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Abstract: Google Earth Engine has deeply changed the way in which Earth observation data are
processed, allowing the analysis of wide areas in a faster and more efficient way than ever before.
Since its inception, many functions have been implemented by a rapidly expanding community,
but none so far has focused on the computation of phenological metrics in mountain areas with
high-resolution data. This work aimed to fill this gap by developing an open-source Google Earth
Engine algorithm to map phenological metrics (PMs) such as the Start of Season, End of Season, and
Length of Season and detect the Peak of Season in mountain areas worldwide using high-resolution
free satellite data from the Landsat collection and Sentinel-2. The script was tested considering
the entire Alpine chain. The validation was performed by the cross-computation of PMs using
the R package greenbrown, which permits land surface phenology and trend analysis, and the
Moderate-Resolution Imaging Spectroradiometer (MODIS) in homogeneous quote and land cover
alpine landscapes. MAE and RMSE were computed. Therefore, this algorithm permits one to compute
with a certain robustness PMs retrieved from higher-resolution free EO data from GEE in mountain
areas worldwide.

Keywords: Google Earth Engine; phenological metrics; mountains; algorithm; Sentinel-2; Landsat
collection 4–9; Alps

1. Introduction

Google Earth Engine (GEE) has deeply changed the way in which Earth observation
data are processed, allowing the analysis of wide areas in a faster and more efficient
way than ever before. Since its inception, many functions and applications have been
implemented and developed by a rapidly expanding community [1]. GEE is a cloud-based,
global-scale geospatial analysis platform that provides Google’s vast array of solutions to a
wide range of serious social issues, including deforestation, drought, disasters, disease, food
security, water management, and climate monitoring [2–5]. Thanks to the power of cloud
computing, GEE was designed to support traditional remote-sensing scientists as well as a
wider audience who lack the technical ability to leverage traditional supercomputers and
large cloud computing resources. As an integration platform, it is unique in this field [6].
This platform has permitted the development of a tremendous amount of geospatially
based applications and research [7,8].

A cloud-based platform such as GEE makes it simple to use high-performance com-
puting tools for processing very large amounts of geospatial information without having to
deal with the IT issues that are currently plaguing either. Additionally, and in contrast to
other supercomputing facilities, Earth Engine was created to make it simple for researchers
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to share their findings with other scholars, policymakers, non-governmental organizations,
field personnel, and even the general public. Users do not need to be experts in applica-
tion development, web programming, or HTML to deploy interactive apps or produce
systematic data products once an algorithm has been developed on Earth Engine [1,9].

It is worth noting that GEE has a high-performance, intrinsically parallel computa-
tion service that is co-located with a multi-petabyte data catalog ready for analysis. It
can be accessed and managed using an application programming interface (API) that
is accessible via the Internet, together with a web-based interactive development envi-
ronment (IDE) that enables quick prototyping and result visualization [4,10]. The data
catalog contains a sizable collection of freely accessible geospatial datasets, such as ob-
servations from numerous optical and non-optical satellites and aerial imaging systems,
environmental variables, weather and climate forecasts and hindcasts, land cover, and
topographic and socioeconomic datasets. All of these data have been preprocessed into a
usable but information-preserving format that enables quick access and eliminates many
data-management-related obstacles [11–13]. Finally, the Earth Engine API offers a library
of operators that users may employ to retrieve and analyze both their own private data as
well as data from the public catalog. In order to enable high-throughput analysis, these
operators are implemented in a sizable parallel processing system that automatically di-
vides and distributes computations. Either a thin client library or a web-based interactive
development environment built on top of that client library is employed by users to access
the API [14].

Despite the growing number of GEE codes related to several applications, there is still
a lack of codes related to phenological metric (PM) estimation [15]. Phenological metrics
are numerical parameters that allow the monitoring of the seasonal manifestations of the
vegetative process and, therefore, the definition of the different phenological phases [16].
PMs are numerical parameters that can be deduced from the temporal profile of remotely
sensed vegetational spectral indices such as NDVI or EVI (for a single pixel) in correspon-
dence with significant moments of the year. Among these, the most commonly used PMs,
for whose identification tools and software have been developed in the agronomic, forestry,
and environmental fields, are:

(a) The start of the season (SOS = Start of Season), indicated with reference to the date
(often expressed in the form DOY, day of year) on which vegetative activity is observed
to begin in a certain position.

(b) The end of the season (EOS = End of Season), indicated with reference to the date on
which the vegetative activity in that position is observed to end.

(c) The length of the season (LOS = Length of Season), defined as the difference in groups
between EOS and SOS.

(d) The maximum vegetation index value (MAX_VI), identified between SOS and EOS.
(e) The date on which MAX_VI occurs (MAX_DOY).
(f) The amplitude of the season (SA = Season Amplitude), which defines the difference

between the maximum and minimum values of the index in the considered season.
(g) Total productivity (TP = Total Productivity), which defines the integral of the interpo-

lated profile over the entire year.
(h) Seasonal productivity (SP = Seasonal Productivity or SMI = Small Integral), which

defines the integral of the interpolated profile of the VI between SOS and EOS.
(i) The rate of increase at the beginning of the season (Rate of Increase), defined, with

reference to the growing part of the phenological bell (left), as the difference between
the index values corresponding, respectively, to 80% and 20% SA, divided by the
corresponding time interval.

