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ABSTRACT
The quest for “chemical accuracy” is becoming more and more demanded in the field of structure and kinetics of molecules at solid
surfaces. In this paper, as an example, we focus on the barrier for hydrogen diffusion on a α-Al2O3(0001) surface, aiming for a couple
cluster singles, doubles, and perturbative triples [CCSD(T)]-level benchmark. We employ the density functional theory (DFT) optimized
minimum and transition state structures reported by Heiden, Usvyat, and Saalfrank [J. Phys. Chem. C 123, 6675 (2019)]. The barrier
is first evaluated at the periodic Hartree–Fock and local Møller–Plesset second-order perturbation (MP2) level of theory. The possible
sources of errors are then analyzed, which includes basis set incompleteness error, frozen core, density fitting, local approximation errors,
as well as the MP2 method error. Using periodic and embedded fragment models, corrections to these errors are evaluated. In partic-
ular, two corrections are found to be non-negligible (both from the chemical accuracy perspective and at the scale of the barrier value
of 0.72 eV): the correction to the frozen core-approximation of 0.06 eV and the CCSD(T) correction of 0.07 eV. Our correlated wave
function results are compared to barriers obtained from DFT. Among the tested DFT functionals, the best performing for this barrier is
B3LYP-D3.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0082805

I. INTRODUCTION

Surfaces are natural and in many cases very efficient cat-
alysts for various types of reactions. As a result, the field of
surface chemistry enjoys an intense focus from both experi-
mental and theoretical perspectives. Due to the complexity of
the processes, however, and extended nature of involved sys-
tems, the accurate theoretical description of reaction energetics
is very challenging. This is especially critical for accurate cal-
culation of reaction barriers, which, if estimated poorly, may
completely undermine the subsequent kinetic modeling or reac-
tion rate estimates. Recent attempts to achieve chemical accu-
racy (<1 kcal/mol) also for surface reactions are summarized in
Ref. 1.

Standard computational protocols for surface reactions employ
periodic super-cell models, treated with plane-wave basis sets and
density functional theory (DFT), within the generalized gradient
approximation (GGA). However, GGA functionals are notoriously
known to substantially underestimate reaction barriers, thus in
many cases providing not more than a rough estimate of the pic-
ture at hand. In a recent publication,2 some of us demonstrated that
a hybrid-DFT treatment, or Møller–Plesset second-order perturba-
tion theory (MP2), can deliver a more realistic barrier for hydrogen
diffusion on aluminum oxide surfaces. Nevertheless, the scattering
of the results observed among these models was still noticeable, so
a precise theoretical prediction was yet not possible. The MP2 value
for the barrier, however, was between the results of different hybrid
DFT functionals, allowing for a speculation that the actual barrier
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is of that ballpark. However, MP2, although generally known for
being accurate for oxide and ionic systems, cannot be considered
a safe benchmark. In order to reach certainty about the value of the
barrier (at least within reasonable margins), one has to step much
higher in the hierarchy of the quantum chemical models and reach
at least the coupled-cluster singles, doubles, and perturbative triples
[CCSD(T)] level of theory, combined with a basis set of suitable
quality.

The CCSD(T) method itself, the “gold standard” of quantum
chemistry, is computationally very expensive and, when combined
with good basis sets, its applicability is restricted to small molec-
ular systems. For somewhat larger systems, usually, a hierarchical
approach is employed, where the basis set limit is reached for
computationally less demanding models, while the CCSD(T) cor-
rection is then computed using a more modest (although still of
decent quality) basis set.3 For even larger systems, the standard
(canonical) CCSD(T) quickly becomes prohibitively expensive, even
when using modest basis sets (due to the unfavorable N7 scaling
with the system size) and, thus, can only be applied with addi-
tional approximations. One of the most successful approximate
CCSD(T) models applicable to extended molecules is the local
CCSD(T) model.4–12 Periodic systems add a further level of com-
plication for high-level quantum chemical models, both of technical
and fundamental nature. Until now, several effective schemes and
protocols have been developed that do allow for a CCSD(T)-level
treatment. First, there are some fully periodic implementations,13,14

yet these are still very computationally demanding, especially for
large unit cells, as in our case. Another possible strategy is to
employ representative finite clusters, either exclusively15,16 or for
correcting a low-level periodic treatment.17–28 However, the appli-
cability of this approach depends on the existence of clusters that
can adequately mimic the parent solid. For the system under study
here—aluminum oxide—construction of such clusters is highly
problematic.

In this work, we employ a different approach: the embedded
fragment CCSD(T) correction, which is a powerful method for accu-
rate description of local chemical processes in solids, for example,
reactions of adsorbed species. It offers a possibility to define a frag-
ment seamlessly via localized orbitals rather than explicit atoms, so
no bond-cutting is required to create an atomic cluster. One pos-
sible realization of such an approach is to embed a wave function
treatment in a DFT environment.29–42 An alternative to the DFT
embedding is the so-called Hartree–Fock (HF) embedding, where
the fragment becomes implicitly embedded in the frozen Coulomb
and exchange field of the true periodic HF solution. The HF descrip-
tion of the environment is usually not as accurate as a DFT one,
especially so for metals. On the other hand, HF embedding allows
us to treat the whole system in a unified seamless quantum chemical
framework, operating with frozen and active orbital spaces. Concep-
tually, it is similar to the standard frozen-core approximation. The
only difference is that here the frozen/active spaces are determined
not according to the orbital energies in the canonical representation
but rather on the basis of spatial proximity to the feature of interest
in the direct space representation.

