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Abstract—Several explainable AI methods allow a Machine
Learning user to get insights on the classification process of a
black-box model in the form of local linear explanations. With
such information, the user can judge which features are locally
relevant for the classification outcome, and get an understanding
of how the model reasons. Standard supervised learning processes
are purely driven by the original features and target labels,
without any feedback loop informed by the local relevance of
the features identified by the post-hoc explanations.
In this paper, we exploit this newly obtained information to design
a feature engineering phase, where we combine explanations with
feature values. To do so, we develop two different strategies,
named Iterative Dataset Weighting and Targeted Replacement
Values, which generate streamlined models that better mimic the
explanation process presented to the user. We show how these
streamlined models compare to the original black-box classifiers,
in terms of accuracy and compactness of the newly produced
explanations.

I. INTRODUCTION

Traditionally, supervised Machine Learning (ML) is per-
formed by training a model instance from a labeled input
dataset. In particular, modern ML models are typically black
boxes - that is, models that do not intrinsically share a human-
comprehensible description of their inner decision logic.

Explainable Artificial Intelligence (XAI) allows a user (be
it an engineer or a domain expert) to perform various kinds
of a-posteriori attributions to black-box models, to partially
explicate how these model take their decisions in a human-
comprehensible format [14]. Depending on the data type, ML
task and analysis technique, explanations can be computed and
provided in different ways, such as lists of rules, decision trees,
weights, prototypes, etc. Of particular interest is the feature
attribution [19] approach, which represents the explanation to
any given sample x as a local linear explanation (LLE). The
LLE of x assigns a weight to each feature of x, representing
its relative importance in the classification outcome.

The typical exploitation of a LLE is to focus the attention on
the (locally) most relevant features, which implicitly presents
the idea that the model based its decision essentially on such
features. This simplification is driven by the need to present to
the user/developer an amount of information that is cognitively
manageable; however, this process might in fact introduce a
mismatch between the machine decision and its corresponding
human understanding. For instance, a XAI technique might
highlight a subset of locally relevant features for a given

data point, but these features alone might even produce a
different output when fed to the same trained ML model. It
is therefore interesting to assess whether the most relevant
features presented to the user are actually enough to preserve
the classification task, i.e. reconciling both the machine and
the human learning processes.

Therefore, our research question (RQ) is:

How can local linear explanations be exploited
in a ML workflow so that the trained model

is more coherent to the human understanding
of the explanation process?

(1)

In this paper we present an experimental setup of two novel
feature-engineering techniques, where a streamlined black-box
model h is trained over a dataset where only the locally-
relevant features are kept, while the others are masked away.
By doing so, the resulting streamlined model h surpasses
the black-box model in mimicking the psychological process
of the user receiving an explanation, focusing on the most
relevant features, and taking decisions upon these reduced
inputs. Our target is therefore to test whether the new model
really learned to classify upon the suggested subset of fea-
tures without compromising classification accuracy and model
fairness. The streamlined model is still a black box, but the
extracted explanations are more compact, and therefore more
comprehensible. The two presented methodologies are called
Iterative Dataset Weighting (IDW) and Targeted Replacement
Values (TRV). IDW is designed as an iterative procedure that
directly combines the dataset values with their importance,
in order to lower towards zero the features that are not
relevant according to the LLEs. A specific pre-processing is
also introduced to reduce the possibility that the zero value
corresponds to a highly relevant value. TRV identifies a neutral
value for each feature, and performs value replacements to
keep only a predefined cognitive budget of K relevant feature
per sample.

For each methodology, a workflow that generates the
streamlined models is proposed and assessed experimentally
on a set of 4 benchmark tabular datasets. The experiments
show that the proposed methodologies produce a trade-off
between the baseline accuracy and the complexity of the
streamlined model logic, computed in terms of explanation
compactness and similarity to a common global explanation.
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The rest of the paper is organised as follows: II presents
background and related work, III introduces the two proposed
methodologies and the dataset processing, IV describes the
experimental setup and results, and V concludes the paper
with final considerations and directions for future work.