(j) The rate of decrease at the end of the season (Rate of Decrease), defined, with reference
to the decreasing part of the phenological bell (right), as the absolute value of the
difference between the index values corresponding, respectively, to 80% and 20% SA,
divided by the corresponding time interval.
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PM monitoring through remote sensing has garnered great interest in the last few
decades due to climate change, both in the forestry and agricultural sectors [15,17,18]. Land
surface phenology (LSP) is an important research field in terrestrial remote sensing and has
become an indispensable approach in global change research, as evidenced by the many
important scientific findings supported by LSP in recent decades [15,16,19]. LSP involves
the use of remote sensing to monitor seasonal dynamics in vegetated land surfaces and
to retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.).
LSP is an essential indicator of global change and has played a pivotal role in shaping our
understanding of how terrestrial ecosystems are responding to climate change and human
activities. Both regional and global LSP products have been routinely generated and have
played prominent roles in modeling crop yield, ecological surveillance, identifying invasive
species, modeling the terrestrial biospheric processes, and assessing global change impacts
on urban and natural ecosystems [20,21].

Recent advances in field and spaceborne sensor technologies, as well as data fu-
sion techniques, have enabled novel LSP retrieval algorithms that refine LSP retrievals at
even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics.
Meanwhile, the rigorous assessment of the uncertainties in LSP retrievals is ongoing, and
efforts to reduce these uncertainties have also formed an active research field. In addition,
open-source software and hardware are being developed and have greatly facilitated the
use of LSP metrics by scientists beyond the remote-sensing community [22]. Most PM
and LSP studies have involved a temporal scale greater than a decade, with a few using
NOAA/AVHRR data for a period longer than three decades [23,24]; despite this, the spatial
resolution is not as suitable as that of Himawari to map PMs at the parcel level or in geo-
morphologically complex areas such as mountains. Very-high-resolution EO data such as
PlanetScope data are starting to be used for PM assessment [25]. However, their application
remains rare both due to the quality of the data in the Alpine area and because they are free
only for research centers upon specific request, which prevents their full and widespread
commercial use in developing rural contexts [26].

However, it is worth noting that few studies have evaluated the impacts of satellite
products with different spatial resolutions on LSP extraction over regions with a hetero-
geneous topography. To bridge this knowledge gap, studies such as [24] have employed
four types of satellite data with different spatial resolutions (250, 500, and 1000 m MODIS
NDVI during the period 2001–2020 and ~10 km GIMMS3g during the period 1982–2015)
to investigate the LSP changes taking place in an alpine context such as the Loess Plateau.
These studies showed that the MODIS-based start of the growing season (SOS) and end of
the growing season (EOS) were highly correlated with the ground-observed data, present-
ing R values of 0.82 and 0.79, respectively (p < 0.01), while the GIMMS3g-based phenology
signal performed badly (R < 0.50 and p > 0.05). Spatially, the LSP that was derived from
the MODIS products generated more reasonable spatial distributions. The inter-annual
averaged MODIS SOS and EOS presented overall advanced and delayed trends, respec-
tively, during the period 2001–2020. More than two thirds of the SOS advances and EOS
delays occurred in grasslands, which determined the overall phenological changes across
the entire Loess Plateau. However, both inter-annual trends (SOS and EOS) derived from
the GIMMS3g data were opposite to those seen in the MODIS results. There were no
significant differences among the three MODIS datasets (250, 500, and 1000 m) with re-
gard to a bias lower than 2 days and an RMSE lower than 1 day. Furthermore, it was
found that the phenology derived from the data with a 1000 m spatial resolution in the
heterogeneous-topography regions was feasible. Therefore, Landsat and Sentinel EO data
should be more suitable in an alpine context [22]. In GEE, the existing algorithms are
mainly focused on PM extraction for agricultural crops [5,27–35]. However, an application
was realized considering arctic areas to monitor PM shifts due to the effects of climate
change on vegetation in very sensitive ecosystems [17,20,36–38].

Nevertheless, existing algorithms that permit PM computation with an high degree of
accuracy in mountain areas have been developed mainly in R with package extensions such
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as: ndvits [39], greenbrown [40–42], phenor [43,44], phenofit [45–47], and phenopix [48]
related to TIMESAT [49,50]. Currently, no algorithm has been developed in GEE using free
high-resolution Earth observation data. Therefore, starting from this evidence, the main
aim of this work was to fill this gap by developing an open-source Google Earth Engine
algorithm to map phenological metrics (PMs), in particular, Start of Season, End of Season,
Length of Season, and Peak of Season, in mountain areas worldwide using high-resolution
free satellite data from the Landsat collection and Sentinel-2.

The main objective of this work and its main novelty was the development of a
completely open-source algorithm capable of extracting PMs from high-resolution Earth
observation data in geomorphologically complex areas [7,8] without having to download
any type of satellite data by exploiting the power and performance of cloud processing
platforms such as Google Earth Engine [19,43,51,52]. The algorithm developed in GEE
should be able to attain the same results as those obtained from PM packages in R in an
alpine context. Actually, all PM calculation systems require one to download locally at
least one year of satellite data. Conversely, R packages such as rgee [34,45,48] connected
to Google Earth Engine permit one to compute PMs more rapidly. However, a higher-
performance computer workstation and good skills in R is still necessary, especially when
wide areas are considered, such as entire alpine chains.

