
14 October 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Delving in the loss landscape to embed robust watermarks into neural networks

Publisher:

Published version:

DOI:10.1109/ICPR48806.2021.9413062

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1891440 since 2023-08-28T14:52:42Z

Delving in the loss landscape
to embed robust watermarks

into neural networks
Enzo Tartaglione, Marco Grangetto, Davide Cavagnino and Marco Botta

Università degli Studi di Torino
Torino, Italy

Email: enzo.tartaglione@unito.it

Abstract—In the last decade the use of artificial neural net-
works (ANNs) in many fields like image processing or speech
recognition has become a common practice because of their
effectiveness to solve complex tasks. However, in such a rush,
very little attention has been paid to security aspects. In this
work we explore the possibility to embed a watermark into the
ANN parameters. We exploit model redundancy and adaptation
capacity to lock a subset of its parameters to carry the watermark
sequence. The watermark can be extracted in a simple way
to claim copyright on models but can be very easily attacked
with model fine-tuning. To tackle this culprit we devise a novel
watermark aware training strategy. We aim at delving into the
loss landscape to find an optimal configuration of the parameters
such that we are robust to fine-tuning attacks towards the
watermarked parameters. Our experimental results on classical
ANN models trained on well-known MNIST and CIFAR-10
datasets show that the proposed approach makes the embedded
watermark robust to fine-tuning and compression attacks.

I. INTRODUCTION

Besides the tremendous amount of research and applications
catalyzed by the great success of Artificial Neural Networks
(ANNs), and especially Deep Learning (DL), little attention
has been devoted to the related security and model integrity
aspects. Nowadays, ANNs have become the standard tool to
tackle supervised learning problems, provided that one can
train a deep neural model using a large annotated dataset. DL
has gained momentum and performance in an increasing num-
ber of fields ranging from computer vision, image, audio and
natural language processing [1], [2] to health applications [3],
just to name a few.

The ubiquitous presence of DL in the industry, health and
other critical systems, is asking for more research efforts to
understand and analyze security aspects and vulnerabilities.
As an example in [4] the vulnerability of DL to adversarial
modifications of the input examples is analyzed. Another
aspect that must be guaranteed in safety critical systems using
DL is that the designed model is not modified or compromised.
In other contexts copyright protection of models must be
ensured [5], [6]: in this work we explore the watermarking
of ANNs to protect ownership of trained models.

Object watermarking is a widespread technique used to
embed a signal (like a watermark image) into an object
(as a banknote) [7], [8]. Digital watermarking is the digital
application of object watermarking: it is performed by using

a function to alter some features of a digital object (like pixel
values or transform coefficients for images, samples for one-
dimensional signals, weights for neural networks, coordinates
for 3D models) driven by a binary valued or real valued signal,
i.e. the watermark. The watermarking process is composed
of two phases, namely embedding and extraction/verification;
the first one stores a watermark string into the object features,
possibly using a secret key to protect the watermark to counter
attacks, while the second phase is performed every time it
is necessary to test the presence of the watermark in the
object. Exploiting the watermark one can enforce copyright
and ownership protection, track of origin, integrity protection
and authentication.

As we briefly recall in the next section, there are only few
preliminary studies on digital watermarking applied to ANN.
In this work we advance the state of the art by making the
following contributions:

• we start from a naive and simple solution that embeds
the watermark in the ANN model weights; to this end
we simply exploit the fact that ANN models are usually
highly redundant and training can done by fixing a
subset of the model weights, e.g. the watermark, without
impacting on the final ANN performance, e.g. image
classification;

• we improve the naive approach by adding a term in
the loss function used for training: the aim is to find
a minimum of the loss function that guarantees the
watermarked weights to lay into a very steep valley;

• the proposed technique successfully embeds watermark
in all the layers of the deep model, including the output
layer, and it is not limited to a subset of hidden layers
like [9];

• we show that the proposed watermarking-aware loss
function makes it robust to fine-tuning attack where an
adversary tries to change the model weights by running
additional training epochs;

• we empirically study the effectiveness of the proposed
approach by showing that it represents an efficient solu-
tion achieving a significant level of robustness to attacks
without impacting on the ANN performance.

