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Abstract
An Emergent Constraint (EC) is a physically-explainable relationship between model simulations of a past climate variable 
(predictor) and projections of a future climate variable (predictand). If a significant correlation exists between the predictand 
and the predictor, observations of the latter can be used to constrain model projections of the former and to narrow their 
uncertainties. In the present study, the EC technique has been applied to the analysis of precipitation, one of the variables 
most affected by model uncertainties and still insufficiently analysed in the context of ECs, particularly for the recent CMIP6 
model ensemble. The main challenge in determining an EC is establishing if the relationship found is physically meaningful 
and robust to the composition of the model ensemble. Four precipitation ECs already documented in the literature and so 
far tested only with CMIP3/CMIP5, three of them involving the analysis of extreme precipitation, have been reconsidered in 
this paper. Their existence and robustness are evaluated using different subsets of CMIP5 and CMIP6 models, verifying if 
the EC is still present in the most recent ensemble and assessing its sensitivity to the detailed ensemble composition. Most 
ECs considered do not pass this test: we found one EC not to be robust in both CMIP5 and CMIP6, other two exist and are 
robust in CMIP5 but not in CMIP6, and only one is verified and is robust in both model ensembles.

Keywords  Emergent Constraint · Climate model uncertainty · CMIP6 · Precipitation extremes

1  Introduction

Climate models are fundamental tools to understand the 
complexity of the Earth system and the processes at play, 
and to provide credible projections of future climate evolu-
tion. Unfortunately, models often disagree on the amplitude 
and sometimes on the sign of climate change signals. One 
source of uncertainty relies on the representation of pro-
cesses that cannot be explicitly described because, e.g, they 
take place at scales smaller than the model resolution. These 
processes are included by means of parameterizations that 
can be different from model to model. Thus, the choice of 
one parameterization introduces, also through the triggering 
of numerous climate feedbacks, significant sources of model 
spread. A better understanding of model uncertainties and of 

their sources, and a reduction of the inter-model spread are 
essential steps in model development, evaluation and vali-
dation, with the aim of increasing the confidence in future 
projections.

In recent years, a methodology called “Emergent Con-
straints (ECs)”, pioneered by Hall and Qu (2006), has been 
further developed and utilized as an approach for reduc-
ing uncertainties in climate change projections. An EC is a 
physically-explainable empirical relationship between inter-
model variations in a quantity describing some aspects of 
the observed climate—the current climate predictor—and 
inter-model variations in a future prediction of some cli-
mate quantity—the future climate predictand (Klein and 
Hall 2015). The most important requirement for a trust-
worthy EC is that a strong physical explanation exists for 
the predictor-predictand correlation. A three-step definition 
has been proposed to establish an EC: (1) a potential EC 
is one in which a significant correlation exists between the 
predictor and the predictand; (2) a promising EC is when a 
physical explanation is proposed to support the correlation; 
and (3) an EC is confirmed if a strong physically-based evi-
dence that justifies the correlation between the predictor and 
the predictand (i.e., the proposed explanation at item 2) is 
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verified (Klein and Hall 2015). Recently, Hall et al. (2019) 
presented a framework whereby a potential EC is promoted 
to confirmed when the EC is accompanied by a plausible and 
explainable physical mechanism and assessing whether it 
survives out-of-sample testing (Simpson et al. 2021).

During the last decades, as the potential of the ECs as 
a technique to reduce the inter-model spread was recog-
nised (Hall and Qu 2006), a number of ECs has been tested 
and applied in different branches of the climate science, 
including studies of Equilibrium Climate Sensitivity, cloud 
feedbacks, analyses of the carbon cycle and high-latitude 
processes, applications to the hydrological cycle and still 
others (e.g., Brient 2020; Williamson et al. 2021). Among 
them, applications to the water cycle and its different compo-
nents—particularly precipitation—have not been so widely 
investigated.

Precipitation is one of the most difficult variables both 
to measure and to model, and it is a considerable source 
of uncertainty in climate model simulations (Trenberth 
and Zhang 2022; Chen et al. 2021; Na et al. 2020). In fact, 
many processes of precipitation formation are not explicitly 
resolved but described by means of parameterizations, so 
that the inter-model spread in the global-mean precipitation 
response to the temperature increase appears to be large in 
global warming simulations (Fläschner et al. 2016). All this 
suggests that precipitation is a crucial variable to develop 
ECs, with the aim of reducing uncertainties in model projec-
tions, also considering that precipitation changes have large 
impacts on natural and human systems. Nevertheless, a very 
limited number of precipitation ECs has been proposed and 
analysed to date (Borodina et al. 2017; O’Gorman 2012; 
Deangelis et al. 2015; Li et al. 2017; Watanabe et al. 2018; 
Rowell 2019; Thackeray et al. 2022).