In recent years, periodic HF embedding has drawn substantial
interest and several groups have developed various flavors of this
approach.43–48 In this work, we employ our recent interface to the
Molpro code,49,50 which passes the one-electron Hamiltonian matrix

and two-electron integrals in the basis of the fragment orbitals to the
molecular code.

We use the embedded fragment to evaluate the CCSD(T) cor-
rection to the periodic local MP2 (LMP2) treatment, i.e., to correct
the MP2 method error. All other significant errors of the periodic
LMP2 treatment are analyzed and corrected in the periodic regime.
The goal of this paper is to provide a CCSD(T) benchmark for the
hydrogen diffusion barrier on α-Al2O3(0001) and formulate a pro-
tocol for high precision calculations of quantities relevant to the
description of the kinetics of catalytic reactions on non-conducting
surfaces.

II. STRUCTURES
The initial and final states of the considered reaction rep-

resent two stable geometries of dissociative water adsorption on
α-Al2O3(0001) surface, which according to the nomenclature of
Refs. 2 and 51 are marked as “1-4” and “1-2,” respectively (see Fig. 1).
The 1-2 structure is a global minimum for water adsorption on this
surface with 1-4, according to LMP2 or B3LYP-D3, being about
0.4 eV higher in energy.2 The reaction from 1-4 to 1-2 represents
the diffusion of the hydrogen atom from one surface oxygen atom to
another.

The barrier for this reaction was calculated in Ref. 2 using DFT
and LMP2 methods. Even when discarding the Hartree–Fock (HF)
outlier, the resulting free energy values (at 300 K) for the barrier
scatter considerably: from 0.27 eV (PW91) to 0.58 eV (B3LYP-D3).
The MP2 barrier was found between these values, closer to the
B3LYP result. The main difference in the results was originating
from the electronic contribution to the barrier, as the zero point
energy (ZPE) and thermal contributions, computed with B3LYP
and Perdew–Burke–Ernzerhof (PBE), are comparable (−0.11 eV vs
−0.15 eV, respectively). Consequently, in this work, we focus solely
on the electronic contribution to the barrier,

ΔE = ΔE‡ = E(TS) − E(1−4). (1)

The α-Al2O3(0001) surface in our calculations is represented
by a nine-layer slab. Since we employ atomic-orbital (AO) basis sets,
we do not replicate the slab in the z⃗-direction, commonly done in

FIG. 1. Top (top) and side view (bottom) of the 1-4 geometry (left), the transi-
tion state (middle), and the 1-2 geometry (right). The adsorbed oxygen has been
colored blue and reduced in radius for distinction from the surface ones.
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plane-wave calculations. The 1-4 and transition state (TS) struc-
tures of Eq. (1) were taken from Ref. 2, where they were optimized
with B3LYP within a 63-atom super-cell. The explicit structure
specifications can be found in the supplementary material.

We note that in this work, we do not aim at investigating
the possible errors due to the slab model of the aluminum oxide
surface or inaccuracy of DFT structure optimizations. First, it is
very difficult to go beyond a slab-model and DFT for geometry
optimization, ZPEs, and thermal effects. At the same time, DFT
geometries and vibrational frequencies are usually not inaccurate.
Hence, the main focus is commonly put on the electronic part of
the barrier energy evaluated from two single point calculations on
DFT optimized structures. If it is captured with high accuracy, the
overall free energy of the barrier becomes a good reference for
experiment.

Second, a high precision electronic energy difference alone is
a valuable benchmark for DFT. As DFT remains the only practical
option for large scale calculations, benchmarking the performance
of the employed functional or functionals on key quantities becomes
absolutely instrumental.

III. QUANTUM CHEMICAL MODELS
In this section, we will describe in detail approximations and

possible sources of error, namely, basis set choice, thresholds and
truncations inherent to the approximations employed, level of
theory, and fragment choice.

A. Hartree–Fock and basis sets
In this work, we calculate the barrier [Eq. (1)] using a

hierarchy of quantum chemical models. We start from the peri-
odic AO-based HF method of the Crystal code.52 Unfortunately, rich
standard molecular basis sets are usually inapplicable for periodic
calculations without additional adjustment, as even slightly diffuse
orbitals cause quasi-linear dependencies among basis functions and
numerical instabilities in the SCF procedure. In this work, for most
of the calculations, we use a VTZ-quality basis set, optimized for
periodic systems, which was already employed in Ref. 2 (basis set
AO3). We refer to this basis set as VTZ. The explicit specification of
this basis set as well as all other basis sets used here is given in the
supplementary material.

