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ABSTRACT

Machine-learning techniques are revolutionizing the way to perform efficient materials modeling. We here propose a combinatorial
machine-learning approach to obtain physical formulas based on simple and easily accessible ingredients, such as atomic properties. The
latter are used to build materials features that are finally employed, through linear regression, to predict the energetic stability of semicon-
ducting binary compounds with respect to zinc blende and rocksalt crystal structures. The adopted models are trained using a dataset built
from first-principles calculations. Our results show that already one-dimensional (1D) formulas well describe the energetics; a simple grid-
search optimization of the automatically obtained 1D-formulas enhances the prediction performance at a very small computational cost. In
addition, our approach allows one to highlight the role of the different atomic properties involved in the formulas. The computed formulas
clearly indicate that “spatial” atomic properties (i.e., radii indicating maximum probability densities for s, p, d electronic shells) drive the sta-
bilization of one crystal structure with respect to the other, suggesting the major relevance of the radius associated with the p-shell of the
cation species.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088177

I. INTRODUCTION

Modeling material properties with high accuracy and low compu-
tational cost is one of the grand-challenges in materials science and
engineering. The development of ab initio methods has provided accu-
rate tools for material properties prediction and their further optimiza-
tion; nevertheless, one disadvantage of approaches relying only on
first-principles simulations is the high cost required in terms of com-
putational resources and simulation time. In recent years, the continu-
ous growth of available computational power' has stimulated scientists
to move in the direction of high-throughput simulations.”'’ Along
this line, open access databases, such as OQMD,'""? NOMAD,"*"*

Aflowlib,”> C2DB,'*"” QPOD,'® Materials Project,19 Materials Cloud,”
and related AiiDA,”">”” provide researchers with a huge collection of
basic first-principles results. A large amount of ab initio data is thus
available, which can be used for deeper analyses and studies, provided
one can count on proper tools to extract relevant information out of
them.

In the last few years, materials scientists have developed differ-
ent machine-learning (ML) methods to rationalize the data
analysis.”’~”” Each method has its own specific advantages and lim-
itations. Methods, such as random forest’* or neural network
(NN),” which is mainly behind the Deep Learning (DL), are very
efficient’ but not always transparent, partially blurring the
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comprehension of the role played by the input variables in the final
results. Nonetheless, over the last few decades, improvements
toward the interpretability of such “black-box” ML models have been
made through additional methodologies,”” such as model-agnostic
methods, which in turn are divided into global and local interpreta-
tion techniques (see Ref. 38 and references therein). For instance, out
of various global methods, we can cite: the permutation feature
importance,” which associates each feature importance values
depending on how much the model error increases when its values
are shuffled; the functional decomposition,4' which decomposes the
complex prediction function into smaller parts; and the global surro-
gate,”” which replace the original model with a simpler model that
can be more easily interpreted. On the other hand, among the local
methods, we can cite: the local surrogate models (LIME),43 which
replaces the complex model with a locally interpretable surrogate
model, and the SHapley Additive exPlanations (SHAP),** which is
based on Shapley values and computes the contribution of each
feature to the prediction. Also, in the specific case of DL, which struc-
tures algorithms in multiple layers to create “artificial neural net-
works,” thus enhancing the complexity in the prediction’s
interpretation, other specific interpretation methods have been
proposed,””™ in addition to the already cited model-agnostic ones.

However, when targeted case studies allow, the easiest way to
achieve a deeper understanding of machine-learning results is to rely
on interpretable models, such as linear regression (LR),"*™" logistic
regression,”” and decision trees.”” This can apply here to our target
case, ie., the prediction of the difference in total energy (AE) between
rocksalt (RS) and zinc blende (ZB) crystal structures in semiconduc-
tor binary AB compounds, a prototypical case in materials science.
Accordingly, being our goal the creation of formulas linking the
target label (AE) to a set of basic atomic features, we selected the LR
algorithm both in its one-dimensional and multi-dimensional forms.

