoacids and derivatives

2 Methoxy benzaldehyde 136.0527 8.76 HMDB0029686 C10761 Benzoyl derivative

3 Acetylcholine 145.1104 0.82 HMDB0000895 C01996 Organonitrogen compound

4 Guanine 151.0496 1.02 HMDB0000132 C00242 Imidazopyrimidines

5 N-acetyl threonine 161.0690 0.88 HMDB0062557 N.A Threonine metabolite

6 (N1)-Acetylspermidine 188.1764 0.64 HMDB0001276 C00612 Polyamines derivative

7 Amino hydroxydecanoic acid 203.1524 7.39 N.A N.A

8 4-methoxy-2-(3-methylbut-2-en-1-yl)benzene-
1,3-diol 208.1102 13.62 N.A N.A

9 Dihydroxyl Indole O-Sulfate 229.0047 2.64 N.A N.A

10 Androstenone/etiocholanolone 272.2141 14.01 HMDB0000031 /HMDB0000490 C00523/C04373 C21 steroids

11 N-(indol-3-acetyl) glutamine 303.1220 8.24 HMDB0013240 N.A Aminoacids, peptides, and analogues

12 Methoxyphenylacetyl carnitine 309.1578 8.01 N.A N.A Carnitine cycle

13 Carnitine azelaic acid 331.1996 9.27 N.A N.A Carnitine cycle

14 Dihydrocortisol 364.2250 11.97 HMDB0003259 C05471 Hydroxysteroids

15 Xanthurenate-8-O-beta-d-Glucoside 367.0905 7.05 HMDB0013118 N.A Tryptophan derivative

16 Dihydro(iso)ferulic acid glucuronide 372.1066 8.33 HMDB0041723 N.A Organooxygen compounds

17 Dihydro(iso)ferulic acid glucuronide 372.1067 8.75 HMDB0041723 N.A Organooxygen compounds

18 Carnitine derivative 399.2621 11.44 N.A N.A Carnitine cycle

19 Dodecanedioyl glucuronic acid 406.1838 11.22 N.A N.A

20 5-Alpha-Dihydrotestosterone glucuronide 466.2566 14.01 HMDB0006203 N.A C21 steroids

21 Tridecenoyl carnitine glucuronide 531.3056 13.88 N.A N.A Carnitine cycle

22 Urobilin 590.3110 12.03 HMDB0004160 C05794 Bilirubins
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character, for example, a PCa at an early stage of development or a BPH evolving toward a pre-cancerous state. 
These conditions may result in an incomplete expression of either class characteristic biomarkers. However, as 
also discussed in the case of the ESI+ data set, for most of these samples, the largest part of the confidence interval 

Table 2.   List of ESI– metabolites, together with their molecular weights, chromatographic retention times, 
Kegg and HMDB IDs, and HMDB classification, when available. The numerical IDs in the first column 
correspond to those used in Fig. 4B.

ID Compound Molecular Weight RT HMDB ID KEGG ID Classification

1 Malic acid 134.0217 0.77 HMDB0000156 C00149 Hydroxyacid

2 Imidazolelactic acid 156.0537 0.77 HMDB0002320 C05132 Imidazoles

3 Hexanoylglycine 173.1055 8.81 HMDB0000701 N.A N-acyl-alpha aminoacid

4 Dihydroxy-5-methylthio-4-pentenoic acid (DMTPA) 178.0302 1.73 HMDB0240388 N.A Fatty acids and conjugated

5 Sulfooxybutanoic acid 184.0044 0.88 HMDB0130137 N.A Fatty acids

6 Heptanoylglycine 187.1212 10.33 HMDB0013010 N.A N-acyl-alpha aminoacid

7 N-lactoylvaline 189.1004 7.53 HMDB0062181 N.A N-acyl-alpha aminoacid

8 Phenylacetylglycine 193.0743 7.43 HMDB0000821 C05598 N-acyl-alpha aminoacid

9 Ethylphenyl sulfate 202.0304 9.18 HMDB0062721 N.A Arylsulfates

10 3-Hydroxy-3-(4-hydroxy-3-methoxyphenyl) propanoic acid 212.069 7.24 HMDB0133486 N.A Phenylpropanoic acids

11 [2-Hydroxy-5-(prop-2-en-1-yl)phenyl]oxidanesulfonic acid 230.0253 9.31 HMDB0135258 N.A Arylsulfates

12 5-Aminoimidazole-4-carboxamide glutaric acid 240.0865 3.12 N.A N.A Imidazole derivative

13 Indolylacryloylglycine 244.0852 10.33 HMDB0006005 N.A N-acyl-alpha aminoacid

14 2-[4-hydroxy-3-(sulfooxy) phenyl]acetic acid 247.9995 2.34 HMDB0125151 N.A Arylsulfates