The paper is structured as follows: in Sect. II the related

state of the art is recalled, in Sect. III the proposed wa-
termarking method is presented in detail. In Sect. IV we
experimentally analyze the effectiveness and robustness to
fine-tuning and compression attacks; finally, in Sect. V our
conclusions are drawn and future directions outlined.

II. RELATED WORK

There is a growing interest in the protection of neural net-
work models by means of watermarking. There are essentially
two different approaches to ANN watermarking: open model
and black box watermarking, respectively.

In the former case, the watermark is embedded in the model
parameters that therefore must be accessible to recover the
watermark. The first of this kind of methods has been proposed
in [5], [10], where a vector is embedded into the model
parameters: in particular, the authors showed that it is possible
to embed a binary watermark into the parameters of a single
convolutional layer of an ANN. To this end, they recast the
watermark extraction as a binary classification problem with
a single-layer perceptron and propose to add a regularization
term in the loss function capable to jointly guarantee model
performance and watermark embedding during training.

Another open model approach has been proposed in [9] with
a different goal: orthogonal fingerprinting of the parameters
of a convolutional layer for user identification. To this end,
a mean square error regularization term is added to the
loss function during training to assure that the weights of
the convolutional layer can be projected onto the orthogonal
fingerprint. The fingerprint can be considered as a particular
case of binary watermark.

In black box approaches the watermark is learned by means
of a modified training dataset and the model ownership can
be queried during the inference phase, based on the generated
output. The works [6], [11], [12] propose different strategies
to modify the training images for black box watermarking and
show that in some cases the model accuracy may be impaired
significantly. In [13] this class of approaches is analyzed in
terms of payload size and model accuracy.

Previous works have shown the feasibility of ANN water-
marking and also pointed out that the most typical kind of
attack is represented by fine-tuning (or transfer learning); these
latter methods consist in continuing training of existing models
(trained on large datasets) on smaller or slightly modified
input to get improved performance. The same approach can
be used to let a model drift from the watermarked solution,
thus preventing the detection of the watermark while still
performing well on the trained task. In this work we show
that it is possible to take fine-tuning attack into account during
training so as to exploit ANN redundancy and adaptation
capacity to get a watermarked model that is intrinsically more
robust to such attacks. Towards this end, we are going to
use a replica-based approach, consisting in duplicating the
configuration of our trained ANN model. This is not a new
concept in deep learning: Zhang et al. [14], for example, used
such a concept to boost the convergence time during training,

or it can be even used to find non-trivial solutions to learning
problems [15].

III. METHOD

In this section we are going to describe the training strategy
aiming to embed a given watermark. As opposed to the
previous works, the approach proposed in this paper can
use any random subset of model parameters as a real-valued
(with proper floating point representation) watermark signal.
This choice provides two major advantages: larger watermark
capacity and more robustness to model ablation thanks to
random spreading of the watermark on all its parameters.
The key idea is to embed the watermark into a subset of
the model parameters selected according to a private key: the
weights carrying the watermark are simply not updated during
training and permits trivial extraction and verification. We will
show that the watermarked ANN can be trained to state-of-the-
art performance while reserving enough embedding capacity
thanks to high dimensionality of the model. More importantly,
we propose a solution to make such a simple watermarking
strategy robust towards the most typical model attack [5],
[13], i.e. fine-tuning. To this end, we provide a method that
guarantees the watermarked parameters can not be changed
significantly by gradient updates when an attacker tries to
modify the model weights by fine-tuning.