Recently, Caldwell et al. (2018) and Hall et al. (2019) 
showed that a relevant number of hydrological cycle-related 
ECs analysed in the literature lack a satisfying physical 
explanation: owing to the large number of possible observ-
ables and the relatively small number of models, spurious 
relationships might result by chance (Caldwell and et al. 
2014). Furthermore, most of the ECs recently published use 
models from only the Coupled Model Intercomparison Pro-
ject phase 5 (CMIP5, Taylor et al. 2012) to test the statistical 
relationship between the predictor and the predictand. As 
suggested by Hall et al. (2019), to demonstrate the robust-
ness of an EC, other model ensembles, and in particular the 
most recent CMIP6 (Eyring et al. 2016), should be used, 
a validation which, so far, has been performed only in a 
limited number of cases ( Pendergrass 2020; Schlund et al. 
2020; Simpson et al. 2021).

In the present paper, we reconsider four precipitation 
ECs which were originally identified using previous gen-
erations of model ensembles (CMIP3 and CMIP5, Meehl 
et al. 2007), and analyze to what extent they are still verified 

in CMIP6—including a comparison with CMIP5, checking 
both their existence in the new ensemble and their robust-
ness as suggested by Simpson et al. (2021). The majority 
of the ECs considered in this study do not pass this test, 
confirming that the identification of Emergent Constraint 
mechanisms for hydrological variables requires extensive 
validation and often does not survive in the latest genera-
tion of models.

This paper is structured as follows: in Sect.  2, the 
employed model data and methods applied in our analysis 
are described; results are presented in Sect. 3 for each of the 
four ECs, while Sect. 4 discusses and concludes the paper.

2 � Model data and methods

2.1 � Model data

The output of 27 global climate models (GCMs) from 
CMIP5 and of 29 GCMs from CMIP6 was analysed. The 
selected models are shown in Table 1. Data were down-
loaded from the Earth System Grid Federation (ESGF) with 
the Synda tool (https://​portal.​enes.​org/​data/​data-​metad​ata-​
servi​ce/​data-​disco​very/​synda). We selected the models for 
which daily precipitation and monthly temperature data were 
available at the time when we downloaded the data (May 
2021). The requirement of daily precipitation data comes 
from the fact that this paper analyses ECs involving the cal-
culation of precipitation extremes, as detailed in Sect. 2.2. 
In order to accomplish a fair comparison among the various 
models and between historical and future conditions, we 
considered only the models for which the same ensemble 
member was available both in the historical and in the sce-
nario simulations.

Data were selected from the historical experiment of 
each model, to define a present climatology, and from sce-
nario simulations (using RCP8.5 in CMIP5 and SSP585 in 
CMIP6, Meinshausen et al. 2011; Kriegler et al. 2017) to 
define a future climatology. The time period chosen to define 
either the past or future climatology was not necessarily the 
same for each EC, as better explained in the Supplementary 
Information and summarized in Table 2 (second and third 
column). The following model variables were considered: 
daily mean precipitation flux (pr), monthly near-surface air 
temperature (tas) and monthly surface temperature (ts).

2.2 � General description of the chosen ECs 
and of their analysis methods

We recall that an EC is defined as a physically explain-
able relationship between a predictor and a predictand, as 
explained in Sect. 1. Throughout this paper, each EC is iden-
tified with an acronym whose last letter indicates the initial 

https://portal.enes.org/data/data-metadata-service/data-discovery/synda
https://portal.enes.org/data/data-metadata-service/data-discovery/synda
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of the surname of the author that first proposed it. The first 
three columns of Table 2 list, for each EC, the variables 
taken as the predictor and predictand and the time periods 
over which they are evaluated (the last three columns sum-
marize the results from the literature and from our study and 
will be discussed later). Here we provide a general overview 
of the four ECs considered in this study and describe the 
methods common to their analysis, while a more specific 
explanation of each EC and of the corresponding analysis 
methods is provided in the Supplementary Information.

•	 ECT (from Thackeray et al. 2018) assesses a relation-
ship between global-mean hydrological sensitivity and 
local changes in extreme precipitation. The global-mean 
hydrological sensitivity (global-mean HS, the predictor) 
is defined as the global-mean precipitation change nor-
malized by global-mean surface air temperature change. 