Rural agriculture and forestry are very important in mountain areas. Therefore, the
code adopted and developed in GEE permits one to compute PMs more easily in a cloud-
based platform, helping technicians in their planning and management in these areas
without the necessity for a higher-performance computer workstation and obtaining results
for wide areas with high temporal and spatial resolution data. Moreover, mountain areas
are one of the most sensitive proxies of climate change [53], and their monitoring is a key
factor for realizing effective adaptation and mitigation policies worldwide [26,54–57]. In
fact, it is worth noting that 24% of the Earth’s landmass can be considered mountainous [58],
and concentrating scientific studies and climate adaptation policies in these areas is essential
to ensure ecosystem services and global geopolitical stability in relation to conflicts over
resources such as water considering future climate projections [59,60].

2. Materials and Methods
2.1. Development Area

The GEE algorithm was realized and tested considering the entire Alpine chain in
Europe (please see Figure 1). The Alpine chain is defined for much of its distance by the
watershed between the drainage basin of the Po in Italy on one side and the divide formed
by the Rhone, the Rhine, and the Danube on the other side. Further east, the watershed
is between the Adige and the Danube, before heading into Austria and draining on both
sides into the Danube. For much of its distance, the watershed lies on or close to the Italian
border, although there are numerous deviations—notably, the Swiss canton of Ticino, which
lies south of the range in the Po river basin. For only a small portion of its total distance
does the Alpine divide form a part of the main European watershed, in the central section
where the watershed is between the Po and the Rhine. The Alps are generally divided
into the Eastern Alps and the Western Alps, split along a line between Lake Como and
Lake Constance, following the Rhine valley. The Eastern Alps (with the main ridge being
elongated and broad) belong to Austria, Germany, Italy, Slovenia, and Switzerland. The
Western Alps are higher, but their central chain is shorter and very curved; they are located
in France, Italy, and Switzerland. Piz Bernina (4049 m) is the highest peak of the Eastern
Alps, while the highest peak of the Western Alps is Mont Blanc (4810.45 m). An overview
of the code development area is reported in [61].
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2.2. Earth Observation Data

The code was able to work with NASA USGS Landsat products—in particular, Level-
2 collections (surface reflectance) and the ESA Copernicus Sentinel-2 mission collection
within GEE. Therefore, the code could be run using the following collections:

Sentinel-2 MSI data from the ee.ImageCollection (“COPERNICUS/S2_SR_HARMO-
NIZED”), which include Sentinel-2A and S2B images from 28 March 2017 to present day
with a general temporal resolution of 5 days and a spatial resolution between 10 and 60 m
in the spectral band considered. Sentinel-2 is a wide-swath, high-resolution, multi-spectral
imaging mission supporting Copernicus Land Monitoring studies, including the monitor-
ing of vegetation, soil, and water cover, as well as the observation of inland waterways
and coastal areas. The Sentinel-2 L2 data were downloaded from Sci-hub, computed by
running sen2cor, and ingested in GEE. This collection contains 12 spectral bands repre-
senting surface reflectance scaled by 10,000. Moreover, three QA bands are present, with
one (QA60) being a bitmask band with cloud mask information. The developed algorithm
adopted the SCL masks because they presented the highest spatial resolution, equal to 20 m.
These masks are provided by ESA and available in the GEE collection, with snow and ice,
clouds, shadows, and saturated or defective pixels having been masked in each image. This
collection was adopted instead of COPERNICUS/S2_SR because, after 25 January 2022,
Sentinel-2 scenes with a processing baseline ‘04.00’ or above had their DN (value) range
shifted by 1000. The harmonized collection shifted the data in newer scenes to be in the
same range as in older scenes.

Landsat 4 MSS data from the ee.ImageCollection (“LANDSAT/LT04/C02/T1_L2”),
which include the Landsat 4 collection from 22 August 1982 to 24 June 1993 with a general
temporal resolution of 16 days and a geometrical resolution of 30 m (except for the thermal
band, which was not considered in this work). This dataset contains atmospherically cor-
rected surface reflectance images. These images contain 4 visible and near-infrared (VNIR)
bands and 2 short-wave infrared (SWIR) bands processed to generate orthorectified surface
reflectance. It also contains pixel quality bands, QA bands, and radiometric saturation
bands with the same spatial resolution adopted to mask cloud, shadows, snow and ice,
and defective or saturated pixels. The Landsat 4 collection was created with the Landsat
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Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (version 3.4.0)
and then uploaded in GEE.

Landsat 5 MSS data from the ee.ImageCollection (“LANDSAT/LT05/C02/T1_L2”),
which include the Landsat 5 collection from 16 March 1984 to 5 May 2012 with a general
temporal resolution of 16 days and a geometrical resolution of 30 m (except for the thermal
band, which was not considered in this work). This dataset contains atmospherically cor-
rected surface reflectance images. These images contain 4 visible and near-infrared (VNIR)
bands and 2 short-wave infrared (SWIR) bands processed to generate orthorectified surface
reflectance. It also contains pixel quality bands, QA bands, and radiometric saturation
bands with the same spatial resolution adopted to mask cloud, shadows, snow and ice,
and defective or saturated pixels. The Landsat 5 collection was created with the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (version 3.4.0)
and then uploaded in GEE.