A. Preliminaries

In this section we are going to introduce the notation to
be used in the rest of this work. Let us assume we aim
at training an artificial neural network model Γ0. The j-th
trained parameter inside the model will be indicated as w0

j . The
watermark is represented by the sequence X ∈ RN , where xi
is a single element. These will be mapped to some parameters
of Γ0, which will be grouped in the collection of watermarked
parameters Wx ⊂ Γ0. All the parameters w0

j ∈ Wx will not
be modified during the training phase; hence, just the subset
of parameters

W x = Γ0 \Wx (1)

will be updated during the training phase.
In our work we will apply some transformation to the original
model Γ0: all those models will be referred to as Γk for
k ∈ [1, R] and the j-th parameter belonging to the k-th model
will be indicated as wk

j .
As we are going to see, this apparent restriction will not
be an obstacle during the training phase, as state-of-the-
art performances will be achieved in any case. It has been
shown that typical learning scenarios involve the research of
wide minima, whose existence is related to the typical over-
parametrization of ANN models [16], [17]. It is not a case, in
fact, that deep models can be hugely compressed, as most of
the parameters are not necessary after the training phase [18],
[19], [20]. Exploiting this, we are going to look for a particular
solution of Γ0 resulting in a narrow minima in the subspace
Wx.

(a) (b)

(c) (d)

Fig. 1: Overview on the method. From the model which is
trained updating non-watermarked parameters (a) we add some
noise on the watermarked parameters only in R replica of
our original network Γ0 – in this case R = 1 (b). Then,
the gradient on Γ1 is computed (c) and projected to the non-
watermarked parameters space (d).

B. Choice of the parameters

In this section we are going to describe the strategy we
decided to use in order to select some parameters form the
ANN model in which we decide to embed the watermark.
These parameters will not be updated anymore during the
training phase, preserving their own value. What we aim here
is to find a good metric to choose these parameters in a way
they are indistinguishable from other parameters.
Towards this end, let us assume all the parameters of our ANN
network are initialized with a gaussian distribution

Γ0 ∼ N (µ, σ) (2)

where µ is the mean and σ is the standard deviation. Now,
let us assume that each element of the watermark xi ∈ X is
bound and, in particular, xi ∈ [0, 1]. In order to embed these
values in the ANN model, we first have to decide the subset
Wx of parameters to be watermarked, and then the association
of the i-th element of the watermark xi to the j-th parameter of
the neural network w0

j . Towards this end, we randomly choose
these associations according to some pseudorandom number
generator f(·)

Mx = f(Γ0, N,K), (3)

where Mx is a map associating i ↔ j and K is an initial-
ization seed, kept private. By design, we ensure to uniformly

watermark all the layers of Γ0: hence, we cascade two different
uniform samples for f(·), where first we sample the layer and
then the j-parameter in the layer to be associated to the i-th
element in the watermark. This operation is repeated ∀ i. From
Mx we obtain the subset of parameters Wx to be watermarked.
Once we have determined Wx, we choose to map the single
elements as

w0
j = 2σ(xi − 0.5) + µ ∀ w0

j ∈Wx (4)

C. Training strategy

Once we have embedded the watermark in some parameters
w0

j of model Γ0, we need to train by minimizing a proper loss
function L that depends on the problem the model is targeting,
e.g. cross entropy for classical classification model. In order
to do that, we can use a standard SGD strategy. However, we
need to ensure all the watermarked parameters not to change
during the process. Hence, the update rule is modified as

w0
j := w0

j −
[
1− 1Wx(w0

j)
]
η
∂L

∂w0
j

(5)

where η is the learning rate and 1Wx
(w0

j) is the indicator
function for w0

j being a watermarked weight:

1Wx
(w0

j) =

{
1 if w0

j ∈Wx

0 otherwise
(6)

Hence, we are updating the network using the subspace W x

of the non-watermarked parameters (Fig. 1a). The watermark
extraction will be based on simple inverse mapping of (4):

xi =
w0

j − µ
2σ

+ 0.5 (7)

Ensuring (6) is a necessary condition to keep the watermark in
the model during the training; however, we will not guarantee
it can be removed using attack strategies like fine-tuning. What
we are aiming here to ensure it is a robust watermark as well.
To this end, we derive R ANN perturbed models Γk whose
values are initialized according to

wk
j := w0

j +
[
1Wx

(w0
j)
]