The predictand is calculated as the change of the 99th per-
centile of precipitation, normalized by the global-mean 
surface air temperature change ( ΔP

99
∕ΔT). Changes are 

evaluated as the difference between the 2060–2099 future 
climatology and the 1960–1999 past climatology. Even 
though the predictor contains information on the future 
climate and, as such, does not satisfy the proper defini-
tion of an EC, we decided to consider also the relation-
ship analysed by Thackeray et al. (2018) in the context 
of Emergent Constraints.

•	 ECL (from Li et al. 2017) establishes a relationship 
between western Pacific precipitation and the change in 
Indian Summer Monsoon rainfall. The predictor is the 
past time- and space-mean daily precipitation in a west-
ern Pacific region (140◦–190◦ W and 12◦S–12◦ N, WP 
precipitation) while the predictand is represented by the 
future change of mean daily precipitation averaged over 

Table 1   CMIP5 (left) and CMIP6 (right) models considered in this study, accompanied by a key reference

The ensemble member r1i1p1 was considered for CMIP5 and r1i1p1f1 for CMIP6

CMIP5 CMIP6

Model name Institution name Reference Model name Institution name Reference

ACCESS1-0 CSIRO-BOM Bi et al. (2013) ACCESS-ESM1-5 CSIRO Tilo et al. (2020)
ACCESS1-3 CSIRO-BOM Bi et al. (2013) ACCESS-CM2 CSIRO-ARCCSS Bi et al. (2013)
bcc-csm1-1 BCC Wu et al. (2014) BCC-CSM2-MR BCC Wu et al. (2021)
bcc-csm1-1-m BCC Wu et al. (2014) CanESM5 CCCma Swart et al. (2019)
CanESM2 CCCma Arora et al. (2011) CESM2 NCAR​ Danabasoglu et al. (2020)
CCSM4 NCAR​ Meehl et al. (2012) CESM2-WACCM NCAR​ Gettelman et al. (2019)
CESM1-BGC NSF-DOE-NCAR​ Hurrell et al. (2013) CMCC-CM2-SR5 CMCC Cherchi et al. (2019)
CESM1-CAM5 NSF-DOE-NCAR​ Hurrell et al. (2013) CMCC-ESM2 CMCC Cherchi et al. (2019)
CNRM-CM5 CNRM-CERFACS Voldoire et al. (2013) CNRM-CM6-1 CNRM Voldoire et al. (2019)
CSIRO-Mk3-6-0 CSIRO-QCCCE Rotstayn et al. (2012) EC-Earth3 EC-Earth-Cons Döscher et al. (2022)
FGOALS-g2 LASG-CESS Li et al. (2013) EC-Earth3-CC EC-Earth Cons Döscher et al. (2022)
GFDL-ESM2G NOAA-GFDL Delworth et al. (2006) EC-Earth3-Veg EC-Earth Cons Döscher et al. (2022)
GFDL-ESM2M NOAA-GFDL Delworth et al. (2006) EC-Earth3-Veg-LR EC-Earth Cons Döscher et al. (2022)
HadGEM2-CC MOHC Martin et al. (2011) FGOALS-g3 CAS Li et al. (2020)
HadGEM2-ES MOHC Bellouin et al. (2011) GFDL-ESM4 NOAA-GFDL Dunne et al. (2020)
INM-CM4 INM Volodin et al. (2010) GFDL-CM4 NOAA-GFDL Adcroft et al. (2019)
IPSL-CM5A-LR IPSL Hourdin et al. (2013) IITM-ESM CCCR-IITM Krishnan et al. (2019)
IPSL-CM5A-MR IPSL Hourdin et al. (2013) INM-CM4-8 INM Volodin et al. (2017)
IPSL-CM5B-LR IPSL Hourdin et al. (2013) INM-CM5-0 INM Volodin et al. (2017)
MIROC5 MIROC Watanabe et al. (2010) IPSL-CM6A-LR IPSL Boucher et al. (2020)
MIROC-ESM MIROC Watanabe et al. (2011) KIOST-ESM KIOST Pak et al. (2021)
MIROC-ESM-CHEM MIROC Watanabe et al. (2011) MIROC6 MIROC Tatebe et al. (2019)
MPI-ESM-LR MPI Giorgetta et al. (2013) MPI-ESM1-2-LR MPI Mauritsen et al. (2019)
MPI-ESM-MR MPI Giorgetta et al. (2013) MPI-ESM1-2-HR MPI Müller et al. (2018)
MRI-CGCM3 MRI Yukimoto et al. (2012) MRI-ESM2-0 MRI Yukimoto et al. (2019)
MRI-ESM1 MRI Adachi et al. (2013) NESM3 NUIST Cao et al. (2018)
NorESM1-M NCC Bentsen et al. (2013) NorESM2-LM NCC Seland et al. (2020)

NorESM2-MM NCC Seland et al. (2020)
TaiESM AS-RCEC Lee et al. (2020)



	 O. Ferguglia et al.

1 3

the region 60◦–95◦ E, 10◦–30◦ N during the Indian Sum-
mer Monsoon season (May to September) normalized 
by global-mean SST change (ISM rainfall change). In 
this case, the future change is evaluated as the differ-
ence between the 2070–2099 future climatology and the 
1980–2009 past climatology.