Landsat 7 MSS data from the ee.ImageCollection (“LANDSAT/LE07/C02/T1_L2”),
which include the Landsat 7 collection from 28 May 1999 to 31 May 2003 (when the scan
line corrector (SLC) failed). After this, the products have data gaps, but they are still useful
and maintain the same radiometric and geometric corrections as the data collected prior to
the SLC failure (though only in those areas of the image not affected by the failure). Thus, to
compute PMs, it is strongly recommended to adopt only images without SCL failure. These
data have a general temporal resolution of 16 days and a geometrical resolution of 30 m
(except for the thermal band, which was not considered in this work). This dataset contains
atmospherically corrected surface reflectance images. These images contain 4 visible and
near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to generate
orthorectified surface reflectance. It also contains pixel quality bands, QA bands, and
radiometric saturation bands with the same spatial resolution adopted to mask cloud,
shadows, snow and ice, and defective or saturated pixels. The Landsat 7 collection was
created with the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
algorithm (version 3.4.0) and then uploaded in GEE.

Landsat 8 OLI data from the ee.ImageCollection (“LANDSAT/LC08/C02/T1_L2”),
which include the Landsat 8 collection from 18 March 2013 to present day with a general
temporal resolution of 16 days and a geometrical resolution of 30 m (except for the thermal
band, which was not considered in this work). This dataset contains atmospherically cor-
rected surface reflectance images. These images contain 5 visible and near-infrared (VNIR)
bands and 2 short-wave infrared (SWIR) bands processed to generate orthorectified surface
reflectance. It also contains pixel quality bands, QA bands, and radiometric saturation
bands with the same spatial resolution adopted to mask cloud, shadows, snow and ice, and
defective or saturated pixels. The Landsat 8 products were created with the Land Surface
Reflectance Code (LaSRC) and then uploaded in GEE.

Landsat 9 MSS data from the ee.ImageCollection (“LANDSAT/LC09/C02/T1_L2”),
which include the Landsat 9 collection from 31 October 2021 to present day with a general
temporal resolution of 16 days and a geometrical resolution of 30 m (except for the thermal
band, which was not considered in this work). This dataset contains atmospherically cor-
rected surface reflectance images. These images contain 5 visible and near-infrared (VNIR)
bands and 2 short-wave infrared (SWIR) bands processed to generate orthorectified surface
reflectance. It also contains pixel quality bands, QA bands, and radiometric saturation
bands with the same spatial resolution adopted to mask cloud, shadows, snow and ice, and
defective or saturated pixels. The Landsat 8 products were created with the Land Surface
Reflectance Code (LaSRC) and then uploaded in GEE.

Terra and Aqua MODIS from the ee.ImageCollection (“MODIS/006/MCD12Q2”). This
collection, informally known as MODIS Global Vegetation Phenology products, provides
estimates of the timing of vegetation phenology at a global scale. Additionally, it provides
information related to the range and summation of the enhanced vegetation index (EVI)
computed from MODIS surface reflectance data at each pixel. It identifies the onset of
greenness, greenup midpoint, maturity, peak greenness, senescence, greendown midpoint,



Geomatics 2023, 3 227

dormancy, EVI2 minimum, EVI2 amplitude, integrated EVI2 over a vegetation cycle,
and overall and phenology-metric-specific quality information. The MCD12Q2 Version
6 data product was derived from time series of the 2-band enhanced vegetation index
(EVI2) calculated from MODIS nadir bidirectional reflectance distribution function (BRDF)-
adjusted reflectance (NBAR). Vegetation phenology metrics were identified for up to two
detected growing cycles per year. For pixels with more than two valid vegetation cycles,
the data represent the two cycles with the largest NBAR-EVI2 amplitudes. This dataset was
adopted to assess the quality of the results obtained compared to the metrics retrieved by
the greenbrown R package.

Finally, the Shuttle Radar Topography Mission (SRTM) DTM available in GEE. The
Shuttle Radar Topography Mission digital elevation data resulted from an international
research effort to obtain digital elevation models on a near-global scale. This SRTM V4
product (SRTM Plus) was provided by NASA JPL at a resolution of 1 arc-second (approxi-
mately 30 m).

2.3. Phenological Metrics Computation

PMs were computed considering as a reference the year 2021. Specifically, Sentinel-2
level-2A data and Landsat 8 OLI were adopted. PMs estimated with these EO collections
were compared with the same metrics extracted from MCD12Q2 V6 Land Cover Dynamics
products with a 500 spatial resolution. Maximum discontinuity in the time series was
plotted after non-valid observations had been filtered using values of the quality band
scene classification layer (SCL) provided in Sentinel-2 and QA in Landsat.

In the algorithm, the PMs could be computed from the following vegetation spec-
tral indexes:

Normalized-difference vegetation index (NDVI) [62–66]

NDVI =
NIR − RED
NIR + RED

Enhanced vegetation index (EVI) [67,68]

EVI = 2.5 × (NIR − RED)

NIR + (6 × RED)− (7.5 × BLUE) + 1

Green chromatic coordinate (GCC) [69]

GCC =
GREEN

RED + GREEN + BLUE

Normalized-difference phenology index (NDPI) [70]

NDPI =
NIR − (α× RED + (1 − α)× SWIR2
NIR + (α× RED + (1 − α)× SWIR2

where α was set to 0.74 for MODIS [71] but re-defined to 0.51 for Sentinel-2 and 0.56 for
Landsat. The normalized-difference phenology index was adopted to overcome the snow
observations in the collection that normally affect mountain areas.