II. RELATED WORKS

In recent years, several works have been dedicated to
the concept of AI explanation. There are models that are
inherently understandable by humans. For example, decision
trees provide an easily interpretable explanation as the path
from the root to the leaf that classifies a sample [25], as
well as rule-based models [2] or linear regressors. Most of the
ML models in use today, however, are not understandable by
design, and exploit complex mathematical architectures that
are hard to interpret directly. Models of that kind include
neural networks, random forests, and others, and are usually
called black-box models for this reason. Interpreting black-
box models can still be done by using techniques to extract
various representations (such as prototypes, heatmaps, etc.)
that somehow capture relevant parts of the model classification
process [27]. These representations can pertain to single data
points (local explanations) or concern the behavior of the
black-box model as a whole (global explanations).

A common representation [12] for local explanations of
black-box models is the Local Linear Explanation (LLE),
which provides a coefficient for every input feature that
represent the importance of such feature in the classification
outcome. LLEs are particularly suited for tabular data, but
can be generalized to cover a broader class of data formats.
Different methodologies exists to compute LLEs, such as
LIME [26], DeepLift [32] or SHAP [19]. In this paper we will
focus on SHAP, which is briefly summarized in the section
II-A, as the methodology to compute LLEs.

A. SHapley Additive exPlanations (SHAP)

SHAP [19] is the state-of-the-art methodology to compute
LLEs that we will use throughout the paper. In particular,
we focus on the SHAP KernelExplainer method (hereafter
SHAP explanation method, for brevity), which is the core
implementation of the Shapley algorithm that does not make
any assumptions on the nature of the black-box model f0.

The SHAP explanation method takes in input a model f0
and a sample x, and computes as a result a vector of SHAP
scores ϕ, which can be interpreted as the relative importance
of that feature in the classification process of a model f0(x). In
principle this explanation method is defined on binary features
only, but it can be extended to real values ones. In order to
compute the scores, SHAP needs to evaluate the black-box f0
on a subset of features S ⊆ F of x. To do so, SHAP adopts
the concept of a background set B, which is a set of samples
whose entries are used to replace the missing features of S.
Let fS,b(x) denote the evaluation of x where only the features
of S from x are kept, while the other features F \S are taken
from the values of the background sample b ∈ B, and let
fS(x) =

1
|B|

∑
b∈B fS,b(x).

Symbol Meaning
f0 baseline black-box model
F the set of m features of the dataset
D dataset matrix with n samples (size n×m)
xj the value of the data point x for the feature j
B matrix of k background data points (size k ×m)
ϕ explanation vector for a single data point x
E matrix of all explanation vectors ϕ (size n×m)
K the cognitive load allowed for a linear explanation
h streamlined black-box model
R replacement values (size 1×m)

TABLE I: Summary of symbols used in the paper.

An explanation of a sample x computed by SHAP is a vector
ϕ = (ϕ0, ϕ1, . . . , ϕm), such that

f0(x) = ϕ0 +

m∑
j=1

ϕj (2)

The score ϕj for feature 1 ≤ j ≤ m represents how much
that feature j contributes (positively or negatively) to the final
classification value f0(x) with regard to a background score
ϕ0, defined as ϕ0 = 1

|B|
∑

b∈B f0(b). Each score ϕj can be
either positive or negative, since it contributes to explain the
value f0(x)−ϕ0 which again can be either positive or negative.
The absolute value of a SHAP score |ϕj | can be interpreted
as a local feature importance for feature j of sample x. Given
a dataset D, let E be the matrix of all SHAP scores of all
samples of D, such that Eij is the SHAP score of feature j
of sample i. Note that ϕ0 does not need to be represented in
E, being an immutable value.

B. Learning from explanations

Explanations of black-box classifiers can be seen as artifacts
generated to help a human subject in understanding the internal
process of a trained model. Since the model has to be trained
beforehand, these explanations are post-hoc. It is therefore
relevant that explanations are kept psychologically compact
and convincing, and this may require some cognitive load
constraint to be defined and enforced [1].