•	 ECG (from O’Gorman 2012) defines a relationship 
between extreme tropical precipitation (99.9th percentile) 
scaled with surface air temperature over tropical oceans 
during the past reference period 1981–1999 (this quantity 
is referred to as “Sensitivity for variability”, as in the 
original paper), and the future change in tropical extreme 
precipitation divided by temperature increase over the 
Tropics (called “Sensitivity for climate change”). In this 
context, the scaling procedure consists in calculating the 
slope between monthly time series of extreme precipita-
tion and surface air temperature over the tropical ocean, 
then normalized by time- (1981–1999) and space- (the 
Tropics, between 30◦S–30◦ N) averaged extreme pre-
cipitation. The future change is evaluated as the differ-
ence between the 2081–2099 future climatology and the 
1981–1999 past climatology. Fur further details on the 
scaling procedure, please refer to O’Gorman (2012).

•	 ECB (from Borodina et al. 2017) correlates the annual 
maximum value of daily precipitation amounts (Rx1day 
index, Karl et al. 1999) scaled with global-land tem-
perature (Rx1day scaling), calculated over a past time 
period (1951–2014), to the same quantity calculated 
over a future period (2015–2099) in different regions of 
the world characterized by high climatological rainfall 
intensity. The scaling method in this case requires the 

calculation of the Theil-Sen slope (von Storch and Zwi-
ers 1984) of the relationship between the yearly time 
series of Rx1day and mean surface air temperature, then 
normalized by space- and time-averaged Rx1day index. 
For the definition of the predictand, we chose the period 
2015–2099 instead of 1951–2099 used by Borodina et al. 
(2017) in order not to include the window 1951–2014 
over which the predictor is defined.

For each EC, a preliminary analysis has been performed to 
reproduce the results found in the reference papers using 
the same (or a very similar) set of models (from CMIP5) 
employed by the original authors (Thackeray et al. 2018; Li 
et al. 2017; Borodina et al. 2017). This analysis produced 
successful results for each EC and will not be discussed 
in subsequent sections. Then, each EC was tested with the 
CMIP5 and CMIP6 model ensembles selected for this study 
(see Table 1). A bootstrap analysis was performed for both 
model ensembles, taking random sub-samples of about 2/3 
of the complete model set (where not differently specified) 
and repeating this procedure 10000 times, to reproduce the 
predictor-predictand relationship. The distribution of the 
correlation coefficients describing the EC was analysed to 
check for the EC robustness.

3 � Results

In this section, we present the results of our analysis applied 
to the four ECs taken into consideration—a summary of the 
results is provided in the three rightmost columns of Table 2.

Table 2   Summary of the ECs reconsidered in this study

The first four columns show, respectively, the EC acronym, the predictor and predictand definitions along with their reference periods, and the 
results discussed in the original papers in terms of correlation coefficients (all being statistically significant). The last two columns show our 
results (correlation coefficient, r, and p-value) obtained with CMIP5 and CMIP6 models

Acronym Predictor Predictand Original result CMIP5 CMIP6

ECT Global-mean HS ΔP
99

/ΔT r≥0.6 in oceanic r≥0.6 with p<0.05 r≥0.6 with p<0.05
(%K−1) (mm/year K −1) tropical regions in oceanic in southern tropical
1960–1999 2060–2099 (CMIP5) tropical regions Indian ocean

ECL WP precipitation ISM rainfall change r = 0.63 r = 0.56 r = 0.03
(mm/day) (mm/day ◦C−1) (CMIP5) p = 2 × 10−3 p = 0.89
1980–2009 2070–2099

ECG Sensitivity for Sensitivity for r = 0.87 r = 0.75 r = 0.73
variability climate change (CMIP3) p = 8 × 10−6 p = 7 × 10−6

(%K−1) (%K−1)
1981–1999 2081–2099

ECB Rx1day scaling Rx1day scaling r = 0.82 r = 0.88 r = 0.38
historical future 8.5 (CMIP5) p = 2 × 10−9 p = 0.04
(%K−1) (%K−1)
1951–2014 2015–2099
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3.1 � ECT

Figures 1(a, b) show, for CMIP5 and CMIP6 respectively, 
the spatial map of the inter-model correlation between 
global-mean HS (% K −1 ) and local changes in extreme pre-
cipitation ( ΔP

99
/Δ T (mm/year K −1)), respectively the pre-

dictor and the predictand in this EC. Dotted areas indicate 
where the correlation exceeds the 95% significance level (p 
≤ 0.05).