Specifically, a commonly used threshold approach was adopted [19,72]. This approach
determines the SOS and EOS as the first and final days of the season, respectively, on which
a threshold τ is overtaken. This τ value can be assigned dynamically or as a constant for
each pixel [73]. The altimetric gradient strongly influences phenology; therefore, in this
work τwas retrieved as a dynamic value related to the yearly time-series amplitude:

τ = ϕ ∗ (VImin − VImax) + VImin

where τ is the dynamic value that depends on the annual amplitude of the time series;
VImin and VImax are the minimum and maximum vegetation index yearly values in the
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time series, respectively; and ϕ is a given proportion (%) of the amplitude. A value of
ϕ = 0.5 was adopted as the mid-greenup and mid-greendown of the growing season.
Biases resulting from time-series discontinuities are less of an issue for threshold metrics
computed with 50% of the amplitude [19].

In order to eliminate noise and discontinuities, the time-series data were filtered
and smoothed before the extraction of PMs [73]. Unrealistic recreations of the growing
season may result from overly smoothing time series; therefore, a moving average window
with a mean radius of 10 days was realized every 20 days. In cases where a pixel in
the 20-day composite window was empty because of a lack of valid observations, the
window size was increased to 40 days. Afterwards, a cubic spline interpolation to convert
the 20-day composites to a daily time series was applied. It is worth noting that the
threshold was established using the interpolated time series amplitude rather than daily
observations, and the SOS and EOS were calculated as the first and last days, respectively,
in the interpolated time series that overtook the dynamic threshold. Due to the primarily
evergreen nature of the formerly snow-covered vegetation canopy, the NDVI and EVI for
alpine vegetation exhibit a substantial increase after snow melting. Therefore, the PM
estimation was complicated by the time-series break related to the change from snow to
vegetation and from vegetation to snow. It is possible to incorrectly attribute the SOS and
EOS to the snow transition dates rather than to the real vegetation dynamics. In order to
maintain a constant threshold value, considering the alpine environment and as suggested
by investigations in high-latitude areas [19,40], we reclassified the snow and post-thaw
readings. Each vegetation index’s unique minimum value was used to reclassify the snow
observations: GCCmin = 0.31, NDVImin = 0.39, EVImin = 0.2, and NDPImin = 0.24.

The mean value of the first Sentinel-2 and Landsat snow-free observation of the year,
taken from 400 randomly dispersed sites, was used to estimate these parameters. When
using the best alpha for the NDPI, the NDPImin matched the mean NDPI value of the
snow observations. The PMs were not computed for the pixels that displayed a maximum
vegetation index in the time series below the lowest snow value.

In order to ensure proper functioning in GEE, the threshold approach was vectorized.
The vectorization technique involves changing a code so that every element of an array
is processed at once [74]. This idea runs counter to the standard method for PM estima-
tion, which involves processing each time series separately, pixel by pixel, in a for loop.
However, GEE strongly discourages the use of for loops in favor of the suggested map
functions—for instance, a function that converts a series of dates to the moving average
for the 20-day composition (see Algorithm S1 in Supplementary Materials). The function
uses dates as input arguments to filter the Earth observation collection with a 20-day
window size before averaging the chosen pictures. Each element of the array, in this case
the dates, is processed separately by the map function in order to construct each 20-day
composition simultaneously.

2.4. Algorithm Validation

The GEE algorithm was tested by performing PM extraction from other satellite
missions and R packages. Therefore, the mean absolute error (MAE) and root mean square
error (RMSE) were computed as follows:

MAE =
∑n

i=1(pi − oi)

n

RMSE =

√
∑n

i=1(pi − oi)
2

n

where pi is the prediction (assumed as the PMs computed with the GEE script code);
oi is the observed true value (assumed as the PMs computed through MODIS and the
greenbrown R package with a higher satellite resolution); and n is the number of samples
(see Table 1).
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Table 1. Validation.

EO Data
and PMs

GEE Algorithm (pi)
µ ± σ (DOY)

MODIS Terra and Aqua (oi)
µ ± σ (DOY) MAE RMSE

Sentinel-2 SOS 123 ± 28 125 ± 28 2 2
Sentinel-2 EOS 295 ± 34 296 ± 34 1 1
Sentinel-2 POS 209 ± 18 210 ± 18 1 1
Sentinel-2 LOS 172 ± 52 174 ± 52 2 2
Landsat 8 SOS 124 ± 28 125 ± 28 2 2
Landsat 8 EOS 296 ± 34 296 ± 34 1 1
Landsat 8 POS 210 ± 18 210 ± 18 1 1
Landsat 8 LOS 172 ± 52 174 ± 52 2 2

3. Results

The algorithm developed permitted us to compute and extract PMs directly from GEE
without the necessity to download EO data locally (in this case, using Sentinel-2 and the
Landsat collection for the reference year of interest). The mean processing time necessary
to compute and download PMs (SOS, EOS, LOS, and POS) into the Google Drive was
around 20–25 min for the entire Alpine chain with a spatial resolution of 20 m and 30 m,
respectively, for yearly Sentinel-2 and Landsat data. The only mandatory conditions were
the possession of an internet connection, a GEE account, and basic knowledge of GEE (to
set the code developed according to one’s needs). The code worked well, and the maps
shown below (please see Figure 2) were computed for SOS, EOS, and LOS.