Inspired by well-established contributions in cognitive psy-
chology research and education [8], [9], [5], a different but
compelling idea consists in reusing post-hoc explanations gen-
erated by a model to improve the learning process. In [15] the
conditions that make post-hoc explanations useful to improve
a model are studied. The proposed approach is based on the
use of past explanations for predicting unknown data points.
In [21] the classification task is extended to generate the
explanations together with the target, thus making the black-
box model (to some extent) self-explanatory. The work in [29]
explores the idea of combining the learning process of a deep
neural network model with the explanations (generated by
the Grad-CAM method [30]) for multiple outcome classes,
in order to let the model learn from the explanation for
every possible outcome. Another possible use of explanations
consists in learning a secondary model that can be used to fine
tune a decision process, like in [10] for changing the output
of a recommendation system.

2
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Recently, a self-explanation module has been proposed to
complement existing deep learning pipelines to incorporate
ante-hoc explanations [28]. The suggested methodology is
able to provide explanations for model decisions in terms of
concepts for an individual input image and can handle different
levels of supervision.

Classification quality improved through the use of explana-
tion is studied in [33]: in that case, a sample and its explanation
is passed to a calibrator model to guess if the classification
of a black-box model is correct.

In this paper we want instead to combine explanations
generated from an initial model f0 to perform a feature
engineering of a dataset D, which is then used to train
a streamlined model h that should incorporate part of the
knowledge injected in the engineering phase.

Post-hoc explanations techniques can also be valuable to
implement more effective auditing processes [23]. Understand-
ing the logic behind wrong model decisions could be of
paramount importance, especially when high stakes are in
place. Explaining a black-box can help finding mislabeled
entries in massive datasets, like with the A-ClArC and P-
ClArC methodologies [4].

Explanations should also be subject to a validation process,
to verify their reliability and algorithmic stability. A review of
scores and techniques for that purpose can be found in [3].

The notation used throughout the paper is summarized in
Table I.

III. METHODOLOGIES

In this chapter, the two novel methodologies are introduced,
namely Iterative Dataset Weighting and Targeted Replacement
Values. The purpose of these methodologies is to inject
knowledge derived from the explanations about the logic of a
black-box model f0 into the training process of one (or more)
new models, called streamlined models. To support these
methodologies, a special dataset preparation is also introduced,
with the purpose of using zero values as a way to encode non-
relevant or average values.

A. Data preparation and background values

Datasets were preprocessed to prepare the raw data for
ingestion into ML models: all samples with missing values
were removed, the datasets were then rebalanced using the
SMOTE methodology [7], and all features were then nor-
malized. Numerical features were standardized using z-score
normalization; therefore the value 0 for a numerical feature
corresponds to the expected value for that feature. Binary
categorical features were encoded using a one-hot scheme
with {−1, 1} values. All N -ary categorical features with N
possible values were transformed to N binary categorical
features. By doing so, we can use the 0 value to represent the
lack of information about categorical variables. The rationale
behind this encoding is that we expect SHAP to assign lower
explanation scores for features with values close to 0, as they
do not diverge from (uninformative) background values.

The computation of the Shapley values requires to remove
players from coalitions, and SHAP mimics so by introducing
the concept of feature masking: replacing a feature with a
default value called background. In principle the median value
of each feature could be used, as in [32]. Using k background
values improves the generality of the SHAP method [34], at
the expense of increasing the computational cost by a factor
of k. As a balance between generality and cost, we have used
K-means to obtain a set of k = 4 background samples for
each of the tested datasets. Some of the tested datasets include
subgroups of individuals identifiable with protected attributes
(e.g., males and females) and therefore a decision process
leveraging such information might lead to fairness issues [20].
Therefore, the calculation of the background samples must
take these issues into account to represent these groups fairly.
For datasets including a protected attribute where fairness
issues may easily arise (i.e. HeartRisk and Student), we have
applied K-means on the samples that identify males and
females separately, to obtain two male samples and two female
samples each as background samples.

B. Iterative Dataset Weighting (IDW)

This first methodology combines all the explanations from
an initial dataset D0 into a new dataset D1 that has the same
shape of D0, but whose values are altered by a matrix of
importance values |E0|. Row i of matrix E0 is obtained as the
SHAP scores for sample i in D0 as classified by f0. Thus, each
entry E0[i, j] represents the importance that f0 gives to feature
j when classifying sample i. The intuition of IDW is that a new
black-box model h1 trained on D1 trains over a dataset where
only the relevant features are preserved, while non-essential
features (that will have close-to-zero explanation scores) will
be largely suppressed. This approach aims at training a new
model that retains most of the initial classification accuracy,
but that relies only on a subset of features that are locally
relevant.