In closer detail, we here propose a ML-based approach to build
sets of features (or descriptors) starting from a given set of basic vari-
ables (e.g., atomic properties), which are subsequently used to con-
struct LR models (or formulas). The final outcome of our procedure is
a transparent formula, not necessarily of easy mathematical formula-
tion, but revealing which part of the input mostly affects the output,™
i, allowing the identification of the main driving physical features.

To test our method, we target a prototypical case in materials
science: indeed, inspired by the original work of Ghiringhelli et al.,”
we optimized our models to predict the difference in energy between
RS and ZB; from that optimization, a classification of the most stable
crystal structure between RS and ZB for semiconductor AB binary
compounds naturally derives.

To identify useful features, we generate combinations of basic
atomic properties (i.e., the independent variables in our approach)
of the material constituents through a combinatorial approach.”®
We then carry out an analysis of the emerging best-performing for-
mulas, identifying the role of specific atomic features in determin-
ing the final stabilization of the crystal structure. Finally, we test the
predictive capability of the obtained formulas by applying them to
“new” compounds (i.e., outside the dataset used for training the
model), finding an overall satisfactory agreement with first-
principles results. As already mentioned, our approach is similar to
what was originally proposed by Ghiringhelli et al,”” though with
some differences and further extensions, which will be carefully
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discussed in what follows. Let us also remark that large packages
are nowadays available to the scientific community, already provid-
ing advanced and well-tested features for use in ML applied to
materials science.”””® However, we here strictly followed the spirit
of Ghiringhelli et al.”” and, therefore, chose their same atomic fea-
tures, as detailed below.

Il. METHODOLOGY

The approach we present here can be regarded as a combina-
torial machine-learning: a set of basic atomic properties (APs,
listed in Table S2 of the supplementary material) are randomly
combined (though under certain initial constraints detailed below)
to build a set of material features (MFs). The generated features are
then used to train a LR model, where the energy difference
between rocksalt and zinc blende structures is the dependent vari-
able (i.e., the label). Then, we select the best-performing model
according to standard performance metrics, such as the root mean
squared error (RMSE). The final result of this procedure is a
“formula,” which is a concise and clear representation of the rela-
tionship between the used atomic properties and the energy differ-
ence between RS and ZB phases. In the following, we describe in
detail the different steps of our approach.

A. Dataset preparation and materials

As mentioned, we aim at predicting the total energy difference
(AE = E®S — E?P) between RS and ZB phases of cubic crystal struc-
tures for 82 semiconductor binary AB compounds (the dataset is
reported in Table S2 of the supplementary material). We employed
total energies reported in Ref. 55, which were calculated through
density functional theory (DFT)*>*’ within the local density
approximation (LDA®").

The construction of the material features is based on primary
atomic properties of the constituents, also taken from Ref. 55. To
facilitate the physical interpretation of each MF, the APs are sub-
divided into two different kinds: (i) “energy” properties, including
the highest occupied Kohn-Sham level (HOMO), the lowest
unoccupied Kohn-Sham level (LUMO), ionization potential (IP),
electron affinity (EA) and (ii) “spatial” properties, including r;, 7,
and rg, ie., the radii where the radial probability density of the
valence s, p, and d orbitals, respectively, reaches its maximum.4

B. Formula construction

We rely on the LR*** approach to obtain a direct interpretation
of the dependent and independent variables. The construction of a
useful LR model can become troublesome, requiring a linear depen-
dence between features. In Ref. 55, the authors implemented an auto-
mated feature selection method employing the LASSO regression
analysis method.”** In our work, we use a combinatorial approach to
generate the dependent variable (material features) to be used within
the linear equations and thus to finally obtain the formulas.