Geomatics 2023, 3, FOR PEER REVIEW 9 
 

 

Table 1. Validation. 

EO Data 
and PMs 

GEE Algorithm (pi) 
μ ± σ (DOY) 

MODIS Terra and Aqua (oi) 
μ ± σ (DOY) 

MAE RMSE 

Sentinel-2 SOS 123 ± 28 125 ± 28 2 2 
Sentinel-2 EOS    295 ± 34 296 ± 34 1 1 
Sentinel-2 POS 209 ± 18 210 ± 18 1 1 
Sentinel-2 LOS 172 ± 52 174 ± 52 2 2 
Landsat 8 SOS 124 ± 28  125 ± 28 2 2 
Landsat 8 EOS 296 ± 34 296 ± 34 1 1 
Landsat 8 POS 210 ± 18 210 ± 18 1 1 
Landsat 8 LOS 172 ± 52 174 ± 52 2 2 

3. Results 
The algorithm developed permitted us to compute and extract PMs directly from 

GEE without the necessity to download EO data locally (in this case, using Sentinel-2 and 
the Landsat collection for the reference year of interest). The mean processing time neces-
sary to compute and download PMs (SOS, EOS, LOS, and POS) into the Google Drive was 
around 20–25 min for the entire Alpine chain with a spatial resolution of 20 m and 30 m, 
respectively, for yearly Sentinel-2 and Landsat data. The only mandatory conditions were 
the possession of an internet connection, a GEE account, and basic knowledge of GEE (to 
set the code developed according to one’s needs). The code worked well, and the maps 
shown below (please see Figure 2) were computed for SOS, EOS, and LOS. 

 
Figure 2. PMs computed from NDVI at 10 m GSD with the GEE algorithm developed in 2021 using 
Sentinel-2 for the entire Alpine chain. EPSG: 4326. 

Figure 2. PMs computed from NDVI at 10 m GSD with the GEE algorithm developed in 2021 using
Sentinel-2 for the entire Alpine chain. EPSG: 4326.

In order to perform a strong validation, 500 points were randomly generated from the
vegetated areas detected by a threshold of NDVI > 0.3 assumed as vegetated in SAGA GIS
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v.8.3.0 over the entire area of study (AOI), in this case the Alpine chain. A snapshot of the
AOI is shown below (please see Figure 3).
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The PMs, namely SOS, EOS, LOS, and POS, were computed using the developed GEE
code. At the same time, by adopting the greenbrown package in R Studio, the metrics were
computed starting from Sentinel-2 and Landsat VI time series. MODIS/006/MCD12Q2
and greenbrown R PMs (from Landsat and Sentinel) were considered as the validation PM
set. For validation, in addition to MODIS, we also considered Sentinel and Landsat data by
computing PMs in R due to the fact that the spatial and temporal resolution was different
for these sensors and we wished to check the consistency by preserving these aspects. The
MAE and RMSE are reported in Table 1.

Both Sentinel and Landsat data seemed to accurately depict PMs, though Sentinel-2
produced better results, probably due to its higher temporal resolution (please see Table 2).

Table 2. Phenological Metrics comparison.

EO Data
and PMs

GEE Algorithm (pi)
µ ± σ (DOY)

R Greenbrown Package (oi)
µ ± σ (DOY) MAE RMSE

Sentinel-2 SOS 123 ± 28 124 ± 28 1 1
Sentinel-2 EOS 295 ± 34 296 ± 34 1 1
Sentinel-2 POS 209 ± 18 210 ± 18 1 1
Sentinel-2 LOS 172 ± 52 172 ± 52 0 0
Landsat 8 SOS 124 ± 28 124 ± 28 0 0
Landsat 8 EOS 296 ± 34 298 ± 34 2 2
Landsat 8 POS 210 ± 18 208 ± 18 2 2
Landsat 8 LOS 172 ± 52 171 ± 52 1 1

It is worth noting that the wide standard deviations are due to the fact that we
summarized the PMs extracted from 500 points. This variability could be explained by the
altimetry conditioning the phenological seasons.
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The results were also plotted with their relative standard deviations (please see
Figure 4 below).
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In order to evaluate the consistency of the results, we adopted SRTM DTM to assess
the PM errors for all 500 points at the same quote, and an overall RMSE < 2 was found.

The comparison of Start of Season (SOS) and End of Season (EOS) dates computed,
respectively, from Sentinel-2 and Landsat retrieved in R with the greenbrown package and
from the GEE algorithm from the same satellite showed a strong similarity. Specifically, four
vegetation indices were computed: GCC, NDVI, EVI, and NDPI. The phenology metrics
were extracted with a 50% threshold method without time-series smoothing. The bias
between the R package greenbrown and the GEE code was less the 5%, according to the
MAE and RMSE results. Therefore, the GEE algorithm was proven suitable for correctly
extracting PMs. Below, the graph is depicted (Figure 5).
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Figure 5. Comparison of Start of Season (SOS) and End of Season (EOS) dates computed, respectively,
from Sentinel-2 and Landsat retrieved in R with the greenbrown package and from the GEE algorithm.