(b)

(c)

SHAP

(a)

SHAP

Fig. 1: Workflow of IDW methodology.

3
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Fig 1 illustrates the iterative IDW workflow, following these
steps:
(a) From dataset D0 (preprocessed as described in Section

IV-B) the background sample set B0 is computed, and a
black-box model f0 is trained.

(b) SHAP is used to compute the explanations of every
training sample in D0, thus resulting in a matrix of SHAP
scores E0, where each entry |E0[i, j]| is the importance
of feature j for sample i in D0.

(c) A new dataset D1 is obtained by combining the matrix
|E0| with the initial dataset matrix D0 using the element-
wise Hadamard product, i.e.

D1 = |E0| ⊙D0 (3)

and then rescaled using each feature’s standard deviation,
to keep columns as z-scores. The process is performed for
both the train and the test sets,

Once D1 is generated, the entire process can be repeated
iteratively, generating a new background sample set B1, a
new black-box model h1, a new SHAP scores matrix E1,
and a new combined dataset D2. The evaluation of IDW is
therefore carried out on multiple hi models, obtained after i
iterations of the workflow in Fig 1. The goal is to check how
the streamlined models hi compare against the initial model
f0. We remark that every iteration requires to generate SHAP
explanations, which is a computationally expensive operation.

C. Targeted Replacement Values (TRV)

This second methodology starts with identifying a set of
replacement values R, one for each feature, and then these
values are used to replace all non-relevant features in the
original dataset D0. In order to decide which feature values are
relevant, TRV sets a cognitive budget of at most K relevant
features to be retained in each sample of D0. Therefore, TRV
differs from IDW by the strategy that it uses to mask the
dataset matrix entries: IDW affects all feature values with
a linear transformation, whereas TRV impacts only m − K
features (for each data point), mapping them to replaced
values.

Fig 2 depicts the TRV workflow, which can be summarized
in these steps:
(a) From dataset D0 (preprocessed as described in Section

IV-B) the background sample set B0 is computed, and a
black-box model f0 is trained.

(b) SHAP is used to compute the matrix of SHAP scores
E0. Using this matrix, the vector of replacement values
R is obtained as follows. For categorical features, the
replacement value is always 0, as we exploit the fact that
these features were one-hot encoded using the {−1, 1}
values. For numerical features, we first set a threshold
ϵ, and then the replacement value for that feature is
computed as the median value of all values in the dataset
D0 for that feature that have a corresponding absolute
SHAP score in E0 smaller than ϵ, i.e.

R[j] = median
(
D0[C, j]

)
(4)

(b)(a)

SHAP

(c)

SHAP

Fig. 2: Workflow of TRV methodology.

with C being the set of rows indices
{
i
∣∣ |E0|[i, j] < ϵ

}
(c) A new dataset D1 is generated by keeping, for every sam-

ple, the top K features by importance (i.e. those that have
the highest absolute SHAP score in E0), and replacing
all other features with their corresponding replacement
value in R. This new masked dataset D1 is then used to
train a new black-box model h1.

TRV is not an iterative process, unlike IDW, and the number
of masked features is controlled by a parameter K. Moreover,
replacement values of numerical features do not have to be
zeros, while in IDW the zero is implicitly the value that
encodes the concept of non-relevance for every feature.

IV. EXPERIMENTAL RESULTS

In this section we test how the new streamlined models
obtained by IDW and TRV compare with the original black-
box model f0.

A. Model Architectures and Training

We have run experiments with a number of different classi-
fication algorithms - however, for the sake of simplicity, in this
section we describe the results obtained with a single black-
box model architecture, a Multi-Layer Perceptron (MLP).
Therefore the model architecture used for both f0 and all hi is
an MLP with one hidden layer. The hidden layer has a number
of neurons equal to the number of features m in the dataset on
which the MLP is trained, and we set ReLUs as the activation
function for the input and hidden layers and sigmoid as the
activation function for the output layer. Furthermore, we used
a learning rate of 0.001, binary cross-entropy as loss function,
and an early stopping criterion using a patience value of 10.