∆wk
j (8)

where ∆wk
j is some noise sampled from a normal distribution

N (0, s). Essentially, we are here introducing a variation just to
the watermarked parameters in the subspace Wx, yet leaving
all the other parameters maintaining the value achieved during
training (Fig. 1b). Then, let us calculate the gradient of the loss
with respect every wk

j , averaged on all perturbed Γk models:

gj =
1

R

R∑
k=1

∂L

∂wk
j

(9)

Essentially, gj is the gradient on the j-th model parameter
computed for a small perturbation of the watermark (Fig. 1c).
In order to make the watermark robust to fine-tuning attacks,
we need the final configuration of Γ0 to be in a narrow minima
along the dimensions of the watermarked weights, i.e. gj must
be high, ∀i ∈ W x. To this end, while minimizing the loss
L on Γ0 to train the model, we also want the gradient on

Fig. 2: Loss for small variations in Wx and W x. While in W x

we reach a wide minimum, in Wx we find a narrow minimum.

watermarked parameters to be as high as possible for small
perturbations of it (or, in other words, for all the Γk with
k ≥ 1): hence, we want to maximize (9). So, the overall update
rule becomes:

w0
j := w0

j −
[
1− 1Wx(w0

j)
] [
η
∂L

∂w0
j

− γgj

]
(10)

where γ is a positive hyper-parameter. The effect is that
the projection of gj to the subspace W x will determine
a contribution to maximize the value of the loss function
for small variations of the watermarked parameters in Wx

(Fig. 1d). Therefore, when an attacker applies fine-tuning
the gradient-based update rule will penalize changes to the
watermarked weights since the loss L along such dimensions
exhibits steep variation. At the same time, it is worth pointing
out that the loss steepness cannot be exploited by the attacker
to recover the subspace Wx, given the high dimensions of
typical ANNs. In Fig. 2 we anticipate an experimental result
supporting the previous remark: the surface represents the
experimental loss measured along a watermarked parameter
dimension (∆Wx) and free parameter (∆W x) on an ANN
model trained according to (10). It can be noted that, as
imposed by the rule we propose, the loss surface is clearly
steeper along the watermarked parameter dimension.

IV. EXPERIMENTAL RESULTS

In this section we experiment with our proposed water-
marking method over some different neural architectures and
datasets. Before training the ANN, we embed the watermark
into the model parameters Wx that are randomly chosen
according to a private key. The proposed update rule (10)
is used to train the model by setting different values for
R: when setting R = 0 we get naive embedding of the
watermark on model weights, whereas for R > 0 we enforce
resilience to fine-tuning attack. Our training and inference
algorithms are implemented in Python, using PyTorch 1.3, and

TABLE I: Performances after training.

Dataset Architecture epochs R test error [%]

MNIST LeNet5-caffe 100

0 0.78
1 0.83
4 0.82
16 0.85

CIFAR-10

ALL-CNN-C 350
0 10.38
2 10.67
4 10.50

ResNet-32 350
0 7.14
2 7.08
4 7.29

an RTX2080 Ti NVIDIA GPU with 11GB of memory has been
used for training and inference.1 All the used hyper-parameters
have been tuned using a grid-search algorithm.

The results will be presented for two different datasets
and two architectures for classification task: LeNet5-caffe
trained on MNIST, ALL-CNN-C and ResNet-32 trained on
CIFAR-10. All the architectures are initialized according to
(2). The watermarked parameters Wx will be in the standard
IEEE 754 float32 format each. Hence, when we say the size
of the watermark embedded into a model Γ0 is N , the actual
bits of the watermark are 32N . In our experiments, we have
chosen, as watermark sequence X , the RGB pixel values of
some images, scaled according to (4). The watermarked ANN
architectures will be attacked using two possible strategies:

• fine-tuning: the model is fine-tuned on the training set.
The attacker attempts to change the configuration of the
parameters in the model, still keeping the error low,
hoping to remove the watermark in the process.