The comparison between the PMs estimated using the GEE code from Sentinel-2
resized to 500 m and MODIS phenology products (MCD12Q2), in which MODIS pixels
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were filtered when the variance of the Sentinel-2 phenology estimates within the 500 m pixel
were >5 days, showed a high level of similarity in homogeneous landscapes, regardless of
data smoothing, and a greater similarity for SOS than EOS (see Table 1). The comparison
of the GEE PMs retrieved from Sentinel and Landsat and MODIS MCD12Q2 phenology
products showed a slight bias towards SOS and LOS and similarity for EOS and POS (see
Table 1). The graph is depicted below (Figure 6).
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estimated with Sentinel-2 in GEE and MODIS phenology products (ready to use, provided by NASA).

The GEE code seemed to be consistent according to the results obtained. The bias
between PMs computed in R and GEE, respectively, as well as MODIS, could be considered
acceptable, as demonstrated in Table 1 by the mean absolute error (MAE) and the accuracy
according to the root mean squared error (RMSE).

4. Discussion

The GEE scripts were able to accurately compute the PMs in geomorphologically
complex areas, as suggested by the validation performed. Therefore, the script realized
may be adopted to define PMs in alpine areas. Nevertheless, it is worth noting that
the code could certainly be improved; in particular, a ground truth validation based on
worldwide mountain phenology detection would represent a stronger and more rigorous
validation approach. Therefore, we hope that the open-source code will be implemented
and a stronger validation performed with ground samples, as previously stated. The
results obtained suggest a good degree of confidence in the use of this GEE code to retrieve
PMs in alpine areas. Despite the comparison reflecting changes in vegetation greenness
that may not always correspond to vegetation pheno-phases or plant productivity, we
discovered significant similarities between the PMs computed using Sentinel-2, Landsat,
and MODIS. The results obtained were compared with PMs retrieved from the R package
greenbrown and phenofit [45–47,75], and a difference below 5% was found for each of
the PMs considered (SOS, EOS, LOS, and POS) for each collection method, in this case
the Sentinel and Landsat missions. Moreover, the method designed for identifying good-
quality pixels for additional analysis in phenology research may be used to flag pixels with
discontinuities in the time series; however, this flagging method only functions when clouds
are effectively filtered. The Earth observation time series may have been overestimated
by non-valid observations that were not filtered, namely cloud-contaminated pixels and
cloud shadows that were not reflected in the quality band. Additionally, such polluted
data might have altered the vegetation index (VI) time series growing season curve and
resulted in inaccurate phenology estimations. However, it is important to note that coupling
remote sensing with ground data will always be welcome and necessary. In fact, remote
sensing and the algorithm developed could be combined to generalize PMs and not follow
each phenological phase of each grassland species, for example. The limiting factors of
phenological remote sensing are represented on the one hand by the resolution of the
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images, which do not allow the identification of early phenological phases that began
much earlier than a few decades ago, such as the swelling and bursting of leaf buds on
trees [76]. On the other hand, the limitations are also related to identifying phenological
phases in rare species. It is important to remember that individual species can respond
differently to meteorological conditions, and their phenological phases are not necessarily
linked. Moreover, as suggested by [77–79], studies using satellite imagery in some cases
seem to be unable to determine the exact growing season of trees. This is particularly
evident in ring-porous trees, for which some research [77–79] has shown that there is no
clear relationship between the timing of the onset of wood formation and leaf development.
Despite this, EO data can be useful to obtain information on phenology at the landscape
level worldwide. Therefore, for a complete understanding of phenology, it would be
beneficial to use different approaches that complement each other, and the code developed
could be one of these approaches to support ground studies and help enhance databases
using citizen-science ground observations.

As previously discussed, the code permits one to retrieve PMs from different spectral
indexes (such as EVI, NDVI, NDPI, and GCC). It is worth noting that the developed GEE
code was tested across the whole study area using the NDVI, because this is the most fre-
quently adopted index and provides simple estimation; easy availability at different spatial
and temporal resolutions; and the cancellation of noise caused by the solar angle, topo-
graphic illumination, clouds, and atmospheric conditions, especially in alpine areas [80,81].
Despite these several advantages, the NDVI is more saturated at higher biomass levels due
to leaf canopy variations [82]. Therefore, as an alternative, we encourage the computation
of the EVI to retrieve PMs in order to minimize these errors, as this index improves the
estimation of the biomass level under saturation conditions [83]. In addition, the EVI range
is more extensive and dynamic and allows the capture of more variations than the NDVI,
as it includes the coefficient of resistance term, which corrects the influence of aerosols.
Although the EVI has been used as a vegetation proxy in many studies due to its improved
performance in many regions across the world [84], the use of the EVI (as well as GCC
and NDPI) in mountainous terrain remains limited, and NDVI is generally preferred. It is
necessary to keep in mind that in the case of the alpine study of PMs in dense forests, the
EVI is strongly advised, while for studies at a higher latitude with the sporadic presence of
snow, the NDPI is more suitable, as demonstrated by [70]. Additionally, GCC has similar
results to the NDVI [69].