The results produced by IDW and TRV are further compared
to standard regularized models (L1, L2 and L12) computed
using the regularization factor set to 0.0001. We do so to
provide a baseline for induced model sparsity [16].
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B. Datasets

We have tested our methodologies on several tabular
datasets, and we report our results for: Cancer [13], Hear-
tRisk [31], Kidney [13], Student [11].

Dataset
Name

Numerical
Features

Categorical
Features

Binary
Features

Preprocessed
Features

Missing
Values Classification Protected

Attribute
Cancer 30 0 0 30 ✗ Binary ✗

HeartRisk 9 0 6 15 ✓ Binary ✓
Kidney 11 3 10 37 ✓ Binary ✗
Student 13 4 13 43 ✗ Binary ✓

TABLE II: Characteristics of the datasets used in the compu-
tational experiments.

A summary of the dataset characteristics is shown in Table
II. For each dataset, Numerical Features and Categorical
Features indicate the number of numerical and categorical
features, respectively; Preprocessed Features indicates the
number of features after the preprocessing phase; Missing
values states the presence of data points with missing values in
one or more features; Classification denotes the classification
task for which the dataset is designed; and Protected Attribute
indicates whether the dataset contains some features that
could potentially cause fairness issues. For simplicity, we only
consider datasets for binary classification, albeit our work can
naturally be extended to other supervised ML tasks.

C. Evaluation Scores

Firstly, we quantified potential declines or improvements in
model performances (if any) for the proposed methodologies.
We relied on standard model accuracy1 to analyze the ability
of the models to correctly classify the samples of the dataset:
Acc = TP+TN

TP+TN+FP+FN with TP , TN , FP and FN being
the standard confusion matrix entries for a binary classifier.

For the datasets where two sensitive groups A and B
were present, we also consider a set of fairness metrics [18].
We include such metrics because we want to check that
our feature engineering does not introduce in the classifi-
cation pipeline an alteration of the fairness performances.
We evaluated the Positive Predictive Parity as PPRD =

TPA

TPA+FPA
− TPB

TPB+FPB
; the Negative Predictive Parity as

NPRD = TNA

TNA+FNA
− TNB

TNB+FNB
; the False Positive Parity

as FPRD = FPA

TNA+FPA
− FPB

TNB+FPB
and the Equality of

Opportunity as EOD = TPA

TPA+FNA
− TPB

TPB+FNB
. These

scores are calculated considering males and females as fairness
sensitive groups, and are computed only on the tested datasets
that present this distinction: HeartRisk and Student. While
smaller values reflect fairer models, it has been proven that
it is not possible to achieve perfect equality across all these
metrics simultaneously [24].

In order to capture the ability of the proposed method-
ologies to produce explanations that are simpler and easier
to understand than the ones produced by the original model
f0, we introduce two new metrics, namely the Explanation
Compactness Percentage (XCP) and the Glocal Similarity

1Note that datasets were rebalanced, so accuracy does not suffer from any
imbalance bias.

(Sim). XCP measures the fraction of features not involved
in the explanations (i.e. SHAP scores with an absolute value
lower than a threshold, set to ϵ=0.01). XCP quantifies the
ability of a model to rely on a sparse set of features, and thus
produce sparse local linear explanations. We introduce this
score as a way to verify that the streamlined model learned the
classification rules from a smaller set of features than the ones
used by f0. An high XCP value means that the model produced
sparser explanations, which are naturally more interpretable
for human users.

A different aspect that we measure is the consistency of
the produced explanations that are proposed to the user. The
principle is that a user will be confused by the system if expla-
nations vary significantly among the classified samples [6]. In
fact, in the extreme case where all the local explanations are
the same, the model would be fully replaced by a global white
box implementing the local rules without any loss in accuracy.
In such case, the user would face the simplest scenario where
features have the same impact on every sample, making much
easier interpreting the model logic. However, substituting a
complex model with a simpler global one is not always doable,
and therefore with this metric we aim at quantifying how well
local explanations of the new models tend to be collectively
aligned towards a global one. The Glocal Similarity measure
(Sim) is introduced to capture how similar are the local
explanations to a common global explanation in terms of their
respective sets of explaining features. Since a global explana-
tion is typically used to have an understanding on the expected
features driving the average model predictions, having local
explanations that are significantly divergent from the globally-
relevant features would cause an additional cognitive burden to
the end user to reconciliate between counter-intuitive signals.
The vector of global importance of all features is calculated
averaging the local importance across all the n data points:

g =
1

n

n∑
i=1

|E[i]| (5)