• compression: the bits used for the representation of each
parameter are reduced. In particular, all the floating point
parameters are first converted into fixed point representa-
tion, and then some bits, from the LSB, are masked. The
attacker attempts, in this case, to reduce the numerical
precision of the parameters, hoping that the watermark
will be removed while the performance won’t drop signif-
icantly. Considering our choice to embed, as watermark
sequence, RGB pixel values of some images, we expect
the watermark won’t be modified when encoding every
parameter of the model on 8 bits or more.

For both the attacks, the Pearson correlation between the
original and extracted watermark will be the metric used to
measure the robustness to the attack, compared with the test
error of the architecture.

A. LeNet5-caffe on MNIST

In our first experiment we embed as watermark RGB
images with N = 20 × 30 × 3 = 1800 parameters into the
LeNet5-caffe architecture, trained on MNIST. MNIST is a
handwritten digits dataset made of 60k 28 × 28 pixel grey-
scale images of digits, divided in 10 classes (from 0 to 9).

1The source code will be made available upon acceptance of the article.

Fig. 3: Distribution of the parameters in the second convolu-
tional layer (conv2) of LeNet5-caffe.

For our simulations, the chosen loss function to minimize is
the cross-entropy with vanilla-SGD, η = 0.1, weight-decay
10−4, µ = 0, σ = 0.01, s = 0.01 for all the R values, mini-
batch size 100 for 100 epochs. The value of γ is 10−4 and
is multiplied by 0.5 every 25 epochs. In Tab. I we show the
obtained classification error on test-set after training: it can be
noted that 5dc03cc329200c00014e074cwatermark embedding
is achieved without significant impairment in classification ac-
curacy for all values of R. These results show that, as expected,
a subset of the model parameters (0.4% in our experiment)
can be used to convey the watermark with no penalty. The
achieved embedding capacity obviously depends on model,
task complexity and corresponding ANN redundancy.

As a further analysis in Fig. 3 we show a typical distribution
for the parameters in conv2 layer:

1) when ANN parameters are initialized with normal dis-
tribution (µ = 0 and σ = 0.01),

2) after embedding the watermark before training,
3) at the end of training process.

It can be noted that the watermarked parameters (about 0.4%
of the total) cannot be easily detected from the observed
empiric distribution.

Then we studied the robustness to fine-tuning varying
R. The Pearson correlation coefficient between the original
watermarked parameters and those extracted after fine-tuning
attack is shown in Fig. 4a, as a function of the epochs of fine-
tuning. We can observe that if we are not using our strategy
(case R = 0) the watermark tends to vanish. According to
our design, increasing R the watermark persists for a longer
time: the larger R, the more we are confident we put Γ0 in
a narrow valley for Wx. According to this, we have tried
also a compression attack to the R = 16 model. Finally,
we analysed the effects of compression attack: Fig. 4b shows
how the test error varies when the number of bits used for
representing a single parameter of the model decreases and

how the Pearson correlation coefficient varies. It can be noted
that the watermark is quite robust to quantization as it tends
to vanish when the parameters are represented with less than
4 bits, exactly when also the test error rises. Please notice that
the Pearson correlation coefficient for more than 6 bits is not
exactly 1 but very close to it.