Yet, it may become possible to employ rich molecular basis sets
(at least some of them) in periodic calculations, if the correspond-
ing orbitals are placed not everywhere but only on a few selected
atoms. This opens the possibility to pick up an atomic fragment
spatially close to the reaction site and use a molecular basis set hier-
archy for the atoms of this fragment only. In this way, we employ the
cc-pVTZ and cc-pVQZ basis sets of the Dunning basis set family53

on fragments defined below. The fragments only involve oxygen and
hydrogen atoms, as cc-pVXZ basis sets for aluminum are very dif-
fuse and not applicable, even when put on just a few atoms. Due to
technical reasons (the AOs of higher angular momentum than f are
not yet implemented in Cryscor), the g-AOs were omitted from the
cc-pVQZ basis of oxygen. All atoms outside the chosen fragment still
feature the VTZ basis.

Next, for the accurate post-HF description of dispersion, dif-
fuse high-angular momentum orbitals are needed in the basis.54

We include them via the dual basis set technique,55 i.e., only for
the post-HF treatment. We denote such basis sets as (A)VTZ or
(aug-)cc-pVXZ:56 the latter correspond to the cases when the
Dunning basis sets are used on the fragment atoms.

Within the dual basis set scheme, it is also possible to perturba-
tively estimate the contribution of the appended orbitals to the HF
energy through the so-called first-order singles,55,57

δsingEHF =
2

Nk
∑

k

∣ fai(k)∣2
ϵa(k) − ϵi(k)

. (2)

Here, Nk is the number of k-points in the Brillouin zone sampling,
ϵa(k) and ϵi(k) are the virtual and occupied orbital energies, respec-
tively, and fai(k) are the occupied–virtual elements of the Fock
matrix, which are not all zero in the dual basis set scheme. This
approach is also employed to add the tight orbitals from the cc-
pwCVTZ basis set58 for Al atoms for evaluating the correlated core
contribution to the barrier (see Sec. III B 1).

B. Local MP2
For the periodic post-HF treatment, we use a local MP2 model.

The closed-shell local MP2 energy may be written as

ELMP2
corr =∑

ij∈P
∑

ab∈[ij]
(2Tij

ab − Tij
ba)(ia∣ jb). (3)

Here, i and j are the localized occupied orbitals, a and b are the
localized virtual orbitals, and (ia∣ jb) are two-electron integrals in
the chemical notation,

(ia∣ jb) =∬ d r1d r2φi(r1)φa(r1)
1

r12
φj(r2)φb(r2), (4)

and Tij
ab are the MP2 amplitudes obtained by solving the MP2

equations.59,60 First, we note that in the local (direct space) repre-
sentation, the orbitals are real, so there is no need to explicitly specify
the complex conjugation in (4). Second, in contrast to the canonical
basis, the local MP2 equations are not trivially invertible. However,
these equations are linear and an iterative LMP2 equation solver
usually converges quickly.

In (3), the summation ranges are denoted as P, which repre-
sents the pair-list for the occupied orbitals, and [ij] for the virtual
orbitals specific for each occupied orbital pair ij. In the direct
space representation for the correlation energy per cell, one of
the indices (e.g., “i”) has to be restricted to the reference cell. An
additional restriction of other indices implies an approximation
to the MP2 method. In this work, we will explore the effect of
the involved approximations that truncate the pair list and virtual
space.

1. Frozen core
We start with the frozen core approximation, very common in

correlated calculations, which restricts the pair-list P to the valence
occupied orbitals only. It assumes cancellation of the core–valence
and core–core correlation contribution in energy differences related
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to chemical processes. Although this assumption is generally rea-
sonable, the influence of the core correlation associated with the
high core orbitals of the metal atoms (in our case 2s2p-core of Al)
may not be entirely negligible. We investigate this by comparing the
periodic LMP2 barriers with and without the 2s2p-core of Al atoms
correlated,

δcoreΔELMP2
corr = ΔELMP2

corr (FC1s) − ΔELMP2
corr (FC), (5)

where “FC” stands for the “frozen core,” and “FC1s” denotes that
only 1s-core of oxygen and aluminum atoms is kept frozen. These
calculations employ the (C)VTZ and (AC)VTZ basis sets that con-
tain the special tight orbitals from the cc-pwCVTZ basis of the Al
atoms.58

2. Pair approximation
Next, we focus on the so-called local approximations. The

first approximation of this kind is the pair-approximation that
further restricts the pair-list. In molecular local correlation meth-
ods, the pair-list is truncated for efficiency reasons (in particular,
to reach linear scaling), as the pair-energy contributions decay
with the inverse sixth power of the distance between the cen-
ters of the local orbitals.9,61 In a periodic system, it is in prin-
ciple not possible to include all Wannier function (WF) pairs
in the pair-list P, even formally, as their number is infinite. In
order to investigate the influence of the pair approximation, we
progressively expand the pair-list until convergence of ΔELMP2

corr is
achieved.