To measure such consistency, we define the Glocal Similarity
as one minus the Hamming distance between the set of
relevant features in |E[i]| and g. In this way, we assign an
higher similarity if both g and E[i] share similar sets of
relevant features for the explanation. To compute the Hamming
distance between |E[i]| and g such vectors are first processed
into binary vectors E[i] and g using a threshold ϵ i.e. the
values of |E[i]| and g greater than ϵ are represented by 1,
the remaining by 0 respectively in E[i] and g. Therefore, the
Glocal similarity for the sample i is computed as

Sim(i) = 1− c(E[i], g)

m
(6)

where c(a, b) counts the number of occurrences of elements
with different values in a and b, in the same positions. In our
experiments, we used a threshold value ϵ=0.01. Note that an
higher Sim value does not imply that the model producing
the explanation is better than another, but just that it is more
consistent in identifying the relevant features for different
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Fig. 3: Accuracy (a) and absolute value of fairness metrics
(b-e) for the baseline (without regularization)) and the IDW
streamlined models, computed on the test sets. Each color
identifies a dataset.
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Fig. 4: XCP of the baseline (without regularization) and of the
streamlined models computed using IDW, on the test sets.

samples. For instance, a linear model would result in a perfect
Sim score. Given our stated Research Question (1), we focus
on measuring the coherence among multiple explanations.

D. Iterative Dataset Weighting Results

In this section the results produced using IDW are illustrated
up to 4 iterations. Fig. 3(a) reports the accuracy and the
absolute fairness metrics for the baseline model (with and
without regularization), as well as the streamlined IDW models

L1 L2 L1
2

Ba
se

lin
e

Ite
r. 

1
Ite

r. 
2

Ite
r. 

3
Ite

r. 
4

0.4

0.6

0.8

1.0 Cancer

L1 L2 L1
2

Ba
se

lin
e

Ite
r. 

1
Ite

r. 
2

Ite
r. 

3
Ite

r. 
40.4

0.5

0.6

0.7

0.8

0.9

1.0 HeartRisk

L1 L2 L1
2

Ba
se

lin
e

Ite
r. 

1
Ite

r. 
2

Ite
r. 

3
Ite

r. 
4

0.6

0.7

0.8

0.9

1.0 Student

L1 L2 L1
2

Ba
se

lin
e

Ite
r. 

1
Ite

r. 
2

Ite
r. 

3
Ite

r. 
4

0.5

0.6

0.7

0.8

0.9

1.0 Kidney

Fig. 5: Distribution of the Sim scores (y-axis) of the stream-
lined IDW models and of the baseline (without regularization),
computed on the explanations of the text set.

up to the fourth iteration. In Fig. 3(a) we can observe that on
the datasets Cancer and Kidney IDW caused only negligible
decreases in accuracy, whereas HeartRisk and Student suffered
a greater loss of accuracy, as the iterations progress. The
dotted line reports the accuracy of another model where a
global feature selection 2 is applied, keeping only the top-K
relevant features, with K being the average number of features
with importance above ϵ. Global feature selection seems to
have comparable performances than IDW. This shows that,
in general, one should expect some accuracy loss when the
model is streamlined, as the new model is focusing on a much
smaller set of features to provide its decisions. The absolute
fairness metrics in Fig. 3(b-e) show that these metrics were
not significantly impacted by IDW, even if some variations are
observed.

Second, we measure the XCP of the streamlined IDW
models h1 . . . h4 compared to that of the baseline model f0
and, additionally, to that of the regularized baseline models.
Fig. 4 shows the XCP scores for the baseline and for IDW
at each iteration. In all the tested datasets, the compactness
of explanations shows an improvement trend using IDW. This
trend shows an increase in the number of features that are
considered not relevant in the explanations, for higher iter-
ations. Moreover, the regularized models have only marginal
improvements in explanation sparsity compared to the stream-

2SelectKBest, from Scikit-learn, with default parameters.