B. ALL-CNN-C and ResNet-32 on CIFAR-10

Our watermarking strategy has been tested also for another,
more complex convolutional neural networks, ALL-CNN-
C [21] and ResNet-32 [22], trained on a different classification
task: CIFAR-10. It is made of 32 × 32 color images (3
channels) divided into 10 classes. The training set is made of
50k images and the test set of 10k samples. For our simulations
on both the architectures, the chosen loss function to minimize
is the cross-entropy with vanilla-SGD, η = 0.1 multiplied by
a factor 0.1 after [150, 250] epochs, weight-decay 5 · 10−4,
µ = 0, σ = 0.01, s = 0.01 for all the R values, mini-batch
size 100 for 350 epochs. Here the value of γ is 10−4. The
length of the watermark is here N = 38× 29× 3.
According to the overall performance on the test set (see
Tab. I), changing R does not significantly impact on the clas-
sification error. Also in this case, when we look at the Pearson
correlations during a fine-tuning attack (in Fig. 5a), we clearly
see the benefit of having a higher R value. It can be noted
that just setting R = 4 appears to be sufficient to keep the
correlation value very close to 1. Similarly, the compression
attack (Fig. 5b) shows that encoding the parameters in less
than 7 bits the performance drops, exactly when a part of the
watermarked parameters are modified.
A different and more recent architecture, ResNet-32, has also
been trained and watermarked. Similarly to ALL-CNN-C,
according to Tab. I, the test error does not change significantly
with different R values. If we inspect the watermark robustness
to fine-tuning attack, however, we observe a larger robustness
for R = 4 (Fig. 6a). Also here we observe a significant
robustness to the compression attack: Fig. 6b shows that the
performance worsens already when we encode each parameter
on 12 bits, while the Pearson correlation coefficient remains
close to 1 until 8 bits quantization.

C. Comparison with related work

As mentioned in Sect. II the most closely related work
to ours is [5] and the following extension in [10]. These
works add to the training process a single-layer perceptron
whose goal is to extract a sequence of bits, the watermark,
from the weights of a certain convolutional layer. The major
practical limitation compared to the solution proposed in this
work is represented by watermark capacity, that in [10] is
limited to a number of bits lower or equal to the number
of parameters of a convolutional layer. As a consequence
the experiments presented in [10] are limited to watermark
sequences of 2,048 bits. In our case the watermark is directly
represented by a set of weights in floating point representation:
as an example in our experiments we can embed as watermark
a color logo image amounting at N = 38 × 29 × 3 = 3306

 0.9988

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 0 10 20 30 40 50

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

epochs

R=0
R=1
R=4

R=16

(a)

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16
 0.8

 0.85

 0.9

 0.95

 1

te
s
t

e
rr

o
r

[%
]

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

bits

test error
Pcc

(b)

Fig. 4: Fine-tuning attack on LeNet5-caffe trained with different R values (a) and compression attack on LeNet5-caffe trained
on MNIST for R = 16 (b).

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 10 20 30 40 50

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

epochs

R=0
R=2
R=4

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16
 0.8

 0.85

 0.9

 0.95

 1

te
s
t

e
rr

o
r

[%
]

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

bits

test error
Pcc

(b)

Fig. 5: Fine-tuning attack on ALL-CNN-C trained with different R values (a) and compression attack on ALL-CNN-C trained
on CIFAR-10 for R = 4 (b).

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 10 20 30 40 50

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

epochs

R=0
R=2
R=4

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16
 0.8

 0.85

 0.9

 0.95

 1

te
s
t

e
rr

o
r

[%
]

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

bits

test error
Pcc

(b)

Fig. 6: Fine-tuning attack on ResNet-32 trained with different R values (a) and compression attack on ResNet-32 trained on
CIFAR-10 for R = 4 (b).

bytes. In other words our experiments show that our technique
can embed a watermark that is about 8 times larger without
neither impairing ANN performance, nor loosing robustness
to fine-tuning attack. Another work that is worth mentioning
for comparison is [9]: in this case the watermark embedding
approach is somehow closer to ours, being based on a training
regularization term. Nonetheless, it is designed for the par-
ticular case of embedding of short orthogonal fingerprints in
convolutional layer weights; as a consequence the watermark
is binary and its capacity is limited by the number of weights
in a convolutional layer.

Besides the higher capacity, our proposed solution is much
more flexible as any random subset of weights can be used
to host the watermark signal. In this work we exploit this
feature by randomly selecting the weights to be marked, thus
maximally spreading the watermark across all ANN model
parameters, guaranteeing that it is difficult to devise ad-hoc
attacks aimed at removing them as opposed to previous works
where the watermark resides in a single layer.