15 Benzoyl glutamic acid 251.0799 8.02 N.A N.A Glutamic acid and derivatives

16 Propyl hydroxyhippuric acid 253.0956 8.18 N.A N.A N-acyl-alpha aminoacids and derivatives

17 5-(Hydroxyphenyl)-gamma-valerolactone-O-sulphate 272.036 7.96 HMDB0059993 N.A Arylsulfates

18 Hydroxybutyric acid glucuronide 280.0801 1.32 N.A N.A

19 Methylguanosine 297.1082 4.79 HMDB0001563 C04545 Purine nucleosides

20 4-Methylcatechol O-glucuronide 300.0854 8.21 HMDB0240460 N.A

21 Octenedioyl glutamine 300.133 7.15 N.A N.A Glutamic acid and derivatives

22 N-(indol-3-acetyl) glutamine 303.1226 8.29 HMDB0013240 N.A Glutamic acid and derivatives

23 Succinyl tryptophan 304.1068 9.52 N.A N.A Tryptophan derivative (aminoacid)

24 2-Methoxy-4-vinylphenol glucuronide 326.1010 8.51 N.A N.A

25 Pyr-Xle-Ser 329.1596 7.40 N.A N.A Peptides

26 Hydroxy methoxy indole glucuronide 339.0964 8.87 HMDB0010363 C03033 Carbohydrates and carbohydrate conjugates

27 Suberoyl glucuronic acid 350.1223 8.64 N.A N.A

28 Alpha-CEHC sulfate 358.1096 11.96 N.A N.A Vitamin E metabolite

29 Feruloyl-quinic acid 368.1118 8.31 HMDB0030669 C02572 Quinic acids and derivatives

30 (epi)Catechin sulfate 370.0368 8.41 HMDB0012467 N.A Sulfated flavonoids

31 Dihydro(iso)ferulic acid glucuronide 372.1066 8.38 HMDB0041723 N.A Phenolic glycosides

32 Dihydro(iso)ferulic acid glucuronide 372.1067 8.80 HMDB0041723 N.A Phenolic glycosides

33 Dimethylene suberic acid glucoronide 374.1222 9.37 N.A N.A Medium chain fatty acids

34 Dimethylene suberic acid glucoronide 374.1224 9.24 N.A N.A Medium chain fatty acids

35 Decenedioyl glucuronic acid 376.1379 10.40 N.A N.A

36 Methylcathecol glucuronide sulfate 380.0424 5.72 N.A N.A

37 Methyl(epi)catechin sulfate 384.0525 8.89 N.A N.A

38 Hydroxyandrosterone sulfate isomer 386.1773 12.93 N.A N.A C21 steroids

39 Dodecanedioyl glucuronic acid 406.1847 11.28 N.A N.A

40 Androstenol glucuronide 450.2626 15.77 N.A N.A C21 steroids

41 Alpha-CEHC glucuronide 454.1848 11.94 HMDB0062445 N.A Vitamin E metabolite

42 Uroerythrin (biotrypirrin A) 465.1910 13.84 HMDB0003323 N.A Pyrroles

43 (epi)Catechin glucuronide 466.1121 8.82 HMDB0240435 N.A Flavonoids

44 Trihydroxyoctadecenoic acid glucuronide 506.2734 12.94 N.A N.A

45 Trihydroxyoctadecenoic acid glucuronide 506.2734 13.35 N.A N.A

46 Trihydroxycholanoic acid glucuronide 584.3209 14.77 N.A N.A

47 (3a,5b,7a,12a)-24-[(Carboxymethyl)amino]-1,12-dihydroxy-
24-oxocholan-3-yl-b-d-Glucopyranosiduronic acid 641.3428 12.61 HMDB0002472 N.A Oximes



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4361  | https://doi.org/10.1038/s41598-022-08435-2

www.nature.com/scientificreports/

falls within the “correct” side of the plot. On the other hand, sample 21 (PCa) is consistently characterized by 
positive scores and therefore consistently mispredicted as BPH. This represents the most relevant contribution to 
the classification error, together with sample 23 (BPH), which is assigned to the wrong category the large majority 
of the time, and sample 26 (BPH), which was mispredicted in about half of the r-dCV repetitions.

As far as the variables are concerned, all the weights along the canonical variable (Fig. 5B) keep the same sign 
across all the r-dCV procedures, providing further confirmation of the model robustness, even if they show a 
relatively high confidence interval.

Also in this case, the diagnostic accuracy of the model can be graphically visualized through the mean receiver 
operating characteristic (ROC) curve, estimated on the outer loop validation samples in r-dCV, which is displayed 
in Fig. 6, together with those corresponding to the individual metabolites.