In Fig. 1, we illustrate the workflow of the formula generation
and selection using LR. The process starts with the selection of the
APs to be combined. Afterward, we choose prototype functions
that are simple analytical operations applied to the APs. In our
case, we selected five prototype functions, f(x), namely,
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d C
7 Atomic Properties (APs)
IP lonization potential
EA Electron Affinity

HOMO Highest occupied level

LUMO Lowest unoccupied level

Ty radii of s orbital
Ty radii of p orbital
T4 radii of d orbital

EX-1: Gen3
MF;

FIG. 1. (a) Basic atomic properties (APs) used to construct the material features. (b) Crystal structures of RS and ZB (plot made using the VESTA tool

Binary system based on
Mulliken’s electronegativity(EN)

A,B where EN(A) < EN(B)

7 APs per atom

IP, EA, HOMO, LUMO, 75, 13, T4

5 prototype functions (f (X))

X, X2, X3,VX, eX

Material Feature Generator

_ f1(APy) % f,(AP,)
f3(APs) % f,(APy)
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For each possible model, calculate
average of RMSEs for random N test-
train splits using Linear Regression

R f1(APy) £ f,(AP;)

AE =X 2 (AP, % fy(APy)

2 types of atoms

Selection of the best 10 formulas
having the smallest RMSE for
formula optimization
ax fi(AP;) b x f,(AP,)
cx f3(AP3) £ d x f,(AP,)

AE =mx

Top formulas to predict AE and

further physical analysis

).%% Gray (yellow)

spheres represent A (B) atoms. (c) Workflow for formula construction, machine-learning methodology, validation, and MF selection procedures. In the AB compounds, A is

the atom with the lowest electronegativity.

x, %%, x5, /%, €', where x is an AP. Then, we obtain the final set of
MFs by combining different prototype functions via the combina-
torial approach (see, for instance, Ref. 56) and applying the follow-
ing additional set of rules:

o GEN1: combine two prototype functions in the numerator,
forcing them to belong to the same kind of APs, which is both
“spatial”-like or both “energy”-like; one prototype function is at
the denominator with the only constraint to be non-zero, such as

fi(AP)) + f,(AP,)

ME == (apy)

1)

o GEN2: combine two prototype functions with the same kind of
APs at the numerator and a single prototype function at the
denominator with an argument of a different kind with respect
to the numerator ones. For instance, if AP, in f;(AP;) and AP,
in f,(AP,) are “energy” terms (ie., EA or HOMO), then AP;
must be a “spatial” term (i.e., rp),

_ fi(AP)) £ f,(AP,)
MF = O (2)

o GEN3: combine two prototype functions at both the numerator
and denominator without any constraints,

_ Hi(AP)) £ f,(AP,)

MF = .
f3(AP;) + fi(APy)

(©)

o GEN4: combine two prototype functions with the same physical
dimensions at both the numerator and denominator,

_ fi(AP) * f,(AP,)

MF =———~|
f3(AP;) % f4(APy)

(4)

where *= + — x +.

Each one of these set of rules corresponds to a different MF
generator.

From the implementation point of view, each generator is a
Python™ function that produces a set of strings. Therefore, we can
easily exploit the Python capability to parse a source code and run a
Python expression (code) within a program” to compute all the MFs’
values starting from the generated sets of strings. This allows for an
easy implementation and plugin of other generators, as well as to
easily adopt different sets of atomic properties, leaving the workflow
unchanged: a new generator can be introduced implementing a
Python function returning a list of strings, each one being a valid MF.

Finally, in order to choose the optimal formula, we build a LR
model for each of the generated MF. To practically select the best
model, i.e., the “best formula,” we randomly split the full dataset
into 90% as a training set to train/initialize the model and 10% as a
test set to check model’s performance. We perform this random
splitting N times (with N = 150) for each model, and we calculate
the RMSE from the test set for each run. Afterward, we again verify
the top ten resulting best formulas with a higher value of training
set and test set splitting, with N = 1000. We average it over all N
splitting, and we obtain avg(RMSE), as reported in the tables of
Sec. IIL
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We mention that different metrics for evaluating regression
models can lead to different formula ranking. In this work, we rank
the obtained models based on the lowest avg(RMSE) for direct
comparison with a previous work.”