V. CONCLUSION

In this paper a new learning strategy has been proposed,
aimed at ensuring that some watermarked parameters inside
an ANN model are robust to fine-tuning attacks. Towards this
end, during the learning process, which results into minimizing
the loss function by modifying non-watermarked parameters
with gradient descent-based approaches, we are including a
constraint which maximizes the gradient for small perturba-
tions of the watermarked parameters. This learning process
selects configurations for the trained ANN model which have
both low error and are not allowing, because of the local shape
of the loss landscape, to significantly modify the watermarked
parameters without hugely impacting on the performance of
the ANN model.

Empirically, the proposed technique proves to be effective
in ensuring the watermark not being removed using fine-
tuning attacks. Furthermore, it proves its robustness also under
compression attacks: the performance worsens when just a part
of the watermarked parameters are modified. Detecting which
are the watermarked parameters cannot be exploited by simple
inspection of the weights distribution, as these are buried and
mixed besides all the other parameters. Future works include
the formulation of a regularization term having the same be-
havior as shown in this work, without involving the generation
of replicas, exploiting the concept of sensitivity [18].

REFERENCES

[1] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep learn-
ing: A review,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 30, no. 11, pp. 3212–3232, Nov 2019.

[2] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
recognition using deep neural networks: A systematic review,” IEEE
Access, vol. 7, pp. 19 143–19 165, 2019.

[3] L. Zhang, J. Lin, B. Liu, Z. Zhang, X. Yan, and M. Wei, “A review
on deep learning applications in prognostics and health management,”
IEEE Access, vol. 7, pp. 162 415–162 438, 2019.

[4] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[5] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding
watermarks into deep neural networks,” in Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval, ser. ICMR
’17. New York, NY, USA: ACM, 2017, pp. 269–277. [Online].
Available: http://doi.acm.org/10.1145/3078971.3078974

[6] S. Sakazawa, E. Myodo, K. Tasaka, and H. Yanagihara, “Visual de-
coding of hidden watermark in trained deep neural network,” in 2019
IEEE Conference on Multimedia Information Processing and Retrieval
(MIPR), March 2019, pp. 371–374.

[7] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Water-
marking and Steganography, 2nd ed. Morgan Kaufmann, 2007.

[8] F. Y. Shih, Digital Watermarking and Steganography: Fundamentals and
Techniques, 1st ed. CRC Press, 2007.

[9] H. Chen, B. D. Rohani, and F. Koushanfar, “Deepmarks: A digital
fingerprinting framework for deep neural networks,” in ICMR ’19:
Proceedings of the 2019 on International Conference on Multimedia
Retrieval, 2019.

[10] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh, “Digital watermarking
for deep neural networks,” International Journal of Multimedia Infor-
mation Retrieval, vol. 7, no. 1, pp. 3–16, 2018.

[11] G. Wang, X. Chen, and C. Xu, “Adversarial watermarking to attack deep
neural networks,” in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp.
1962–1966.

[12] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks
by backdooring,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 1615–1631.

[13] J. Guo and M. Potkonjak, “Watermarking deep neural networks for
embedded systems,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2018, pp. 1–8.

[14] S. Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging sgd,” in Advances in Neural Information Processing Systems,
2015, pp. 685–693.

[15] E. Tartaglione and M. Grangetto, “Take a ramble into solution spaces for
classification problems in neural networks,” in International Conference
on Image Analysis and Processing. Springer, 2019, pp. 345–355.

[16] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does deep and cheap
learning work so well?” Journal of Statistical Physics, vol. 168, no. 6,
pp. 1223–1247, 2017.

[17] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[18] E. Tartaglione, S. Lepsøy, A. Fiandrotti, and G. Francini, “Learning
sparse neural networks via sensitivity-driven regularization,” in Advances
in Neural Information Processing Systems, 2018, pp. 3878–3888.

[19] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout spar-
sifies deep neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
2498–2507.

[20] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through l 0 regularization,” arXiv preprint arXiv:1712.01312,
2017.

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