The value of the AUROC for the multivariate model built on ESI- variables is 0.975 ± 0.009, which is signifi-
cantly higher than the highest value for the individual metabolites (0.802 ± 0.056, for decenedioyl glucuronic 
acid), thus confirming once again that building a multivariate model can significantly improve the diagnostic 
accuracy, as also confirmed by the inspection of the other figures of merits summarizing the predictive perfor-
mances of individual variables, reported in Supplementary Table S2.

Furthermore, t-tests were conducted on the individual metabolites both for the ESI+ and the ESI− data sets 
(Supplementary Table S3) and the distribution of the values of the predictors for the two classes graphically 
inspected by means of box plots (reported in Supplementary Material). The compounds showing significant 
p-values (i.e., showing a non-null difference between the average values PCa and control groups) are relatively 
consistent with those indicated by PLS-DA weight plots (Figs. 2B and 5B).

Lastly, a multi-block analysis was tested by merging the two (ESI+ and ESI−) reduced datasets, resulting in 
90 ± 3% value of sensitivity and 87 ± 4% of specificity. The performance of the latter model is almost indistinguish-
able from that obtained from the ESI– dataset. This is also confirmed by the value of the area under the ROC 
curve (0.979 ± 0.008). This similarity may be due to the effect of the larger number of variables included in the 
ESI– dataset compared to ESI+ , which was only partly compensated by scaling each block to unitary Frobenius’ 
norm prior to model building.

Discussion
Chemometric classification models.  The present study recruited 40 patients equally distributed between 
PCa and BPH patients with the unequivocal diagnosis. The initial ESI+ and ESI– untargeted UHPLC-HRMS 
analyses resulted in detecting 2611 and 1610 potentially discriminant metabolites, respectively. The availability 
of such an unbalanced number of samples vs. variables justifies the choice of PLS-DA as a classification method, 
as is commonplace in metabolomics studies involving unbalanced datasets. The main risk of using a PLS-DA 
approach on datasets with a limited number of samples is represented by the potential occurrence of overfitting, 
yielding over-optimistic models. Two combined procedures consisting of a repeated double cross-validation 
process38 and applying a permutation test were carried out to overcome the mentioned threat and produce reli-
able and robust models (Fig. S3). The repeated-double cross-validation process involves an iterative approach 
in which all the samples are in turn included either in the calibration or in the validation set. This is a recom-
mended strategy when, as in the present case, it is impossible to divide the dataset into a training and test set 
due to the relatively low number of samples. In an iterative permutation test, the samples’ labels are randomly 
redistributed, and a new classification model is calculated each time (Fig. S4)42. Whenever the latest models’ 
performances obtained from the permuted class labels are significantly and systematically lower than those 
obtained with the original one, then the original model can be assumed as robust and reliable. Another step in 

Figure 1.   (A) scores plot and (B) loadings plot of the PCA model for the autoscaled ESI + dataset.
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our strategy was to operate a primary variables selection to exclude those not carrying important information 
for the discrimination of the two classes. As a result, even the unsupervised exploration of PCA data provided 
good class separation (Figs. 1A and 4A). The high classification rates offered by both PLS-DA models built on 
the positive and negative ions datasets (ESI+ and ESI–) confirmed the occurrence of structured information in 
the data relative to the differences between the metabolic profiles of the two classes considered (BPH and PCa). 
Concurrently, the low standard deviations of classification rates obtained with the r-dCV approach corroborate 
the models’ robustness. The scores and loading results depicted in Figs. 2 and 5 show that the iterative r-dCV 
process, while producing significant shifts in their absolute values, does not alter their sign, demonstrating that 
the samples maintain their original classification and the variables maintain their positive or negative correlation 
with each class. Quite obviously, all considerations about the under- or over-expression of biomarkers in PCa 
patients are identical in PCA and PLS-DA models. Further confirmation of the model’s robustness arises from 
the permutation tests, which always resulted in classification rates close to 50%, i.e. extremely far from the two 
model rates. In practice, no random sample assignment is even vaguely able to simulate a correct classification, 
as expected for unbiased models. All these chemometric tests support the deduction that the selected metabolic 
biomarkers play a role in the correct classification of PCa and BPH patients. However, it is evident that the 
limited number of samples in each class (20) used to build the models does not allow us to draw undeniable 
conclusions about their actual effectiveness and their relative importance nor definitive non-error rates in clas-
sification PCa vs. BPH. Much larger patients’ populations will be analyzed to rank the detected biomarkers and 
interpret their role in the PCa etiology and/or metabolic effect, whose preliminary classification is reported in 
the subsequent chapters of the Discussion. Nevertheless, the present study anticipates a meaningful recognition 
of beneficial PCa biomarkers families and provides a practical chemometric approach for interpreting UHPLC-

Figure 2.   Graphical representation of the PLS-DA r-dCV model obtained for the ESI + dataset. (A) Scores of 
the samples along the first canonical variable. (B) Weights of the variables along the first canonical variable.
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HRMS metabolomics data. On the other hand, many alleged biomarkers preliminarily identified in the present 
study are significant because they may cast light on the general underlying altered biochemical mechanisms 
comprehensively expressed in the biomarkers diversity.