C. Formula optimization

In order to further improve the performance of our models,
we introduce an additional step, which we refer to as “formula
optimization.” Specifically, we focus on the top ten formulas
obtained using each generator and the subsequent LR, as described
in Sec. II B. After that, we use a grid search to find the relative
weights of each prototype function of the atomic properties [i.e.,
each fi(AP;)] within the formula. A first grid search ranging
between —1 and 1 with the increasing step of 0.1 is used simultane-
ously for all the weight coefficients (i.e., an exhaustive search
through the specified subset of values for a, b, ¢, d coefficients is
simultaneously performed). We multiply each f;(AP;) of the formula
by the weight coefficient, and we optimize the final RMSE value. Once
the procedure finds a set of optimal weight coefficients, two subsequent
grid searches, with reduced incremental step values (0.01 and 0.001,
respectively) and a range of search are performed to obtain the final set
of refined weight coefficients. Of note, for each set of weight coefficients
generated during the grid search, we also run the linear regression.
Thus, we are performing a proper formula optimization, as at each step
of the grid search, we are updating both the weight coefficients as well
as the slope and intercept coming from the LR. In addition, it is impor-
tant to underline that we made sure to find the global minimum solu-
tion when analyzing the N-D maps over the phase space of the
parameters (in the specific case of GEN2, we also double-checked the
optimization results through an analytical minimization approach via
Mathematica®>®).

To further clarify the procedure, we show here an exemplary
equation,

a Xfl(API) * b sz(Apz)

A =M  F APy % d x fuAPy) TP

®)

where AE is the targeted material feature (MF); a, b, ¢, d denote the
weight  coefficients ~ scanned  during the grid  search;

ARTICLE scitation.org/journalljap

fi(APy), /2(AP,), f3(APs), f1(AP,) are the prototype functions build
on the primary atomic properties AP;; and m and q are the slope
or angular coefficient and intercept, respectively, recursively
determined upon LR.

In Table 11, we report the optimized, best-performing formula
from the different generators; the top 10 formulas are reported in
Table S1 of the supplementary material.

To benchmark our grid search, we also used automated
coefficient-optimizing methods: Nelder-Mead,”® conjugate gradi-
ent (CG),”” Broyden-Fletcher-Goldfarbnno (BFGS),”” and trun-
cated Newton method (TNC).”' Although the resulting sets of
coefficients are different in terms of single values with respect to
those obtained via the grid search, the ratios between them are
almost preserved as well as the associated RMSE. In particular, for
the case of GEN1 and GEN?2, the ratio between the numerator coeffi-
cients a and b is preserved, and for GEN3 and GEN4, also, the
denominator coefficient ratio, between ¢ and d, is preserved. In
Fig. S3 of the supplementary material, we show the evolution of the
RMSE and different ratios for different methods using 1D feature
generated by GEN3.

Finally, we would like to underline that the whole proce-
dure, ie., formula construction and its optimization, is not too
expensive from a computational point of view. Indeed, as
reported in Table S4 of the supplementary material, for almost
all the generators, the whole computation can be performed in
less than 4h on a standard PC. Only GEN3, where 1091200
different formulas are generated and evaluated, is more time
consuming (i.e., almost 15h are needed). However, we under-
line that the 1D formula construction procedure can be easily
parallelized in order to drastically reduce its computational
burden.

D. Higher-dimensional features

Following the idea of Ghiringhelli ef al. (see Ref. 55), we also
build 2D and 3D formulas as follows: we combined in all possible
ways two or three different 1D MFs extracted from the best 1000
ones and checked the avg(RMSE) using multiple LR for N test-
train set splits. Thus, the final equations, which relate AE to the

TABLE I. 1D formulas, along with related statistics: avg(RMSE) denotes the root mean squared error for average over 1000 random frain-test splits of dataset. Instead, the
RMSE is the root mean squared error for the entire dataset as training and test. Similarly, the R values are calculated considering the entire dataset, and they show the
quality of fit between predicted and actual values. The success rate (in percent) shows how many RS or ZB phases out of 82 have been correctly identified by the descriptor.
The “Generator type” column indicates the different generators used to produce the corresponding descriptor. RMSEs are in eV.