3. Domain approximation
The second essential local approximation is the so-called

domain approximation, which restricts the virtual space for each
pair ij to the pair domains [ij]. A pair domain is thus a pair-specific
set of virtual orbitals.

In this work, we use two types of virtual orbitals and, there-
fore, two types of pair domains. The virtuals of the first type
are the projected atomic orbitals (PAOs).57,62 These orbitals are
AOs, which are projected out from the occupied manifold and so
are atom-centered. A PAO pair domain [ij] consists of all PAOs,
centered on the atoms, that are spatially close to the occupied
orbitals i or j of a pair. It is convenient to define the minimal
PAO domains, which include PAOs from only one atom (for lone-
pair WFs) or two atoms (for bond WFs) per occupied orbital. The
domains can then be systematically expanded by adding the PAOs
from nearest-neighbor atoms (iext = 1), second-nearest-neighbor
atoms (iext = 2), etc. In aluminum oxide, which is to a large
extent ionic, the WFs are centered on oxygens, so the correspond-
ing minimal domains consist of the PAOs of just single oxygen
atoms. Extension to the nearest-neighbors (iext = 1) adds a shell
of the aluminum atoms surrounding the initial oxygen, and a sec-
ond nearest-neighbor (iext = 2) is the next shell of the oxygen
atoms.

Restriction of the virtual space to the PAO pair-domains leads
to a compact pair-specific virtual space, and, at the same time, a
common global set of virtual orbitals remains, which facilitates cal-
culation of integrals and other intermediates. Yet, a known issue
of PAO-based domains is a possible imbalance between the virtual

spaces for different points on the potential energy surface, at least
when small domains are used. The reason is that the virtual space
can be varied only rather coarsely, by adding or removing all the
PAOs of a given atom.

As an alternative to PAOs, in periodic local MP2, one can
also use the so-called orbital specific virtuals (OSVs).63,64 OSVs for
a given occupied orbital i are defined as the MP2 virtual natu-
ral orbitals for a diagonal pair ii. To truncate the virtual space by
including only the essential OSVs, an energy cutoff is usually used
(in Cryscor 10−5 hartree by default). An OSV pair-domain for a
non-diagonal pair ij is defined as a union of the OSVs correspond-
ing to the orbitals i and j. There is also one aspect that is specific
to our OSV implementation: in order to counterbalance the bias
of the OSVs toward the short-range correlations, the most diffuse
PAOs of the corresponding minimal PAO domain (one shell of
PAOs per angular momentum per center) are added to the set of the
OSVs.

The OSVs and, thus, the OSV domains automatically adapt to
the change in the structure, so the imbalance and discontinuity of the
potential surface are much weaker than with PAO domains. On the
downside however, with OSVs, it turns out to be difficult to explore
convergence with domain size in periodic calculations, as tightening
of the cutoff energy threshold requires progressive expansion of the
fitting basis.64

4. Density fitting
The next approximation in the periodic local MP2 method con-

cerns the evaluation of the electron repulsion integrals (ia∣jb) of
Eq. (4). These integrals are used both in the LMP2 energy expres-
sion [Eq. (3)] and in the LMP2 amplitude equations.60 In order to
gain efficiency, they are not evaluated and transformed as 4-index
AO integrals but rather assembled from 3- and 2-index quantities by
means of the density fitting (DF) approximation. In our approach,
we use local robust density fitting, which is very efficient in bulk
systems.65,66 Yet, this is an approximation, as the integrals are not
exact. DF is known to be generally very accurate for energy differ-
ences. It is, however, of interest to check its accuracy also for this
system.

The DF approximation in MP2 implies decomposition of
occupied–virtual orbital products ρia(r) = φi(r)φa(r) in an auxiliary
(or fitting) basis {ϕP},

65,66

ρia(r) = ∑
P∈[ia]fit

dP
iaϕP, (6)

where [ia]fit is the fitting domain that includes the fitting functions
centered on the atoms supporting the product density ρia(r). As the
fitting functions, we use Poisson-type orbitals (PTOs),65,67,68 directly
converted from the MP2-optimized Gaussian-type-orbital (GTO)
fitting basis sets.65 In addition to the momentless PTOs, in order to
capture the moments of the fitted product densities, the PTO fit-
ting basis sets are appended with a few GTOs: one shell per angular
momentum per center in the fitting-domain (s-type GTOs are not
included, as the densities ρia are chargeless).

In the calculations presented here, we used the PTO basis
converted from the GTO fitting basis set optimized for MP2 with
aug-cc-pVTZ orbital basis.69 In order to check the accuracy of the
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DF approximation, we compared these results against those calcu-
lated with aug-cc-pV5Z-optimized fitting basis sets. The deviation
in ΔEMP2

corr between these two fitting basis sets was less than 10−5 eV,
suggesting that the error due to the density fitting approximation is
absolutely minute.