Biomarkers classification.  The chemometric classification model discussed in the preceding chapter is 
founded on the multivariate interpretation of the statistically significant concentration differences of the candi-
date biomarkers reported in Tables 1 and 2 between the two populations of PCa and BPH patients. These candi-
date biomarkers can either be overexpressed or underexpressed in the urine of the two populations, resulting in 
positive/negative loadings of the upper/lower classes represented in Figs. 2 and 5. It was out of the scope of the 
present study to investigate in detail the underlying biochemical mechanisms that may justify these differences. 
Simultaneously, some considerations about the potential role of some groups of these substances in the carci-
nogenic processes can be made concerning the existing literature, as is reported in the subsequent paragraphs.

Figure 3.   Receiver operating characteristic (ROC) curve for the PLS-DA model calculated on the ESI + data set 
(dark red line) and for the individual metabolites (blue lines). Each curve is the mean of the 50 curves obtained 
on the outer loop samples in r-dCV.

Figure 4.   (A) scores plot and (B) loadings plot of the PCA model for the autoscaled ESI– dataset. The loadings 
labels are reported in Table 2 (ID column).
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Four alleged biomarkers are involved in the carnitine metabolic cycle (i.e., tridecenoyl carnitine glucuronide, 
carnitine azelaic acid, methoxyphenylacetyl carnitine, and one carnitine derivative not univocally identified 
(Table 2). In particular, the urinary profiles of PCa patients appeared to be characterized by high levels of 
methoxyphenylacetyl carnitine, carnitine azelaic acid, and tridecenoyl carnitine glucuronide. In contrast, the 
unidentified carnitine derivative was underexpressed. The correlation between the carnitine cycle and cancer 
incidence was explained by Melone et al.43, which suggested that the carnitine derivatives are implicated in 
the bi-directional transportation of acyl moieties from the cytosol to mitochondria, so regulating the toggle 
between glucose and fatty acid metabolisms. Carnitine derivatives were singled out as valuable biomarkers for 
different tumors, including breast44 and renal45 cancers. Our previous metabolomics study on PCa and BPH 
samples also evidenced the role of some unidentified carnitine derivatives in the patients’ class discrimination29. 
N1-acetylspermidine is a metabolite of spermidine, one of the three principal polyamines involved in the human 
metabolism and its precursor putrescine and its metabolite spermine46. Decreased polyamines’ values in the urine 
of PCa patients compared to BPH-affected subjects were observed in a study from Tsoi47. Similarly, in our study, 
the reduced presence of the acetylated form of spermidine was observed in PCa patients.

C21 steroids are known to be involved in prostate cancer cells’ growth and proliferation. Several studies were 
carried out on this correlation, including our own30–32,35. In the present work, reduced levels of dihydrocortisol, 
5α-DHT-glucuronide, androstenone (or etiocholanolone), androstanol glucuronide, and hydroxyandrosterone 
sulfate were found in the PCa population compared to BPH patients. The complex equilibria occurring between 
steroids production and excretion of their conjugated forms in PCa and BPH patients are expected to substanti-
ate the present results.