Figure  1a, referring to CMIP5, shows that the areas 
with significant correlation are found around the Tropics, 
especially in the Pacific ocean, in the western Atlantic and 
coastal areas of Venezuela and Brazil, in the Indian ocean, 
and in Indonesia, in agreement with the results found by 
Thackeray et al. (2018).

The same analysis performed with CMIP6 models is pre-
sented in panel b: in the Tropics, the correlation coefficient 
decreases considerably in all regions outlined above except 
in a small area in the Indian Ocean and around Indonesia, 
where r ≥ 0.6. To better explore the reasons for this differ-
ent behaviour in the two model ensembles, the inter-model 
standard deviation of the predictand for CMIP5 and CMIP6 
models has been evaluated and is shown in Fig. 1(panels 
c and d, respectively). CMIP6 models agree better with each 

other (smaller standard deviation) than CMIP5 models in 
projecting local extreme precipitation. On the other hand, 
global-mean HS does not change between CMIP5 (ensemble 
mean equal to 0.047 ± 0.008 %K−1 ) and CMIP6 (0.046 ± 
0.009 %K−1 ). Our interpretation is that the reduced CMIP6 
inter-model spread in the predictand prevents this relation-
ship from still working as an EC, since the variability associ-
ated with a possible influence of the predictor can be smaller 
than the natural sample variability in the predictand.

3.2 � ECL

Figure  2 shows the scatterplot between the predictor 
(mean western Pacific precipitation, (mm/day)) and the 
predictand (future change of ISM precipitation, (mm/
day ◦C−1 )) calculated with CMIP5 (panel a) and CMIP6 
(panel b) models. Figure 2a shows that the two variables 
are positively correlated with a correlation coefficient of 
0.56, not dissimilar to the one found by Li et al. (2017), 
(i.e. 0.63, in Fig. 2a of their original paper). For this spe-
cific EC, in order to check the sensitivity of the results 
to the ensemble composition, we performed a bootstrap 
test using a 27 sub-sample of a larger set of CMIP5 mod-
els (39 models overall, the extra ones from our set are 

Fig. 1   Analysis of ECT. a Inter-model correlation between the pre-
dictor (global-mean HS—(% K −1 )) and the predictand (local change 
in extreme precipitation per degree of global warming—(mm/year 

K −1 )) for CMIP5. Dotted areas show statistically-significant correla-
tions (p ≤ 0.05). b Same as a but for CMIP6. c, d Inter-model stand-
ard deviation of the predictand for CMIP5 (c) and CMIP6 (d)
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reported in the Supplementary Information). These 39 
models are those for which precipitation data at monthly 
resolution were available—this specific EC in fact does 
not require daily precipitation data for its calculation, thus 
monthly precipitation data, available for a larger num-
ber of models, can be used to increase the size of our 
ensemble. This bootstrap analysis led to an even lower 
mean correlation coefficient compared to the previous 
value ( 0.35 ± 0.10 , against 0.56) which indicates that the 
correlation that supports this EC largely depends on the 
model ensemble composition. Thus, this EC may not be 
particularly robust whenever the goal is to use it to reduce 
uncertainties in model projections. The corresponding 
coefficient of variation (CV), the ratio of the standard 
deviation to the mean, is around 29% denoting a quite 
high variability of the correlation coefficient as a function 
of the specific composition of the ensemble. The prob-
ability distribution of the correlation coefficient is shown 
in the Supplementary Information (Figure S1).

The next step was to test the EC using CMIP6 models, 
as shown in panel b: in this case we found a correlation 
which drops dramatically to r = 0.03 (p value not signifi-
cant), confirming that this EC does not survive changes 
in the model ensemble and in its composition.