5. Local correlation partitioning
The local correlation scheme allows not only for a highly

efficient correlated treatment, but it also enables partitioning of
correlation part of the interaction energies into physically inter-
pretable components. Usually, such partitioning is used in the
context of inter-molecular interactions, where one can isolate the
inter-molecular as well as intra-molecular components of the inter-
action energies. In our approach, we also employ a similar parti-
tioning scheme to investigate how much of the correlated correction
to the barrier stems from the correlation inside the fragments (see
Secs. III D and III C).

According to Eq. (3), the total correlation energy can be defined
via the pair energies,

eij = ∑
ab∈[ij]

(2Tij
ab − Tij

ba)(ia∣jb). (7)

With this, the correlation energy and, thus, the correlation part of the
barrier can be partitioned into the intra-fragment, extra-fragment,
and inter-fragment-environment components,

ELMP2
corr = Eintra−frag + Eextra−frag + Einter, (8)

with

Eintra−frag = ∑
i∈frag,j∈frag

eij, (9)

Eextra−frag = ∑
i∉frag,j∉frag

eij, (10)

Einter = ∑
i∈frag,j∉frag

eij + ∑
i∉frag,j∈frag

eij. (11)

Furthermore, different pair restriction thresholds can be
applied to different pair classes individually. In this way, the pair
classes that do not contribute substantially to the quantity of
interest (in our case the barrier) can be restricted more harshly.
This allows for substantial gains in efficiency without affecting the
accuracy.

6. Basis set convergence of the correlation energy
It is well known that the correlation energy is sensitive to the

basis set quality. Therefore, it is essential to estimate the basis set
limit for the correlated part of the barrier, instead of just remaining
at the AVTZ basis set level (as in Ref. 2). To this end, we employ two
techniques. First, we extrapolate ΔELMP2

corr using the standard inverse-
cubic formula.70 The extrapolation is based on the results with the
(aug-)cc-pVTZ and (aug-)cc-pVQZ basis sets placed on the frag-
ment atoms (see Subsection III D). The basis set extrapolation is
done with both the PAO and OSV approaches. The second scheme

for ΔELMP2
corr at the basis set limit is the periodic LMP2-F12 method,

which, at this point, is only implemented with PAOs.66

C. CCSD(T) correction
Finally, in order to approach chemical accuracy, we also need to

correct for the MP2 method error itself. Here, the correlated treat-
ment is extended to the CCSD(T) level via the embedded fragment
approach. In this method, a group of localized occupied and vir-
tual orbitals from the periodic calculation, which are spatially close
to the reaction, define a fragment. The embedding of the fragment
in the periodic HF solution is incorporated in the fragment’s one-
electron Hamiltonian hfrag

pq , which is constructed from the periodic
Fock matrix Fcryst and includes the Coulomb and exchange potential
from the rest of the crystal,50

hfrag
pq ∶= Fcryst

pq −
occ

∑
i∈frag
[2(pq∣ii) − (pi∣iq)], (12)

= hcryst
pq +

occ

∑
i∉frag
[2(pq∣ii) − (pi∣iq)], (13)

where p and q (as well as r and s below) are the general orbitals
of the fragment (occupied or virtual). The two-electron part of the
fragment Hamiltonian elements (pq∣rs) is computed in Cryscor
using the localized orbitals from the actual periodic calculation.50

Importantly, the fragment orbitals are, by construction, orthog-
onal to the occupied orbitals of the environment, allowing for
a clean and seamless cut between the fragment and embedding
spaces.

The Hamiltonian matrix elements hfrag
pq and (pq∣rs) are trans-

ferred to the molecular code Molpro71 via a FCIDUMP interface,72

where any available canonical post-Hartree–Fock treatment can be
applied. The method correction is then defined as

δmethΔE = ΔEmeth
emb.frag. − ΔEMP2

emb.frag.. (14)

As noted above, the focal high-level method for the correction,
denoted by “meth” in (14), is CCSD(T), providing δCCSD(T)ΔE.
We will, however, also test other less expensive methods, such
as CCSD and distinguishable cluster with singles and doubles
(DCSD).73–75

D. Specification of the fragments
As discussed above in Secs. III A and III C, we employ frag-

ments for the basis set extrapolation of the correlation energy and
for the evaluation of δCCSD(T)ΔE. We use three fragments of progres-
sively increasing size, which is shown in Fig. 2. The oxygen atoms of
the fragments are marked in blue.

For the basis set extrapolation, the atomic orbitals of the
(aug-)cc-pVTZ or (aug-)cc-pVQZ basis set are placed on the frag-
ment oxygen and hydrogen atoms. The rest, including all aluminum
atoms, remain with the (A)VTZ basis. The standard Dunning basis
sets of aluminum contain too diffuse AOs that cannot be used for
periodic calculations. However, since all the valence WFs are local-
ized on oxygen atoms, a triple-zeta basis set level for aluminum is
expected to be sufficient.
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FIG. 2. Fragments 1 (top), 2 (middle), and 3 (bottom) geometries. The left pic-
ture refers to the 1-4 geometry and the right to the TS geometry. The oxygen
atoms belonging to the fragments are colored blue. The atoms marked green are
the aluminum atoms of the fragments used for the MP2 method error correction.
By light green, we marked the aluminum atoms of Fragment 2 with the extended
virtual space. Since the valence WFs are centered exclusively on oxygens, the alu-
minum atoms add only virtual functions to the fragment spaces via the respective
PAOs.