Figure 5.   Graphical representation of the r-dCV model obtained for the ESI– dataset. (A) Scores of the samples 
along the first canonical variable. (B) Weights of the variables along the first canonical variable.
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The glutamine metabolic pathway is involved in several steps of cellular life and proliferation. A deficiency 
of glutamate, glutamine, and associated metabolites is observed in patients with cancer due to their malignant 
cells’ depletion48. In the present ESI+ dataset, pyroglutamic acid and N-(indol-3-acetyl)glutamine urinary con-
centration appears to be reduced in PCa patients compared to BPH patients. The same trend was observed in 
the ESI– dataset for N-(indol-3-acetyl)glutamine and benzoyl glutamic acid, whereas the concentrations of 
octanedioyl glutamine were comparable for the two populations. The acetylcholine receptors play an essential 
role in developing a vast number of cancers, including bladder, gastric, lung, breast, ovarian cancers, melanoma, 
glioblastoma49. The muscarinic acetylcholine receptor M1, in particular, was found over the cell membrane and 
cytoplasm in prostate cancer cells. Furthermore, it appears to regulate cancer metastasis49. The amino acids 
play a vital role in cancer cell growth and reproduction50. Several research groups found a correlation between 
altered amino acids and PCa incidence levels, including our own8,9,11,29. Coherently with these findings, the 
present study confirms the importance of aminoacidic biomarkers in detecting PCa: twelve of the metabolites 
reported in Tables 1 and 2 belong to this class or are directly related to them. Two amino acids involved in the 
tryptophan cycle are of particular interest, namely succinyl tryptophan and xanthurenate-8-O-beta-d-glucoside, 
in agreement with a recent review underlining the role of tryptophan in cancer proliferation51). A protective 
effect against malignant tumors has been attributed to various endogenous metabolites, including vitamin E52. 
Under this evidence, we found an underexpression of the glucuronide and sulfate conjugated forms of CEHC 
(its most soluble metabolites) in PCa patients. Another metabolite with an alleged protective role against cancer 
is ferulic acid53. In our dataset, the glucuronide derivatives of the dihydro(iso)ferulic acid were detected in both 
ESI+ and ESI– ionization modes. Overexpression of these metabolites in the urines collected from PCa patients 
was recorded, possibly due to accelerated conjugation and excretion (i.e., accelerated metabolism) of ferulic acid, 
resulting in a lower bioavailability of the protective compound.

Materials and methods
Chemicals and reagents.  Creatinine, taurine, putrescine, dopamine, guanosine, cystine, benzoic acid, 
formestane, dihydrotestosterone (DHT) glucuronide, taurocholic acid were purchased from Sigma Aldrich 
(Milan—Italy). Arginylphenylalanine (RF), serylhistidine (SH), and isoleucylprolylisoleucine (IPI) were pro-
vided by Thermo Fischer Scientific (Italy). Isotopically labeled caffeine, creatinine, phenylalanine, benzoic acid, 
estradiol, estradiol sulfate, and estradiol glucuronide were purchased from Sigma Aldrich. Ultrapure grade water 
and formic acid were from Fischer Scientific (Waltham, Massachusetts, USA), while ultrapure grade methanol 
(MeOH) was from Romil Pure Chemistry (Pozzuoli, Italy). The creatinine was determined with the photometric 
picrate technique, using an Architect C800 instrument and Abbott’s kit (Italy). All standard stock solutions were 
prepared in methanol at 1 mg/mL and stored at – 20 °C until use. The external standard mix solution, contain-
ing creatinine, taurine, putrescine, dopamine, guanosine, cystine, benzoic acid, formestane, DHT glucuronide, 
taurocholic acid, RF, SH, and IPI, was prepared at the final concentration of 0.1–50 µg mL−1 in H2O/MeOH 80:20 
(v/v) by appropriate dilution with ultrapure water and stored at − 20 °C until use. The internal standard mix solu-
tion, containing isotopically labeled caffeine, creatinine, phenylalanine, benzoic acid, estradiol, estradiol sulfate, 

Figure 6.   Receiver operating characteristic (ROC) curve for the PLS-DA model calculated on the ESI− data set 
(dark red line) and for the individual metabolites (blue lines). Each curve is the mean of the 50 curves obtained 
on the outer loop samples in r-dCV.
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and estradiol glucuronide, was prepared at the final concentration of 0.1–5 µg/mL in H2O/MeOH 80:20 (v/v) by 
appropriate dilution with ultrapure water and stored at − 20 °C until use.

Patients recruitment and samples collection.  The subjects involved in this study were recruited in 
the Department of Urology at the San Luigi Hospital of Orbassano (TO, Italy) after approval from the reference 
Ethical Committee of the hospital (protocol number 17942). All research was performed in accordance with 
the Declaration of Helsinki. Informed consent was signed by all patients enrolled in this study. Forty patients 
were enrolled, including 20 affected by PCa and 20 by benign prostatic hyperplasia (BPH). PCa was diagnosed 
employing untargeted systematic transrectal ultrasound-guided prostate biopsy (TRUS-GBx, 18–24 cores) and/
or repeated multiparametric magnetic resonance imaging (mp-MRI) target biopsy (4–6 cores for single target 
lesion54). Urine samples were collected from the PCa patients before they started any specific treatment/therapy, 
either pharmacological, surgical, and/or radiologic.

Body mass index (BMI), previous medical therapy, PSA, and prostate volume were recorded for all patients. 
Biopsy Gleason Score (GS) was also reported for PCa patients. Table 3 reports the patients’ biometrics and the 
principal clinical data. Patients affected by diabetes, other carcinomas, and metabolic diseases were not included 
in the study. Furthermore, Student’s t-tests was performed on the enrolled patients to investigate the occurrence 
of significant differences between the groups. As expected, only PSA and prostate volume variables (i.e., the 
peculiar features of PCa and BPH groups) provided a statistically significant p-value lower than 0.05 (95% level 
of significance).

