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Bicontextualism

Lorenzo Rossi

Abstract Can one quantify over absolutely everything? Absolutists answer
positively, while relativists answer negatively. Here, I focus on the absolutism vs.
relativism debate in the framework of theories of truth, where relativism becomes
a form of contextualism about truth predications. Contextualist theories of truth
provide elegant and uniform solutions to the semantic paradoxes while preserv-
ing classical logic. However, they interpret harmless generalizations (such as
«everything is self-identical») in less than absolutely comprehensive domains,
thus systematically misconstruing them. In this paper, I show that contextualism
is broadly compatible with absolute generality. More specifically, I develop a
bipartite contextualist semantics, or «bicontextualism», on which sentences are
split in two groups: the unproblematic sentences, which are compatible with
absolute generality, and the problematic ones, which are given a relativist se-
mantics. I then argue that bicontextualism retains the advantages of (orthodox)
contextualism, and does not give rise to new revenge paradoxes.

1 Introduction

Can one quantify over absolutely everything? Generality absolutists (henceforth:
«absolutists») answer positively, while generality relativists (henceforth: «rela-
tivists») answer negatively.1 Relativists typically motivate their rejection of absolute
generality via an argument from paradox: given any alleged maximal domain of
quantification D, some reasoning typically along the lines of set-theoretic, property-
theoretic, or truth-theoretic paradoxes shows that something is not in D—hence D
does not contain everything. But D was arbitrary, and the argument fully general:
therefore, no domain D can contain absolutely everything.

A rich tradition in the philosophy of mathematics, going back at least to Ernst Zer-
melo [89], takes the arguments from paradoxes to afford a conclusive lesson on how
to interpret the talk of domains and quantifiers.2 In a nutshell, the Zermellian view
envisages a never-ending succession of set-theoretic models to interpret domains of
quantification. Importantly, such a succession never provides an «ultimate» model.
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As James Studd [83, p. 53] emphasizes, one can interpret the Zermellian picture as a
form of relativism: quantification is always relative to an always expandable domain.
The Zermellian picture is naturally opposed to a Cantorian view,3 on which, in ad-
dition to set-theoretical models, there is an absolute, non-set-sized domain, which
includes absolutely everything, and which is beyond the reach of any set-theoretical
interpretation. It is, in other words, the ultimate, all-encompassing domain.

The absolutism vs. relativism debate is not confined to set theory. In the frame-
work of theories of truth—the focus of this paper—generality relativism morphs into
a form of contextualism about truth predications (henceforth: «contextualism»), and
the argument from paradox typically employs a contextualist version of the Liar
Paradox. Here’s a very brief outline.4 Consider a sentence λ equivalent to «⌜λ⌝ is
not true», where ⌜λ⌝ is a name of the sentence λ . The Liar reasoning seemingly
establishes that λ is both true and untrue. In order to avoid the contradiction, contex-
tualists postulate a covert contextual element, which changes or shifts in the course
of the Liar reasoning. In this way, one establishes that λ is not true in the original
context, but it is true in another context (which is perfectly consistent). However,
in order for the context shift to be possible, the interpretation provided in the first
context could not have been maximal: something must have not been available in
the first context that becomes available in the second (and makes λ true in it). And
since one can always run a Liar reasoning, the argument concludes, no context is
absolutely comprehensive.5,6

Contextualist theories of truth have a number of virtues: they provide elegant and
uniform solutions to the semantic paradoxes, and preserve full classical logic. How-
ever, they reject absolute generality, and such rejection is not to be taken lightly. By
the relativist’s lights, even generalizations such as «everything is self-identical» and
«everything that is possible is necessarily possible» can express propositions only in
less than absolutely comprehensive domains. But this is a misconstrual: in scien-
tific and metaphysical theorizing, such generalizations are to be read unrestrictedly
(Williamson [85]). Or, at least, such a reading is clearly possible. What is more, such
a misconstrual is unnecessary: interpreting the above generalizations unrestrictedly
doesn’t give rise to any paradox. To be sure, absolutism can recover such maxi-
mally general interpretations, but cannot provide the elegant and appealing solution
to paradoxes that relativism has to offer. We have an inevitable trade-off, or so it
seems.

The purpose of this paper is to show that this trade-off is illusory. There is no need
to choose between an appealing solution to the paradoxes and an unrestricted inter-
pretation of harmless generalizations: one can simply have both. This is achieved
by curtailing absolute generality only when it is strictly necessary. More precisely,
absolute generality needs to be restricted only when interpreting sentences such as λ .
Sentences such as «everything is self-identical» can harmlessly be interpreted unre-
strictedly. The theory developed here is therefore a bipartite contextualist semantics
(henceforth: «bicontextualism»), in which the «unproblematic» sentences are given
an absolutist semantics, while the remaining ones are given a relativist semantics.7

Finally, a few words on the scope of this paper. First, the purpose of this paper is
not to adjudicate the absolutism vs. relativism debate tout court. This work assumes
that, in their truth-theoretical clothes, both relativism and absolutism have appealing
traits, and presents a theory that combines them. However, the intransigent absolutist
who denies that relativism has any appeal is not going to be interested in the view on
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offer, simply because she doesn’t accept half of its motivation. Ditto for the intransi-
gent relativist. However, such extreme positions are too strict to be taken into serious
consideration. Second, this paper is mostly concerned with the truth-theoretic incar-
nation of the absolutism vs. relativism debate. Versions of this debate appear in many
different areas (including set theory, higher-order logics, natural language semantics,
the metaphysics of properties, and theories of truth), so it would be overambitious to
think that a single proposal can simultaneously address it in all these areas. That be-
ing said, I think that bicontextualism has some interest beyond theories of truth. For
one thing, theories of truth are (also) developed with the objective of providing truth-
conditions, and thus theories of meaning, for (fragments of) natural languages.8 For
another, bicontextualism employs both set-theoretical and higher-order resources, in
both relativist and absolutist fashions. So, while bicontextualism is a theory of truth,
it is closely connected to the absolutism vs. relativism debate in neighboring ar-
eas, and the paper includes a brief discussion of its implications for natural language
semantics, set theory, and higher-order languages (§5).