Formula avg (RMSE) RMSE R? Success rate (%) Generator type
0.117 x EAZZELE — 0.342 0.1455 0.1423 0.89 89 1D descriptor ™
P

3
~0.751 x %ﬁf}’“’” — 0317 0.1296 0.1193 0.92 90 GEN1

P
0.285 x —V"”Br)‘; W —0.387 0.1367 0.1309 0.91 91 GEN2

P
0.774 x 2EEVIAL g 33 0.0995 0.0963 0.95 94 GEN3

rp(A)’+1,(B)

1.155 x L@+ g 368 0.1103 0.1058 0.94 96 GEN4

15(B)*+1,(A)?
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TABLE II. 1D formulas after the optimization step, along with related statistics. Notation as in Table |. RMSEs are in eV.

Formula avg (RMSE) RMSE R? Success rate (%) Generator type
0.800% EA(B)—1.000xIP(B) .55
0.127 x BT e —— 0.352 0.1457 0.1419 0.89 89 1D descriptor
—1.870 x SV SOl 0 968 0.1191 01143 093 91 GENI
. P
0.477 x STV IHOVOBIAE JEONOO! 0,372 0.1340 0.1296 091 91 GEN2
: P
0.6421,(B)+0.502x y/[ra(A)]
1.609 x 1705 ry (AP L170xr, (B 0.309 0.0991 0.0961 0.95 94 GEN3
0.8787,(B)+0.200x,(A)
1.207 x 0.512><rP(B)3+0.610><rI;(A)3 —0.359 0.1045 0.1016 0.94 99 GEN4
basic atomic features, are written as follows: comparing values obtained from the ML-predicted AE formula
with the corresponding ab initio calculated values. In closer detail,
AE = mn x L% fi(APy) % by X f,(AP) we focused on different alloys, obtained by changing, respectively,
T G X f5(APs) Kk dy X fy(APy) the concentration of A-site atoms, such as [A,A]_,]B, and of B-site
ay X f5(APs) % by X fy(APg) atoms, such as A[B.B)__]. Accordingly, one can test the efficiency
+my X & % f5(AP,) * dy % fy(APs) (6) of the formulas by checking the energy difference for intermediate
2 I SRR concentrations as obtained from optimized 1D formulas and
for the general 2D formulas and compare their trend with respect to first-principles results. To this
end, ab initio electronic-structure simulations were carried out
AB ay X fi(APy) % by x f2(APy) wij[hin DFT angl2 _hDA functional: Calculations were performed
=m X X Fi(APs) * dy % fulAPy) using the VASP code, employing a 8 x 8 x 8 k-mesh for the
b IZP *1 b * XP Brillouin zone sampling. We verified that the results obtained with
+my x ay X f5(APs) * by x fs(APs) the pseudopotential VASP for the parent binary compounds were
¢a X f7(AP7) % dy X fs(APs) consistent with those reported by Ghiringhelli et al., calculated
4o x az X fo(APy) % bz X f10(APyp) @) with the all-electron FHI-aims code.”” For simulations at different
3

c3 X fi1(APy;) % ds X fi2(APi,)

for the 3D ones. The comparison between performance is discussed
in Sec. III.