The urine samples were collected during the outpatient activities, between 8 a.m. and 10 a.m., using test tubes 
of 50 mL; immediately after collection, five aliquots of 100 μL were separated and stored at − 80 °C temperature. 
Soon afterward, they were sent in dry ice by express courier to the Department of Chemistry of the University La 
Sapienza of Rome (Italy) for instrumental analysis. The remaining volume was stored at 4 °C until the creatinine 
test was performed (using the photometric picrate determination).

Samples preparation.  Before the analysis, the urine samples were thawed at room temperature and centri-
fuged for 10 min at 1000×g. The quality control (QC) samples were obtained by pooling 20 μL of each of the 40 
samples included in the study. For each sample (samples, controls, and QCs), 25 μL of urine were diluted in 70 
μL of ultrapure water and added 5 μL of the internal standard mixture (dilution 1:3, final solvent mixture: H2O/
MeOH 99:1, v/v). External standard mixture samples were prepared by diluting 5 μL of the mixture in 95 μL of 
ultrapure water (final solvent mixture: H2O/MeOH 99:1, v/v), and the blank samples consisted of H2O/MeOH 
99:1 (v/v) The UHPLC-HRMS analyses were performed after samples randomization.

UHPLC‑HRMS analysis.  A Vanquish binary pump H (Thermo Fisher Scientific, Bremen, Germany), 
equipped with an autosampler and controlled temperature column compartment, was used for chromatographic 
separation on a Luna Omega Polar C18 (100 × 2.1 mm, 1.6 μm particle size, Phenomenex, Torrance, USA). The 
mobile phases were H2O/HCOOH (99.9:0.1, v/v; phase A) and MeOH/HCOOH (99.9:0.1, v/v; phase B) and 
were mixed with the following gradient: 1% phase B for 2 min; 1% phase B to 99% phase B in 15 min; 99% phase 
B for 5 min (washing step) and 1% phase B for 5 min (reconditioning step). The column was maintained at 40 °C 
with a constant flow of 400 μL min−1. The chromatographic system was coupled to a hybrid quadrupole-Orbitrap 
mass spectrometer Q Exactive (Thermo Fisher Scientific) with a heated ESI source, operating in both positive 
and negative ion modes under the following conditions: the capillary temperature was set at 220 °C and 180 °C 

Table 3.   Characteristics and clinical data of the enrolled patients. Symbol (*) indicates the features showing a 
significant p-value (lower than 0.05) for the performed Student’s t-tests.

PCa BPH t-test (p-value)

Age (mean ± std)
years 66 ± 7 65 ± 6 0.48

Body weight (mean ± std)
kg 82 ± 11 79 ± 11 0.51

Body height (mean ± std)
cm 176 ± 6 172 ± 8 0.07

BMI (mean ± std)
kg/m2 26.4 ± 3.1 27.0 ± 4.4 0.60

PSA (median–range)
ng/mL 7.4 (3.0–22.0) 2.7 (0.3–19.8) 0.01*

Prostate volume (median–range)
cm3 42 (20–98) 60 (30–200) 0.01*

Biopsy GS Number of patients

3 + 4 5 /

4 + 3 7 /

4 + 4 4 /

4 + 5 2 /

5 + 4 2 /
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for positive and negative polarity respectively, spray voltage at 3200 V (+) and 2800 V (−), auxiliary gas heater 
temperature at 280 °C (+) and 180 °C (−), sheath gas at 50 (arbitrary units), auxiliary gas at 25 (arbitrary units), 
sweep gas was 0 (arbitrary units), and S-Lens RF level was 50 (%).

Full scan acquisition mode was performed in the range m/z 70–1000 with a resolution of 70,000 (full width 
at half-height, FWHM, m/z 200). The automatic gain control (AGC) target value was 500,000 in full scan, with 
a maximum ion injection time set at 50 ms. The isolation window width was 2 m/z. For identification-only QCs, 
the top 5 data-dependent acquisition (DDA) mode was performed with the AGC target set at 100,000. Higher-
energy collisional dissociation (HCD) was performed at 35% normalized collision energy with a resolution of 
35,000 (FWHM @m/z 200). Dynamic exclusion was set to 3 s. The mass spectrometer was calibrated before 
analysis using a calibration solution provided by the manufacturer (external calibration).