For the embedded fragment treatment, the fragments are
defined by the valence WFs, which are centered on the marked oxy-
gen atoms: four per atom. The fragment’s virtual space is spanned by
the PAOs from the minimal domains of these WFs (see Sec. III B 3).
This includes the PAOs of the oxygen atoms of the fragment, the
hydrogen atoms, and one aluminum atom bound to the adsorbed
OH group. For the VTZ basis and Fragment 2, we also expanded
the virtual basis to the PAOs from the next nearest-neighbor atoms,
which added another four aluminum atoms (see Fig. 2). Table I sum-
marizes the specification of the occupied and virtual space in the
fragments.

We note that the actual number of the orthogonal virtual
orbitals of the fragment is slightly smaller than the number of
PAOs. In fact, PAOs form a non-orthogonal and even gener-
ally redundant set (as by construction there are as many PAOs
as AOs). Before the in-fragment canonicalization, the fragment’s
PAOs are orthogonalized, employing the same procedure as in
PAO-based local correlation methods.76 It takes the eigenvectors
of the PAO overlap matrix as the orthonormal virtual set to be
canonicalized. However, to get rid of linear dependencies (or quasi-
linear dependencies), all the eigenvectors with the eigenvalues below
a certain threshold (the default value in Cryscor is 10−4) are
excluded.

TABLE I. Summary of the occupied and virtual spaces for the different fragments
under consideration.

Fragment 1 2 2 (ext. virt. space) 3
No. of occ. orbitals 4 12 12 24
No. of PAO atoms 4 6 10 9

VTZ

No. of PAOs 97 157 313 247
No. of orthog. virtuals 94 151 301 236

(A)VTZ

No. of PAOs 121 205 331
No. of orthog. virtuals 118 199 320

IV. RESULTS AND DISCUSSION
We start our discussion with the HF barriers. Table II sum-

marizes the values for ΔEHF obtained with different basis sets. The
diffuse orbitals were added only within the dual basis set approach;
hence, their contribution was captured via the singles correction
of Eq. (2).

As follows from Table II, the HF barrier is not very sensitive to
the basis set level, at least starting from (A)VTZ. However, there is
scattering of the results of about 0.02 eV, with no clear convergence
pattern. For estimating ΔEHF, we take the value of 1.13 eV, which
was obtained using the (aug-)cc-pVQZ basis on the biggest fragment
[and (A)VTZ on the rest]. However, due to the singles scatter, the
uncertainty cannot be reduced to less than 0.02 eV. As noted above
and will also be seen later, the HF barrier is much too high when
compared to the correlated methods.

Next, we move on to the correlation energy contribution to the
barrier, where we first focus on the periodic local MP2 treatment.
In Fig. 3, we analyze the locality of the correlation effect on the bar-
rier using LMP2(OSV)/(A)VTZ. For Fragment 1, the intra-fragment
contribution is virtually zero, suggesting that the electron correlation
of the electrons near the OH group does not influence the barrier.
However, already for Fragment 2, ΔEintra-frag becomes the dominant
component of ΔEMP2

corr . This suggests that with fragments 2 and 3,

TABLE II. The periodic HF contribution to the barrier ΔEHF in eV computed using
different basis sets and fragments (see Secs. III A and III D for detailed specifications).

HF Singles HF + singles

(A)VTZ 1.166 −0.029 1.137
(aug-)cc-pVTZ

Fragment 1 1.165 −0.025 1.140
Fragment 2 1.170 −0.037 1.133
Fragment 3 1.166 −0.029 1.137

(aug-)cc-pVQZ

Fragment 1 1.166 −0.018 1.149
Fragment 2 1.161 −0.011 1.150
Fragment 3 1.156 −0.028 1.129
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FIG. 3. The LMP2(OSV)/(A)VTZ correlation energy components ΔEintra-frag
ΔEextra-frag and ΔEinter, calculated with the three different fragment definitions (see
Sec. III D for the exact specification). For each fragment, the energy components
sum up to the same total energy [ΔELMP2

corr (OSV) = −0.547 eV], as the same cutoff
radii Rintra−frag

max = Rextra−frag
max = Rintra

max = 12 Å were taken.

an accurate description of the intra-fragment correlation would also
provide an accurate overall description.

As a next step, we explore the accuracy and possible sources of
errors in the periodic LMP2 treatment due to the additional approx-
imations. First, as may be seen from Table III, ΔEMP2

corr converges
relatively fast with the pair-list cutoff distance, suggesting that the
pair approximation does not introduce any sizable error.