E. Test of predictive power of the AE formula for novel
AB compounds

After obtaining the optimized 1D formulas for AE in the case
of AB compounds, we aimed at further verifying their validity and
predictive power by considering additional AB systems (i.e., which
were not originally included in the ML training set) and by

concentrations, we adopted the so-called virtual crystal approxima-
tion (VCA) based on virtual atoms interpolating between the real
constituent atoms.”®’” However, as well known from the literature,
the VCA approach neglects some effects, such as local distortions
around atoms and, as such, should not be expected to reproduce
fine details of disordered alloy properties.”® Accordingly, in some
cases (i.e., for Mg Ca;_,Se alloys), in order to mimic disordered
structures with an improved accuracy, we calculated total energies
using supercell structures, rather than using the VCA method on
primitive unit cells. Specifically, the considered supercell is the
cubic unit cell composed of four AB formula units with planes of
cations alternating along the ¢ direction (see Fig. S4 in the

TABLE lil. 2D formulas, along with related statistics. Notation as in Table |. RMSEs are in eV.

Formula avg (RMSE) RMSE R? Success rate (%) Generator type
0.113 x FABZ0) _ 1 55 MOl — 0,133 0.1041 0.0988 095 96 2D descriptor™
—0.342 x W —1.042 x %}{E—A)‘ ~0.062 0.0989 0.0944 095 89 GEN1
—0.081 x %M ~0.001 x % —0.062 0.1163 01100 093 86 GEN2
—1.175 x %}W +0.513 x %@ ~0.250 0.0911 0.0878  0.96 87 GEN3
0.618 x %&% +1.097 x %@ ~0.384 0.0995 0.0955 095 92 GEN4
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supplementary material). The k-mesh was modified accordingly to
maintain the same density of points employed in the simulations of
primitive cells.

lll. RESULTS AND DISCUSSION

In this section, we will analyze the final formulas as obtained
from different generators. The results are shown in Tables I-IV; in
the first row, we report the results obtained by Ghiringhelli et al.”
for comparison.

First, by comparing the avg(RMSE) values, we note that all 1D
formulas obtained from our different generators better perform
with respect to the 1D ones reported in Ref. 55, where the authors
used the automated feature selection method LASSO.”
Remarkably, some atomic primary features appearing in 1D formu-
las of Ref. 55 also appear in our obtained list of 1D formulas using
GEN1 and GEN2; nevertheless, those are characterized by a higher
avg(RMSE) than other formulas we obtained via our combinatorial
approaches. Additionally, formulas from GEN3 show the lowest
avg(RMSE) among all the others. We also note, from Table I, that
GEN1 and GENS3 provide lower avg(RMSE) compared to GEN2
and GEN4, respectively; however, GEN2 and GEN4 have a higher
success rate in terms of classification prediction. (For instance, in
Table S2 of the supplementary material, we report the formula
optimized using the success rate as a target label.) It is noteworthy
that the best formula from GEN4 shows similar terms to the corre-
sponding case for the AE-based optimization. This testifies the fact
that the choice of the performance metrics to rank the material fea-
tures can be different according to the target problem to be studied;
different models’ performance metrics are, in fact, not always
correlated.

In order to gather hints on the relative contribution of the
individual primary atomic properties to the stabilization of either

T59% (black line with diamond points).

the rocksalt or the zinc blende structure, we extracted the best ten
formulas with the lowest avg(RMSE) from each generator (so-called
original formulas) and then apply the formula optimization, as
detailed in Sec. II C. This procedure attributes relative weights to
each f(AP), allowing us to measure the importance of the individ-
ual atomic properties in driving the energy stabilization. In princi-
ple, the avg(RMSE) value depends on random test-train splits that
we perform to our dataset. Therefore, to reduce the effect of ran-
domization, as target model performance metrics, we rank our
optimized formula based on the RMSE of the whole dataset, rather
than based on avg(RMSE). By comparing Tables I and II, it is
evident that the optimization procedure can further change the
formula ranking, providing a different final “best formula” with
respect to the non-optimized formulas. In particular, we notice an
improvement in RMSE around 5%-10% after the formula
optimization.