Raw MS/MS data files were acquired by Xcalibur software (version 3.1, Thermo Fisher Scientific). The chro-
matographic worklist is schematized in Supporting Information Table S6. The column stability and performance 
were tested before and after each analytical section using blank samples and external standard solutions. A proper 
system conditioning preceded the blank sample injection for background subtraction, consisting of ten consecu-
tive QCs sample injections. This procedure allowed to discard both the contaminants present in mobile phases 
and the HPLC–MS system and the compounds subjected to high carry-over effects (more than 10%), which 
may alter peak areas, possibly resulting in biased statistical analysis. After further system reconditioning with 
ten more QCs samples, randomized samples and controls were run in five groups, followed by a QC injection. In 
HRMS, the chromatogram is recorded in the digital format using each scan in full-scan mode as a point for each 
m/z analyzed. As the instrument’s scan rate is fixed, tandem MS analysis, either in DDA or data-independent 
acquisition (DIA) mode, causes a drastic decrease in the number of points per chromatographic peak. Therefore, 
samples and controls were run in single-MS full-scan mode, to guarantee high-quality peak shapes for high- and 
low-abundance substances55. At the end of each sequence, three QC injections (identification-only QC) were 
run in top 5 DDA mode, consisting of one full-scan acquisition followed by 5 tandem MS scans to obtain MS/
MS for subsequent feature identification. The external standard mixture was run at the start and the end of the 
acquisition sequence for a quick evaluation of the performance of the LC–MS methodology before and after 
data acquisition. Internal standard spiked in the samples were employed to rapidly check potential outliers or 
macroscopic damages during analysis, e.g., instrumental errors during sample injection or significant change 
in compound retention times, rather than used for sample normalization, which was later accomplished during 
data processing by QC-based normalization. Since untargeted MS data cannot be easily inspected, the rapid 
check with the internal standard mixture during data acquisition was needed for eventually re-running dam-
aged samples before the end of the worklist or to stop and re-run the whole sequence if chromatographic or MS 
performance were unstable. Exemplary chromatograms of samples, controls, and QCs are reported in Figure 
S1-S2 in positive and negative ion mode, respectively.

Data pre‑processing.  The .raw data obtained from the analysis of samples, QCs, and blanks were preproc-
essed using the software Compound Discoverer version 3.1 (Thermo Fisher Scientific). Feature alignment was 
obtained by the adaptive curve regression model; whenever the adaptive curve model failed, the linear model 
was automatically selected instead. Features were aligned and filtered to remove the compounds also present in 
the blank samples from the real samples and QCs, as they were attributed to either contaminants or carry-over 
artifacts. QC-based normalization of the features was carried out based on the peak area variations over time due 
to different instrumental fluctuations. Compound Discoverer allows performing QC-based area correction over 
time, meaning that for each individual feature, a linear regression of the peak area in the QC samples is built over 
time. The response of each feature is, in fact, susceptible to peak area enhancement (e.g., carry-over effects) and 
suppression (e.g., progressive accumulation of dirt on the ion source) over time. Therefore, each linear regres-
sion can be corrected so that the slope of each straight curve is zero and, eventually, each feature in the samples 
is corrected accordingly. Moreover, features not present in all QCs and those whose area in the QC presented a 
standard deviation higher than 25% were also filtered out. The remaining features undergoing fragmentation in 
the identification-only QC sample runs were exported for statistical analysis.

Statistical analysis.  The peak tables obtained in ESI+ (40 × 2611, samples × variables) and ESI– (40 × 1610) 
modes, which included the chromatographic areas of the peaks selected as described in Sect. 4.5, were normal-
ized using the urinary creatinine values and then imported in Matlab (version 2019a). All the following steps 
were performed separately for the two datasets. A principal component analysis (PCA) model was initially built 
on the autoscaled data. The data points were colored based on their injection order to highlight any sequence 
effect’s possible occurrence. These PCA models were examined to identify the potential occurrence of trends 
related to the patients’ clinical classification.