3.3 � ECG

Figure 3 shows the scatterplot between the predictor (sensi-
tivity for variability, see Sect. 2.2) and the predictand (sen-
sitivity for climate change) for both CMIP5 (panel a) and 
CMIP6 (panel b) models. Models in the CMIP5 ensemble 
with high sensitivity for variability tend to project a larger 
increase in sensitivity for climate change, with an inter-
model correlation of 0.75 (p ≤ 0.05, see Table 2). In this 
case, since there are no more available models for both 
CMIP5 and CMIP6 than those specified in Table 1 provid-
ing daily precipitation data required to calculate ECG, we 
performed a bootstrap analysis as described in Sect. 2.2, i.e., 
with sub-sets containing 2/3 of the models. This analysis 
produced a distribution of the correlation coefficients with 
a standard deviation of 0.08 (mean value of 0.75). Similar 
results are found for CMIP6 models (panel b), with a cor-
relation coefficient of 0.73 (p ≤ 0.05, 0.73 ± 0.07 from the 
bootstrap analysis). In both CMIP5 and CMIP6 cases, the 
coefficient of variation, CV, is relatively low, 11% in CMIP5 
and 9.6% in CMIP6, showing a low dispersion of the cor-
relation coefficients obtained from bootstrap analysis with 
respect to their mean (the probability distribution is shown in 
Figure S2 of the Supplementary Information). This analysis 
suggests that this EC exists in both CMIP5 and CMIP6 and 
that it is characterised by a high and significant correlation 

Fig. 2   Analysis of ECL. a Scatterplot of the predictand (future 
change of ISM precipitation—(mm/day ◦C−1 )) against the predictor 
(western Pacific precipitation—(mm/day)) for CMIP5. The dashed 

line shows the ordinary least-squares best fit. b Same as a for CMIP6. 
Here the best-fit line is not shown as no significant correlation was 
found

Fig. 3   Analysis of ECG. a Scatterplot of the predictand (sensitivity for climate change)—(% K −1 )) against the predictor (sensitivity for variabil-
ity—(% K −1 )) for CMIP5. The dashed line shows the ordinary least-squares best fit. b Same as a but for CMIP6
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coefficient between the predictor and the predictand. To 
further test this EC robustness we replicated the previous 
analysis using the SSP245 CMIP6 emission scenario. The 
results are consistent with those found for SSP585, resulting 
in a correlation coefficient of 0.85 (p ≤ 0.05; r = 0.84 ± 0.07 
from the bootstrap analysis), which provides evidence of the 
ECG robustness. Figure S3 of the Supplementary Informa-
tion shows the results of the analyses performed with the 
SSP245 scenario.

3.4 � ECB

Figure  4 shows the scatterplot between the historical 
Rx1day scaling (%K−1 ) (the predictor) and future projec-
tions of the same quantity (the predictand) with both CMIP5 
(Fig. 4a) and CMIP6 (Fig. 4b). As can be seen in panel a, 

the correlation coefficient between the predictor and the pre-
dictand is high (0.88, p ≤ 0.05) and similar to the one found 
by Borodina et al. (2017) in the original paper (r = 0.82). 
The bootstrap analysis performed on our CMIP5 ensemble 
led to an average correlation coefficient of 0.87 ± 0.04 and a 
CV of 5% (the probability distribution of r is shown in Fig-
ure S4 of the Supplementary Information), confirming the 
robustness of this relationship using CMIP5. Figure 4b pre-
sents the scatterplot computed with CMIP6 models: the cor-
relation coefficient decreases as far as 0.38, with a p-value of 
0.04. The bootstrap analysis led to a correlation coefficient 
probability distribution characterized by a standard devia-
tion of 0.09 (mean value 0.38) and a CV of 24% (see Figure 
S4 of the Supplementary Information). In order to better 
understand the decrease of the correlation in CMIP6, global 
maps of inter-model standard deviation of the predictor and 

Fig. 4   Analysis of ECB. a Scatterplot of the predictand (Rx1day scal-
ing—(% K −1 )) against the predictor (Rx1day scaling—(% K −1 )) for 
CMIP5. The dashed line shows the ordinary least-squares best fit. b 

Same as a but for CMIP6. c, d Intermodel standard deviation of the 
predictor for CMIP5, CMIP6. e, f Intermodel standard deviation of 
the predictand (Rx1day scaling—(% K −1 )) for CMIP5, CMIP6



	 O. Ferguglia et al.

1 3

the predictand, for both CMIP5 and CMIP6, were calculated 
(see panels c–f of Fig. 4). For both the predictor and the 
predictand, the inter-model spread has clearly decreased in 
CMIP6 (panels d and f) with respect to CMIP5 (panels c and 
e). In particular, the regions showing the strongest reduction 
of the inter-model spread are India (for the predictor) and 
Africa and Southeast Asia (for the predictand). We provide 
further details computing spatial maps of the inter-model 
correlation between the predictor and the predictand (Fig-
ure S5 in the Supplementary Information). They highlight 
the regions that most contribute to the decrease of the cor-
relation coefficient describing ECB, namely India, Africa 
and Southeast Asia, consistently with the previous finding. 
We hypothesize that spatial averaging performed over such 
diverse regions—inherent in the definition of this EC—may 
play a role in the decrease of the correlation in CMIP6. More 
generally, a reduction of the model uncertainty/spread in 
CMIP6 likely makes the application of this EC unnecessary 
to the aim of narrowing CMIP6 model projections.