Interestingly, our results reveal the size of the A cation to play
a leading role in the phase stabilization; in fact, the r,(A) radius
appears in the best-performing formulas more frequently than the
other basic atomic properties. Therefore, we further analyzed the
dependence of AE on r,(A). In Fig. 2, we show AE as a function of
15(A), including fitting curves proportional to rp(A)_2 and rp(A)_s.
What can be observed is a clear dependence of AE on 7,(A): larger
(smaller) r,(A) favors RS (ZB). Moreover, there is an overall good
agreement with the fit, particularly using the rI,(A)f3 function. The
latter is, in fact, the most recurrent prototype function detected by
the ML models. Such a strong dependence of the energy is not
observed with respect to the other atomic properties; other compar-
ative plots of AE as a function of other f(p) are reported in Fig. S2
of the supplementary material. This behavior is in line with the
further observation that the rocksalt structures systematically show
larger interatomic distances with respect to the zinc blende coun-
terparts (cf. lattice parameters reported in Ref. 55); therefore, larger
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cations prefer to adopt octahedral coordination (i.e., RS) with
longer bond-lengths—and bigger polyhedral volume—compared to
ZB with tetrahedral coordination.

From the obtained results, we remark that formulas based on
“spatial” atomic properties achieve higher ranking, thus better per-
formance, with respect to those, including atomic energy terms,
both in the original models and in the optimized ones.
Accordingly, this behavior further confirms the primary role played
by the atomic size (in terms of steric and/or bonding-related
effects), in determining the energetics of the AB compounds, i.e.,
in selecting the preferred crystal structure.” In particular, we note
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from the results that the well-performing GEN3 and GEN4 contain
all the four radii [r;(A), r(B), r,(A) and r,(B)], as expected from a
basic understanding of bonding in octet binary semiconductors.
Note that GEN3 and GEN4 generally show better performance as
they are built to explore a wider space of search (see Sec. II and
Table S4 in the supplementary material where the number of gen-
erated and evaluated formulas is also reported).

With the aim of further proving such trends and validate the
implemented combinatorial ML method, we study the energetics
in alloys of the type [A,A]_,]B and A[B,B]_,], where x is the rela-
tive concentration of the mixing ions, monotonically tuning thus
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FIG. 5. Comparison of actual (i.e., DFT) vs predicted total energy difference AE for (a) 1D, (c) 2D, and (d) 3D formulas constructed using GEN3. Panel (b) shows the
best 1D descriptors after formula optimization. Lower-right insets show a zoom in the relevant region where many compounds are concentrated. Red dotted lines corre-
spond to a 2 x avg(RMSE) value. The respective descriptors can be inferred from Tables |-IV.
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the average size of one ion with respect to the other. All the alloy
input properties were linearly interpolated between corresponding
values for end binaries (i.e., AB and A'B in the [A,A]_,]B case)
according to Vegard’s law.”” For the A-ion mixing case, we con-
sidered SrSe, CaSe, MgSe, and BeSe as parent AB compounds,
already included in the original dataset. We then predicted the
energy differences between RS and ZB phases for varying concen-
trations using the original and optimized 1D formulas constructed
via GEN3 and GEN4 generators (Tables I and II, respectively). To
confirm the obtained predictions, we thus calculated the energy dif-
ference via DFT simulations for a few intermediate concentrations.
The results, shown in Fig. 3, demonstrate an overall agreement
between first-principles calculated and machine-learning predicted
energetics. In particular, we notice a change of sign in AE, reflect-
ing the change in the stability of the RS with respect to the ZB
phase, when moving from the larger strontium to the smaller beryl-
lium at the A-site, in line with the previously discussed relation
between atomic radii of the A-ions and phase stabilization. At vari-
ance, no such change of phase is observed when mixing ions at the
B-site, keeping fixed the A-type one. This is confirmed by looking at
the energetics in B[Sb;_,P,] and Sr[Se;_S,] alloys, shown in Figs. 4
(a) and 4(b), respectively. Despite the changing size of the average
B-site, the two systems preserve the crystal structure adopted by the
parent compounds, i.e., rock salt for the Sr-based compounds and zinc
blende for the B-based compounds. Such behavior is still in line with
the preferred atomic structure fixed by the ion at the A-site, consis-
tently with strontium being larger than boron. Qualitative agreement
between ML-predicted and DFT-calculated energetics is observed
again.