The PLS-DA algorithm was applied to select the most effective classification variables and calculate the clas-
sification efficiency of the PLS-processed and reduced datasets. A repeated double-cross-validation (r-dCV) 
approach was applied, using an in-home modified version of a protocol previously developed42,56,57. In r-dCV, 
the available data are organized in two nested loops of cross-validation, the outer one, whose samples are left out 
to mimic an external test set, and the inner one, which is used for model selection and optimization of (meta-)
parameters. In the present study, the inner and the outer loops were characterized by 8 (inner) and 10 (outer) 
deletion groups, respectively. The term repeated suggests that, to avoid a relevant impact of the composition of 
the cancelation groups on the final model performances, the whole procedure is repeated a stipulated number 
of times (runs, here 30), each time changing the distribution of the individuals within the cross-validation splits. 
This procedure not only allows the evaluation of classification figures of merit on samples that are external to 
the model building and model selection stages (i.e., those in the outer loop) but, by involving repeating the 
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dCV calculation multiple times, provides a reliable estimate of their confidence intervals. Therefore, r-dCV 
approach allowed to deeply investigate the collected data and, at the current stage, no external validation of 
the developed models was performed to avoid any data interpretation bias related to population heterogeneity. 
Moreover, as further validation, to rule out the possibility of obtaining good classification results just because of 
chance correlations, permutation tests (with 1000 randomizations)57 were used to non-parametrically evaluate 
the null distribution of the main classification figures of merit, to be able to assess their statistical significance 
and, if needed, obtaining corresponding p-values. In this context, identification of potential biomarkers was 
conducted through the following filter variable selection strategy based on the calculation of rank product (RP) 
and further comparison with VIP scores. Having implemented an r-dCV with 30 runs and 8 cancelation groups 
in the inner loop, a total of 240 models have been built on each data set. At the end of each model computation, 
a rank label was attributed to each variable depending on its contribution to the model, evaluated based on the 
absolute value of its associated PLS regression coefficient, the most contributing predictor being given a rank 
of 1 and so on. Then, for each variable, the overall contribution to the 240 calculated models was summarized 
by its rank product (RP), i.e., the geometric mean of its ranks across all the sub-models. Accordingly, variables 
were sorted in increasing order of RP and all the ones having a value lower than the geometric mean of the RP 
across all the predictors were identified as significant and selected as putative biomarkers. As a further form of 
validation, the selected variables were compared to those identified as relevant based on the calculation of the 
VIP scores58, and only the matching ones were retained. The selected variables were then allegedly identified 
using their MS/MS spectra. For metabolites present in the mzCloud database, MS/MS spectra matching was 
automatically performed by Compound Discoverer software. All other metabolites were tentatively identified 
by matching the experimental MS and MS/MS spectra to the available spectral libraries, spectra reported in the 
literature, and the predicted spectra reported in the Human Metabolome Database (HMDB)59. Identification 
data are reported in Supplementary Material Table S4 and S5 for ESI+ and ESI–, respectively. All the variables 
corresponding to exogenous metabolites or not identified were discarded. The final dimensions of ESI+ and 
ESI– datasets were 40 × 22 and 40 × 47, respectively. Hence, new r-dCV PLS-DA models were computed, using 
the two datasets (ESI+ and ESI–) independently and then merging them.

Ethics approval.  The subjects involved in this study were recruited in the Department of Urology at the San 
Luigi Hospital of Orbassano (TO, Italy), after approval from the reference Ethical Committee (protocol number 
17942).

Conclusions
The wide variety of biomarkers proposed in the scientific literature to provide a precocious diagnosis of prostate 
cancer somehow demonstrates that none of them fully attains the proposed objective. Several combinations of 
multiple biomarkers may improve the overall diagnostic efficiency of single metabolites, primarily if a multivari-
ate interpretation of their results is accomplished. However, clear comprehension of the underlying biochemical 
processes that generate their variety is still missing. The actual perspective goal of metabolomics approaches is to 
identify multiple biomarkers; the present study is intended to recognize large sets of urinary metabolites whose 
average concentration is significantly modified by the onset of the neoplastic pathology.

The UHPLC-HRMS approach, data treatment, and chemometric interpretation developed in this study proved 
to achieve the planned task of identifying a large number of potential PCa biomarkers, even using a limited 
number of samples to discriminate PCa from BPH patients. The whole procedure of MS data filtration, variable 
selection, and PLS-DA classification modeling with repeated-cross validation progressively reduced the 2611 and 
1610 metabolites initially selected from ESI+ and ESI− data, respectively, to the final sets of 22 and 47 alleged 
biomarkers, most of which has been hypothetically identified by careful comparison with libraries, literature 
data, predicted high- and low-resolution mass spectra, and theoretical fragmentation rules for structure-related 
classes of compounds, i.e., peptides and carnitines. Notably, some of these substances have been filtered out from 
the noisy backgrounds of both ESI+ and ESI− chromatograms, underlining their relevance in the discrimination 
of PCa from BPH patients. Further confirmations of the effectiveness of the chemometric approach developed in 
this study rely on the coherence of PCA and PLS-DA modeling outcomes and the stability of these results under 
the iterative r-dCV procedure. A final notable consideration is that several identified PCa alleged biomarkers 
of the same or different classes support the hypothetical neoplastic activation of fewer merging biochemical 
processes, such as the accelerated metabolism of protecting substances (i.e., ferulic acid) and the altered biosyn-
thesis of steroid hormones.
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