6

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on February 16,2023 at 09:09:20 UTC from IEEE Xplore.  Restrictions apply. 



0.0 0.2 0.4
prevalentStroke

BPMeds
diaBP

totChol
prevalentHyp

heartRate
BMI
edu

diabetes
smoker?

male
sysBP

cigsPerDay
age

glucose
L1

0.0 0.2 0.4

Baseline

0.0 0.2 0.4

Iter. 1

0.0 0.2 0.4

Iter. 2

0.0 0.2 0.4

Iter. 3

0.0 0.2 0.4

Iter. 4

Fig. 6: Box-plots of the absolute SHAP scores (x-axis) computed on the explanations obtained by the baseline and the IDW
streamlined models on the test set, for the HeartRisk dataset. Each row represents the distribution of a feature in the HeartRisk
dataset.

lined IDW models.
Fig. 5 shows the distributions of the glocal similarity scores

computed at each iteration of IDW. The results show that IDW
does not always produce explanations that are more similar
to a common global explanation. Only 2 datasets (Cancer
and Student) appear to have a general improvement trend of
the Sim score, while HeartRisk gets an improvement only
at the last iteration. Hence one desirable property of model
streamlining is not achieved consistently.

To better understand the streamlining effect of IDW, Fig. 6
shows the distributions of the absolute SHAP scores for the
explanation matrix E0 and each successive matrix E1 . . . E4.
For the sake of completeness, we also report the result for
the explanations generated by a L1 regularized model. The
distribution of the absolute SHAP scores for the baseline
case has values scattered for almost all features. As the
IDW iterations proceed, the model is forced to concentrate
on an increasingly smaller set of features. Model h4 gives
importance to about 4 features only. This shows that the feature
engineering achieves the goal of explanation streamlining.
Therefore we have achieved a model that locally considers
only very few features, at the price of a decreased classification
accuracy. We clarify that this small set of features is defined
per-sample, and not just a projection of the whole dataset. Thus
the streamlined model differs from a model that is constructed
by an aggressive simplification of the problem through a global
feature selection phase.

E. Targeted Replacement Values Results

In the TRV pipeline, all but the K most important features
(according to their explanation scores) are replaced with the
replacement values R (See Section III-C). Thus, the user
interested in an explanation selects in advance the number
K of relevant features to get for every sample. The values for
K used in our tests are 3, 5, 10, 15 and 20. Lower values for
K are particularly relevant, following the observations in [17]
where the authors report that the average number of features
before a user loses its interest is 4.32.

Fig. 7: Accuracy (a) and absolute value of fairness metrics
(b-e) for the baseline (without regularization)) and the TRV
streamlined models for different K values, computed on the
test sets. Each color identifies a dataset.

TRV determines which importance values denote a feature
being relevant or not by comparison with a threshold ϵ. The
results were obtained using ϵ=0.01 for all the tested datasets.
Such threshold requires some tuning. In our experiments we
observed that for these four datasets the selected value is
a good indicator for low SHAP scores. However, for larger
datasets with hundreds of features, a smaller threshold could
be required.

For TRV, we followed the same experimental setup already
outlined for IDW. Fig. 7 shows the accuracy scores obtained
by the baseline model (without regularizations) compared with
the streamlined models generated using TRV for different K
values. In general TRV seems to preserve better the classifica-
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Fig. 9: Distribution of the Sim scores (y-axis) of the stream-
lined TRV models and of the baseline (without regularization),
computed on the explanations of the text set.

tion accuracy that IDW, with only one dataset among the tested
ones (Student) showing some relevant degradation. Moreover,
fairness metrics do not appear to have been impacted signifi-
cantly by the feature engineering process of TRV. As before,
the dotted represents the accuracy of a model obtained after
a global feature selection keeping only K features. Also in

this case, the global feature selection appears to have has
comparable results.