4 � Discussion and conclusions

In our analysis, we have reconsidered the existence and the 
strength of four precipitation ECs already proposed in the 
literature and we have tested their sensitivity to the ensem-
ble composition using different CMIP5 and CMIP6 model 
ensembles. Our analysis suggests that only one EC (ECG) 
is robust with both CMIP5 and CMIP6 models, another one 
(ECL) is not robust with either CMIP5 or CMIP6 and the 
two remaining ones (ECT and ECB) are robust with CMIP5 
but not with CMIP6.

ECG analyses the relationship between tropical extreme 
precipitation (scaled with temperature increase over tropi-
cal oceans) during the past (a quantity which O’Gorman 
(2012) called Sensitivity for variability) and tropical extreme 
precipitation (difference between a future and a past clima-
tology) divided by temperature increase over the Tropics 
(called Sensitivity for climate change). As also suggested by 
O’Gorman (2012), who tested this EC in the CMIP3 ensem-
ble, the strength of ECG arises from the fact that the predic-
tor and the predictand are associated with the same physi-
cal process involved in precipitation formation (i.e. moist 
convection in the Tropics) which is included in the models 
by means of parameterizations. In the models, the latter are 
associated with similar inter-model spread in the response 
of tropical precipitation both in historical simulations (used 
to calculate the predictor) and in future projections (used to 
calculate the predictand). The sensitivity of ECG in CMIP6 
was successfully tested not only for changes in the ensemble 
composition but also in different emission scenario, using 
both SSP245 and SSP585.

ECL establishes a relationship between western Pacific 
precipitation and the change in Indian Summer Monsoon 
rainfall, normalized by SST change. The physical process 
identified by the authors for this EC is related to the negative 
cloud-radiation feedback on sea surface temperatures: the 
negative feedback suppresses the local SST warming in the 
western Pacific area, strengthening ISM rainfall projections 
via atmospheric circulation. Our analysis does not lead to 
the same results as found in Li et al. (2017) since we found 
a very low correlation both in CMIP5 and in CMIP6. In 
addition to the described ECL analysis, an attempt to find a 
relevant correlation between the simulated tropical western 
Pacific precipitation and projected changes in SST warm-
ing patterns in the same area was done using CMIP6 mod-
els but no relevant correlation was found (r = − 0.04 with 
a p-value = 0.85). This result suggests that the proposed 
atmospheric mechanism responsible for the relationship 
between the predictor and the predictand should be better 
and deeply investigated in climate models. For example, 
the study by Palazzi et al. (2014), analyzing precipitation 
patterns and climatologies in the Indian monsoon region 
in CMIP5, showed that GCMs including the indirect effect 
of atmospheric aerosol reproduce better the climatology of 
Indian monsoon precipitation than the models including the 
direct effect of aerosol particles only. The same was found 
for the models incorporating a fully-interactive aerosol mod-
ule than those with prescribed aerosols. This suggests that 
aerosol particles and their interactions with clouds could be 
important factors to be considered in the relationship found 
by Li et al. (2017) and, together with other factors, could 
be taken under consideration for further analyses trying to 
better understand the links between the variables involved in 
this EC. As discussed in the Introduction, several ECs were 
recently found to lack a satisfying physical basis able to sus-
tain the correlation between the predictor and the predictand, 
and ECL may partially be ascribable to this category. The 
variables involved in this EC are probably too complex and 
a simple linear relationship that manages to both describe 
the EC and be used to narrow the model outputs can not be 
easily assessed.