After discussing the results related to 1D models, we now
comment about the higher-dimensional formulas. Our best 2D and
3D formulas from different generators are reported in Tables III
and IV, respectively.

To visualize the performance of the obtained formulas, we
reproduce in Fig. 5 the scatterplots of DFT-calculated energies as
a function of model-predicted energy differences for the best for-
mulas obtained by GEN3—in terms of avg(RMSE)—for 1D, 1D
after formula optimization, 2D, and 3D models. From these, one
can infer the quality of the prediction for the different
approaches: the narrower the area between red lines [representing
2 x avg(RMSE)], the smaller the error or, equivalently, the more
reliable the prediction. Notably, this is the case when building
higher dimension formulas.

In addition, a careful comparison between our results and
those reported in the reference paper, Ref. 55, is reported in
Table S1 of the supplementary material. In particular, in Fig. S1 of
the supplementary material, we compared the scatterplot of the 1D
formula from GEN3 and Ref. 55, with bar graphs of errors for indi-
vidual compounds. To check the improvement with respect to 1D
formulas, we considered the avg(RMSE) value, as also chosen in
Ref. 55. One can observe the improvement in avg(RMSE) if we
examine 1D and 2D formulas in Tables I and III. We notice
around 10%-20% improvement from the original 1D to 2D, but
less than 10% of optimized 1D to original 2D formulas.
Furthermore, we also notice that original and optimized 1D formu-
las from GEN3 and GEN4 better perform with respect to the corre-
sponding 2D ones reported in Ref. 55.

ARTICLE scitation.org/journalljap

We remark that the process of formula optimization is less
computationally expensive than the construction of higher-
dimensional formulas. In addition, from the formula optimization,
one can gain better physical insights into the contribution of indi-
vidual primary atomic properties. These comments overall suggest
that lower-dimensional formulas constitute a better choice in terms
of physical interpretation and computational efficiency.

IV. CONCLUSIONS

The knowledge of a material stable crystal structure constitutes
the starting point for any ab initio modeling since material proper-
ties crucially depend on the periodic atomic arrangement in the
crystal. Within this general framework, our aim here has been to
exploit ML methods to correlate the energetic stability of different
crystal structures (zinc blende vs rock salt) for popular binary semicon-
ducting compounds with primary properties of their atomic constitu-
ents, the latter representing simple and easily accessible ingredients.
Based on atomic properties, we, therefore, built the material features
using a combinatorial approach, we trained the machine-learning
model using the created features over a density-functional-theory
dataset, and we obtained simple mathematical expressions to quantita-
tively predict the energetic stability of one crystal structure over the
other (i.e, a formula). In addition, we have also introduced an extra
step following the linear regression to explore the relative contributions
of individual basic atomic properties.

To investigate the performance of the combinatorial approach,
we compared our results with a reference paper,” where the
authors predicted the stability of the crystal structure using an
automated feature selection method. We found that our 1D formu-
las constructed using the combinatorial approach achieved a higher
accuracy with respect to the reference ones. Furthermore, we also
learned more about the underlying mechanism from the formula
optimization, where we found that the stability of RS and ZB
heavily depends on the r, radius of A-sites. This kind of under-
standing is, in general, much more difficult to achieve in heavily
automated artificial-intelligence methods, such as neural networks,
where it is not possible to interpret directly the model results. In
this respect, our approach based on linear regression allows the
construction of physical models supported by machine-driven sug-
gestions of relevant ingredients; as such, it should be regarded as a
methodology offering a huge range of applications in addressing
microscopic mechanisms underlying different phenomena, calling
for extensive investigations in the near future.

SUPPLEMENTARY MATERIAL

See the supplementary material for technical details related to
LR, DFT calculations of the alloy supercell, dataset, and for addi-
tional results related to 1D, 2D, and 3D formulas.
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