Earth observation optic multispectral higher-resolution data such as Landsat and
Sentinel-2 time series may now be used to estimate PMs for wide mountain range regions,
such as the Alps, Himalayas, Andes, Urals, Rocky Mountains, Great Dividing Range, Great
Escarpment, Apennines, Alaska Range, Scandinavian Alps, Japanese Alps, Hindu Kush,
Altai Mountain, Western Ghats, Drakensberg, Aravalli Range, Appalachian Mountains,
Jura, and Pyrenees, thanks to the utilization of cloud platforms such as GEE. Approximately
91,000 EO data were utilized in this work to determine the PMs for the European Alps;
this kind of platform is a helpful tool that enables the scientific community to examine
such rich, high-spatial-resolution time series. Additionally, GEE permits data and code
exchange, making it simple for researchers to replicate algorithms, locally examine time
series, and therefore afford a real technological transfer. It is worth noting that, when
data are limited, it is especially important to exercise caution when using the generated
PMs maps (especially when considering SOS and EOS). When there are continuous gaps
in the time series, it would be better to combine Sentinel-2 with Landsat-8; otherwise,
more sophisticated phenological retrieval methods, such as robust smoothing and gap-
filling techniques, should be utilized. In spite of this, sensor harmonization and temporal
smoothing may enhance PM retrievals, but at the expense of making preprocessing more
difficult and slowing down GEE implementation.

Regarding future research and studies on mountain phenological metrics worldwide
or in a given area, such as the area of the Alps considered herein, it would be interesting
to use the developed GEE script to analyze spatial variability in vegetation dynamics
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and acquire a high level of detail at the canopy level, or to test the effects of spatial
scaling on temporal changes in phenology and identify homogeneous landscapes where
the phenology dynamics are similar. Recent research using multi-annual optical time-series
data for vegetation phenology assessment, together with the functions of newly developed
packages, has improved our ability to extract PMs from EO data [33,48,75]. Nevertheless,
until now, no research has been focused on PM GEE codes in alpine ecosystems, except for
the R package Phenopix [48]. However, this R package (quite similar to greenbrown due
to its specificity in geomorphologically complex areas) remains applicable only outside of
cloud processing environments such as GEE. The computation of PMs using this R package
therefore requires the downloading of locally processed satellite time-series data or the use
of R packages such as rgee that depend on GEE but require a high-performance workstation.
Therefore, to overcome all these issues, the algorithm developed in this work was directly
written in the GEE front-end code editor, avoiding all the above-mentioned matters.

One of the possible future developments will certainly consist in the implementation of
a function for the direct calculation of phenological metrics in the dashboard of Google Earth
Engine, which will facilitate use by all users and be scalable to any type of multispectral
optical data. Particular attention will have to be paid to mountainous areas where remote-
sensing applications are increasingly complex due to the topographical and morphological
characteristics of these places. However, we hope this work will help achieve this goal.
In fact, we must not forget that most of the mountain areas in the world not only play
a fundamental role from the point of view of biodiversity and a key role in monitoring
climate change (and therefore deserve continuous attention, management, safeguarding,
and investment), but also represent important centers from a social and economic point of
view. This includes ecosystem services that are difficult to monetize to simpler forms of
agriculture, animal husbandry, forest management, and subsistence that are often more
sustainable and deserving of funding towards sustainable development.

In conclusion, from the results obtained, when using time-series data not polluted by
a high number of clouds during the year, the developed script seemed to be a good tool for
monitoring and mapping phenological metrics at the field scale in mountain areas across
the world.

It is worth noting that very-high-resolution EO data are not currently available in an
open-source format. Moreover, this kind of data is still not available in cloud processing
platforms such as Google Earth Engine or Planetary Microsoft (except for PlanetScope data,
which are only available for CONUS areas). Certainly, it would be interesting if, in the
near future, very-high-resolution data are made available in cloud processing platforms for
free for research purposes, strengthening our knowledge of mountain areas and PMs at an
accurate level.

5. Conclusions

The work carried out made it possible to compute the main phenological metrics
starting from high-level satellite data, such as those gathered from the Sentinel-2 and
Landsat missions. The added value is represented by the fact that the Javascript code
works on Google Earth Engine, thus avoiding the need to download data by operating
in the cloud and making operations much faster and scalable to any area of the globe,
although the algorithm was tested and designed to work in areas where remote sensing is
more limited, i.e., mountainous areas. The results obtained seem to suggest the suitability
of the implemented code, as indicated by the low MAE and RMSE values. However, it
should be emphasized that the validation was carried out in two ways: (a) first with coarser
remote-sensing data, and (b) second through the computation of phenological metrics
with the greenbrown package available in R software. The only limiting factor of the
results obtained is represented by the lack of ground validation data. Since the code is
open-source, we hope in the future to validate it with ground-based phenological data
collected in various locations around the world. While acknowledging that much still
needs to be improved in terms of both validation and the implementation of other metrics
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(as well as the direct implementation of this code as a server-side function in GEE), we hope
that this work can help agronomists, farmers, climatologists, foresters, veterinarians, and,
more generally [75,85,86], territorial planners in forming direct management and planning
strategies and territorial policies in the Alpine area [87,88], with a view to adaptation, the
mitigation of climate change, and sustainability.

In conclusion, we hope that this open-source algorithm permits users to compute with
a certain robustness PMs retrieved from higher-resolution free EO data in GEE, helping
them face the new challenges in mountain areas worldwide. The algorithm developed in
GEE seemed to be capable of attaining the same robust results that can be obtained from
PM packages in R in alpine contexts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geomatics3010012/s1, Algorithm S1: The GEE code algorithm
developed and the data adopted can be found in this section.
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