ECT describes a relationship between global-mean pre-
cipitation change normalized by global-mean surface air 
temperature change and local changes in extreme precipita-
tion. The physical mechanism behind this EC involves the 
relationship between the intensification of global hydro-
logical cycle induced by global warming, changes in the 
atmospheric energy budget and increases in precipitation 
extremes. ECB correlates the annual maximum value of 
daily precipitation amounts scaled with global-land tempera-
ture increase in a past period to the same quantity calculated 
over a future period in different regions of the world charac-
terized by high climatological rainfall intensity. Similarly to 
ECG, the formulation of this EC is based on the use of the 
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same variable for the predictor (evaluated in a past period) 
and the predictand (evaluated in the future) and thus the 
relationship that underlies the EC is somewhat straightfor-
ward. In addition, there is no difference in the ability of the 
models to simulate the same variable in the past and in the 
future as the equations and parameterizations describing it 
are the same.

In our analysis, both ECT and ECB turned out to be 
robust with CMIP5—thus in agreement with the reference 
literature—but not with CMIP6. We hypothesize that this 
could be attributed to a reduction of the model uncertainty in 
the CMIP6 ensemble with respect to CMIP5, which does not 
make the application of these Emergent Constraints effec-
tive. In particular, we found that the inter-model spread in 
the projections of extreme precipitation (99th percentile for 
ECT, Rx1day for ECB) is considerably narrowed in the lat-
est generation of climate models. For this, an EC or, more 
generally, a relationship between two precipitation-related 
variables found with CMIP5 models may not be robust 
or even exist in CMIP6. While the inter-model spread in 
CMIP6 is reduced compared to CMIP5, it is still large and 
still needs to be reduced in order to produce future projec-
tions useful for climate-change adaptation strategies.

A new precipitation EC assessed by Thackeray et al. 
(2022) constrains future changes in the occurrence of 
extreme precipitation with historical simulations of the same 
variable. As already noticed from our analysis, it seems 
considerably more favorable to use the same variable for 
the predictor and the predictand, or at least variables that 
are regulated in the models by means of the same param-
eterizations and which can be ascribed to the same physical 
mechanisms. This observation helps to explain  why ECG 
is the only EC which survives in the CMIP6 ensemble—
and the new study by Thackeray et al. (2022) corroborates 
this hypothesis. One might then wonder why ECB does not 
behave in the same way as ECG, given that both use the 
same variable in the past and in the future as the predictor 
and the predictand, respectively. One possible explanation 
was provided in Sect. 3.4 and we believe that it lies in the 
spatial aggregation inherent in the ECB definition. In fact, 
ECB correlates extreme precipitation in the past and in the 
future averaged in different regions of the world, character-
ized by climatological high rainfall intensity. The aggregated 
areas are very different to each other, since they belong to 
different latitudinal zones and they are subjected to differ-
ent climatological regimes. Precipitation is then associated 
with diverse large-scale and local mechanisms and all this 
could affect the overall model performance in the past and 
in the future. In fact, we found considerable geographical 
differences in the inter-model spread in both the predictor 
and the predictand (Fig. 4 panels c–f) as well as in their cor-
relation maps (Fig. S5 in the Supplementary Information). 

This also suggests that current ECs may be limited in their 
geographic applicability.

Another important consideration is that the Equilibrium 
Climate Sensitivity (ECS) has been proven to exhibit sub-
stantial differences between CMIP5 and CMIP6, both in 
the mean value and in the inter-model variability (Zelinka 
et al. 2020). We considered the possibility that this differ-
ence, especially in the inter-model spread, may play a role 
in the robustness of ECs (in particular of ECT and ECB 
which show the major differences between the CMIP5 and 
CMIP6 ensembles). We think that the higher inter-model 
spread in ECS (in CMIP6) may introduce an additional 
source of uncertainty, thus reducing the signal (the cor-
relation behind the ECs) to noise ratio. Besides influenc-
ing its robustness, the introduction of such an uncertainty 
makes it even more difficult to effectively use the EC tech-
nique to constrain model uncertainties in projections.

Precipitation ECs are very powerful tools for under-
standing and investigating climate model response to 
mechanisms and dynamics linked to precipitation forma-
tion, trends and evolution. However, the analysis shown 
here suggests that their practical application for reducing 
uncertainties in model projections linking them to observ-
able metrics should be regarded with caution, due to the 
large sensitivity of the EC to the model ensemble compo-
sition, which represents a weakness of the technique. In 
conclusion, as also suggested by Sanderson et al. (2021), 
the strength and potential of the EC technique should be 
mostly linked to its capability to interpret climate phe-
nomena and to describe and investigate the connections 
between different climate variables—thus improving our 
knowledge of the climate system and its mechanisms, 
rather than (only) to its power to effectively narrow 
uncertainties in climate change projections. Exploring 
new emergent constraints and using them in new model 
ensembles thus represent a valuable way first and foremost 
to improve simulations of current climate and to better 
understand climate dynamics.
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