Fig. 8 shows the XCP scores for increasing values of
K across all the tested datasets. In this case, TRV shows
a significant capacity of increasing the compactness of the
explanations obtained from the streamlined models. Recall
that the feature engineering of TRV alters D1, while the
XCP scores are computed on the explanation matrix E1, i.e.
it is not automatic that replacing m − K values results in
explanations with K relevant SHAP values. Since gains in the
XCP scores do not correspond to equally large decreases in
accuracy, the experiments suggest a more consistent efficacy of
this methodology over IDW in preserving the accuracy while
making the model more consistent in predicting the class using
a smaller set of features.

Fig. 9 shows the Sim scores for the explanations of the base-
line model, the regularized models, and the models obtained
using TRV. Also this score hints that explanations tend to share
the same set of features for smaller values of K, thus resulting
in explanations that are both compact and more consistent
to a single global explanation. This effect seems to also be
confirmed when observing the SHAP score distributions in
Fig. 10 (for the HeartRisk dataset). In that case, the global
explanation involves a slightly larger set of features than IDW
(6 for the K = 3 case), even if models will see m−K replaced
values for every input sample. But that set allows the model
to keep a better accuracy, even if explanations will focus on
slightly different feature sets among different samples.

V. CONCLUSIONS

By definition, algorithm-generated explanation of ML mod-
els have to be understandable by humans. This concept,
tightly coupled with the amount of information included in
an explanation, has been referred to as comprehensibility [14],
conciseness [3], and compactness [22] - amongst others. Local
linear explanations provide an insight on how a black-box
classifier weights its input features to achieve the classification
outcome of a given sample. Knowing this information, a
streamlined model can be trained to focus more on the locally-
relevant features, thus inducing this new model to concentrate
on a (locally) small input set. Such system allows to design
models that may still achieve reasonable accuracy, while their
classification depends only on a smaller set of variables, at
the cost of an expensive data engineering step. The small set
is not fixed (as in a global feature selection) but depends on
the explained sample. In this paper we reported the results on
two experimental setups, where the streamlined models are
obtained from two different data engineering processes, IDW
and TRV. These two setups learn from a combination of the
initial data with the Shapley scores computed by a baseline
model.

Experimental results show that the streamlined models were
able to keep a competitive accuracy (especially for TRV),
while at the same time being able to focus on a smaller set
of input features. The proposed methods apply a logic that
may look similar to a feature selection, but where the set of
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Fig. 10: Box-plots of the absolute SHAP scores (x-axis) computed on the explanations obtained by the baseline and the TRV
streamlined models on the test set, for the HeartRisk dataset. Each row represents the distribution of a feature in the HeartRisk
dataset.

features is not global. A comparison with a standard global
feature selection (reported in Fig.3 and 7) showed that, despite
fluctuations in the results, the proposed techniques looks
generally comparable; a thorough analysis is needed to make
a full assessment. Fairness metrics were also considered, in
order to ensure that the resulting pipeline did not significantly
harm the model fairness. Moreover, the results outperform
global feature selection approaches, since a form of locality is
retained (i.e. every explanation is local and compact at the
same time, but there is no single set of globally selected
features), as well as explanations from regularized models,
that were consistently less compact.

These experiments shows that it is possible to benefit from
an explanation-in-the-loop approach. A baseline model pro-
vides hints to which features are more interesting at the single
data point level, and this information is combined as input for a
streamlined model. Thus, the final decision can be taken on the
basis of a compact input set induced by the SHAP explanation
scores. Such compactness is a desirable property since this
information better corresponds to the human intuition behind
a sample explanation.

In the future, we plan to develop a user research on a real
setting where decision makers assisted by ML models take
advantage of post-hoc explanations during the process. In such
setting we aim at measuring how much the streamlined models
are able to increase trust, adoption and transparency in the
whole decision making process.

A follow up study will be devoted the streamlining concept
on different learning tasks such as regressions or image
classification. Furthermore, following the very same intuition,
we are interested in devising novel methodologies to include
different types of explanations in the learning process, such
as counterfactual explanations or motif-based explanations for
graph classification tasks.

We believe that a framework that combines both explana-
tions and learning to provide compact and consistent local
explanations that are coherent with the classification process
of a model is desirable, since it would overcome the limit

of generating explanations a-posteriori without profiting from
their information.

Reproducibility. All code and data used to perform the exper-
iments in this paper are available in a GitHub repository3.
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