The domain error, however, is more difficult to estimate and
eliminate, predominantly so in the PAO approach. Since the domain
error and the basis set incompleteness error are of the same ori-
gin (due to restriction of the virtual space), we treat these two
errors together. First, we note that, according to Table IV, the
basis set extrapolated value depends very mildly on the fragment
that features the actual (aug-)cc-pVTZ and (aug-)cc-pVQZ basis
functions.

TABLE III. Dependence of the LMP2(OSV)/(A)VTZ correlation contribution to the bar-
rier on the pair-list truncation. The cutoff distances for different pair classes are given
in Å. The partitioning into intra-fragment, extra-fragment, and inter-pairs was done on
the basis of Fragment 3.

Rintra−frag
max Rextra−frag

max Rinter
max ΔELMP2

corr (eV)

6 2 2 −0.727
8 4 4 −0.541
10 6 6 −0.546
12 8 12 −0.547

TABLE IV. The basis set extrapolated ΔELMP2
corr values computed with PAOs (iext = 2

domains) and OSVs. The basis set extrapolation was performed using the correlation
energies obtained with the (aug-)cc-pVTZ and (aug-)cc-pVQZ basis functions placed
on the fragment atoms [the rest remaining (A)VTZ]. For the fragment specification,
see Sec. III D.

Fragment 1 Fragment 2 Fragment 3

ΔELMP2
corr (PAO) (eV) −0.549 −0.536 −0.536

ΔELMP2
corr (OSV) (eV) −0.555 −0.544 −0.542

Conversely, the resulting energies depend much stronger on
the PAO-domains. In Fig. 4, we show the basis set limit estimates
for ΔELMP2

corr obtained with the basis set extrapolation and LMP2-F12
method using different PAO domains. For the minimal domains
(iext = 0) and especially for the iext = 1 domains, the results depend
strongly on the scheme employed to approach the limit. For iext = 2
domains, on the other hand, the extrapolated and F12 results agree
as they agree also with the OSV-based calculations.

The problem occurring with smaller domain calculations seems
to be related not to the dependence of the barrier on the basis
set but rather to the imbalance between the virtual space of the
1-4 and transition state structures. This follows from the fact that
the correction on top of the (A)VTZ value turns out to be rather
small: +0.003 eV for the extrapolation and 0.016 eV for F12 (see the
supplementary material). The OSV approach is much less prone
to the imbalance issues, as the virtual orbitals naturally adapt
to the change in the structure. We, therefore, take the OSV

FIG. 4. The basis set limit estimates for ΔELMP2
corr calculated using the basis set

extrapolation (with the Dunning basis sets placed on the atoms of Fragment 3) and
the periodic LMP2-F12 method. The PAO results were obtained with the minimal
(iext = 0) and extended (iext = 1 and iext = 2) domains.
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(aug-)cc-pV(TQ)Z-extrapolated value of −0.54 eV as the MP2 ref-
erence result. This value also does not deviate strongly from the iext
= 2 PAO results: 0.006 eV from the PAO extrapolated result and
0.019 eV from the LMP2-F12 value. However, the 0.02 eV discrep-
ancy has to be taken into account as a possible uncertainty of the
result.

Next, we draw our attention to the core correlation. The frozen
core approximation is standard in most post-HF applications, but
when aiming at very high precision, the core correlation contri-
bution may be non-negligible.28,77–79 This is apparently also the
case here: when the 2s2p electrons of aluminum are correlated,
δcoreΔELMP2

corr adds around +0.06 eV, regardless whether PAOs, OSVs,
or (AC)VTZ or (C)VTZ are used (see Table 7 of the supplementary
material for the detailed results).

Finally, we correct the MP2 method error by evaluating the
δCCSD(T) correction. Table V compiles the values for the correction
computed for different fragments and basis sets. The CCSD(T)-
correction to MP2 of +0.07 eV is not negligible and (if excluding
Fragment 1, which is clearly too small and inadequate for this
system) remains very stable across the fragments and basis sets.

We also tested a few other methods for the method correc-
tion: CCSD, DCSD, and the spin-component-scaled-(SCS-)DCSD.75

CCSD noticeably overestimates barrier, as δCCSDΔE is approximately
twice as large as δCCSD(T)ΔE. DCSD results are much closer to
CCSD(T), especially so with the SCS version of DCSD, which vir-
tually coincides with CCSD(T). Interestingly, the dependence of the
correction on the fragment is stronger for CCSD or DCSD than for
CCSD(T) but is still rather weak.

Having thus examined and eliminated the main errors in the
quantum chemical treatment, we are in a position to provide the
benchmark value for the barrier for hydrogen diffusion from the 1-4
to 1-2 structures on the aluminum oxide surface, which amounts to
0.72 eV. In Table VI, we compile the final results and compare them
to the DFT values of Ref. 2. It is clear that the HF barrier is much
too high. The MP2 result is of reasonable quality, but when using
the frozen core approximation, the barrier is yet substantially lower
than the reference. The core correlation and CCSD(T) corrections

TABLE V. The δmethΔE correction (see Sec. III C) computed using the embedded
fragment approach with different high-level methods, fragments (see Sec. III D for
specification), and VTZ and (A)VTZ basis sets. All energies are in eV.

2
Fragment 1 2 Ext. virt. space 3

δCCSDΔE(VTZ) −0.002 0.140 0.141 0.150
δCCSDΔE((A)VTZ) −0.002 0.143 0.155

δDCSDΔE(VTZ) −0.001 0.100 0.101 0.107
δDCSDΔE((A)VTZ) −0.001 0.102 0.113

δSCS-DCSDΔE(VTZ) −0.000 0.064 0.065 0.067
δSCS-DCSDΔE((A)VTZ) −0.000 0.066 0.073

δCCSD(T)ΔE(VTZ) −0.001 0.072 0.071 0.073
δCCSD(T)ΔE((A)VTZ) −0.001 0.072 0.073

TABLE VI. The electronic barrier for the hydrogen diffusion 1-4 → 1-2 ΔE calcu-
lated at the different levels of theory. The “HF” value corresponds to the periodic
HF+singles results using the (aug-)cc-pVQZ on Fragment 3 and (A)VTZ on the rest.
By “MP2(FC),” we denote the OSV-based frozen-core periodic LMP2 result extrapo-
lated using (aug-)cc-pV(TQ)Z on Fragment 3. The “MP2” result is “MP2(FC)” plus the
2s2p-Al-core correlation correction δcoreΔEMP2. “CCSD,” “DCSD,” “SCS-DCSD,” and
“CCSD(T)” denote the “MP2” result plus the embedded fragment correction δmethΔE
at the respective level. The DFT values are taken from Ref. 2. The B3LYP value is
obtained directly from B3LYP-D3 by subtracting the D3 contribution.

Method ΔE (eV)

HF 1.13
MP2(FC) 0.59
MP2 0.65
CCSD 0.81
DCSD 0.76
SCS-DCSD 0.72
CCSD(T) 0.72

B3LYP-D3 0.69
B3LYP 0.65
HSE06 0.56
PW91 0.42
PBE-D2 0.44

are both noticeable and of the same sign, accumulating the error of
MP2 with the frozen core.

Among the DFT functionals, the hybrids are clearly better
performing than GGAs, which grossly underestimate the barrier.
Interestingly, the B3LYP-D3 value is very close to our benchmark.
The dispersion contribution to the barrier is not negligible but
fairly small, as is revealed by the D3 component amounting to
+0.04 eV. The quick convergence of the LMP2 barrier and the post-
MP2 corrections with the fragment size suggests that the essential
dispersion part comes from the region directly surrounding the reac-
tion. For such a reaction, where the reactant and the product are
both adsorbed on a surface, the long range dispersion contributions
are indeed expected to cancel out to a large extent in the energy
differences.

V. CONCLUSIONS
The goal of this contribution is two-fold. First, we report a

highly accurate benchmark value of 0.72 eV for the barrier of
hydrogen diffusion on α-Al2O3(0001) surface. The main uncertainty
originates in the basis set convergence, which could not be reduced
below 0.02 eV, both in HF and in MP2. However, even if these errors
accumulate, it still remains within chemical accuracy. The GGA
DFT barriers in comparison to this benchmark are clearly severely
underestimated: by about 0.3 eV. Hybrid functionals perform bet-
ter, in this case especially so B3LYP-D3. We do not have a direct
experimental reference to compare to (rather, on the contrary, the
value obtained in the work can serve as a reference for the experi-
ment). However, the high barrier obtained here can be qualitatively
supported by the fact that the hydrogen vibrations in positions 1-4
are observed experimentally,51 suggesting that the hydrogen atoms
diffuse from 1-4 to 1-2 rather slowly.
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Second, this work demonstrates a protocol for calculating reac-
tion barriers on non-conducting surfaces. The periodic HF and local
MP2 with (A)VTZ-quality basis sets are expected to be already
reasonably close to the basis set limit. OSV-based LMP2 calcu-
lations are much more robust than the PAO ones as concerns
the balance of the virtual space between different points on the
potential surface. The basis set limit can be calculated either by
extrapolation of the OSV-LMP2 energies (the corresponding Dun-
ning basis set can be used only for the fragments surrounding
the reaction) or via an LMP2-F12 calculation. Since the imple-
mentation of the OSV-based periodic local F12 method is yet
underway, for the PAO-based version of F12, one should use very
big domains (e.g., iext = 2); otherwise, unbalanced results may
be obtained.

When metal atoms are present, the standard frozen-core
approximation may not be sufficiently accurate. In our case, the
correlation contributions from the upper core of Al are sizable and
should be evaluated. Another important correction is the CCSD(T)
correction on top of MP2. In order to evaluate this correction, an
embedded fragment approach is practical and very efficient. If all
the interesting steps of the reaction involve only adsorbed species,
the long-range dispersion is expected to cancel to a large extent in
the energy differences, reducing the essential active region to a local
space around the reacting species.

SUPPLEMENTARY MATERIAL

See the supplementary material for the specification of the
structures, basis sets, and other computational parameters, as well
as a detailed compilation of the obtained results.
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