The remainder of the paper is structured as follows. In §2, I present «orthodox»
(that is, fully relativist) contextualism. In §3, I develop bicontextualism, and in §4
I explore its main philosophical implications. §5 addresses some objections, and §6
concludes.

2 Orthodox contextualism

Here I outline the contextualist approach to truth and paradox originally conceived
by Charles Parsons [63] and substantially expanded by Michael Glanzberg [24, 25,
26, 27].9

Let me begin with a clarification (and a simplification). Contextualists often work
under the assumption that propositions are the primary truth-bearers. As Parsons
[63] points out, however, nothing crucial hinges on this: the talk of propositions is
not necessary, and contextualism can be equivalently formulated taking sentences as
truth-bearers.10 As it will become clear later, the core of the contextualist approach to
truth and paradox consists in the idea that truth predications are to be interpreted in a
suitable hierarchy. But the hierarchical structure of truth predications can be spelled
out for sentences and propositions alike.11 For ease of exposition, I will therefore
take sentences as truth-bearers, and talk about sentences being true «in a context c»,
or more simply «in c». However, the talk of propositions can always be recovered
by replacing «⌜ϕ⌝ expresses a true proposition in c» for «⌜ϕ⌝ is true in c», where
⌜ϕ⌝ is a name of the sentence ϕ . Moreover, the idea that a sentence ϕ expresses a
proposition in c can be interpreted as «⌜ϕ⌝ is true in c or ⌜ϕ⌝ is false in c», where
the latter means «⌜¬ϕ⌝ is true in c».12

Assume that naïve rules for truth introduction and truth elimination hold unre-
strictedly, so that one can always infer «⌜ϕ⌝ is true in c» from ϕ and vice versa,
when reasoning in c. Now a contextualist version of the Liar Paradox can be given.13

LIAR IN CONTEXT:
Let c be the context of reasoning, and λc be equivalent to «⌜λc⌝ is not true in
c».
(1) ⌜λc⌝ is true in c or ⌜¬λc⌝ is true in c [Assumption]

(i-a) ⌜λc⌝ is true in c [Assumption]
(ii-a) λc [Truth elimination, i-a]
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(iii-a) ⌜λc⌝ is not true in c [Definition of λc]
(iv-a) Contradiction [i-a and iii-a]

(i-b) ⌜¬λc⌝ is true in c [Assumption]
(ii-b) ¬λc [Truth elimination, i-b]

(iii-b) ¬¬⌜λc⌝ is true in c [Definition of λc]
(iv-b) ⌜λc⌝ is true in c [Double negation elimination, iii-b]
(v-b) λc [Truth elimination, iv-b]

(vi-b) Contradiction [ii-b and v-b]
(2) Contradiction [Disjunction elimination, 1, iv-a, vi-b]
(3) It is not the case that (⌜λc⌝ is true in c or ⌜¬λc⌝ is true in c)

[Negation introduction 1, 2 (discharge of 1)]
(4) ⌜λc⌝ is not true in c and ⌜¬λc⌝ is not true in c

[De Morgan Equivalence, 3]
(5) ⌜λc⌝ is not true in c [Conjunction elimination, 4]
(6) λc [Definition of λc]
(7) ⌜λc⌝ is true in c [Truth introduction, 6]
(8) Contradiction. [5, 7]

The LIAR IN CONTEXT is then used by orthodox contextualists to provide an
argument against absolute generality.

CONTEXTUALIST ARGUMENT FROM PARADOX:
The LIAR IN CONTEXT is not sound, because the derivation (1)-(8) involves
a covert context shift.14 First, one proves λc, i.e. that λc is not true in c, and
then that λc is true in a context c′ different from c. A context shift takes place
between (6) and (7). Hence, the LIAR IN CONTEXT does not establish (7),
but rather:

(7∗): ⌜λc⌝ is true in c′ (for a context c′ different from c).
Since (5) and (7∗) are consistent, the contradiction is blocked. The reasoning
from (1) to (7∗) is sound, and it shows that the interpretation of the truth
predicate in c is not maximally general: there are sentences that are neither
true nor false in c, but true in c′.15

Note finally that there’s nothing special about the LIAR IN CONTEXT: the CON-
TEXTUALIST ARGUMENT FROM PARADOX can be based on any other paradoxical
reasoning involving unrestricted truth introduction and truth elimination. Having re-
jected absolute generality, orthodox contextualists develop a relativist view of quan-
tification and truth, to which I now turn.

2.1 Contextualism à la Glanzberg In an orthodox contextualist framework, λc re-
ceives two interpretations: one for the context c where it is neither true nor false,
and one for the context c′ where it is true. In order to formally model this result,
Glanzberg [25] employs iterations of Kripke’s (1975) construction (strong Kleene
version). I will now outline Glanzberg’s construction in a simplified form, which will
also clarify what is the connection between restrictions on generality and Kripke’s
theory (or iterations thereof).16

Kripke’s construction is a model-theoretic construction which determines an in-
terpretation for the truth predicate.17 More precisely, it yields a set E which serves
as the extension of the truth predicate, namely the set of (names of) true sentences.18
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In Kripke’s construction, the set E is built in stages. More specifically, E is a cer-
tain stage occurring in a transfinite sequence of sets E0, E1, . . ., Eα , . . . indexed by
ordinals. Here is, in a nutshell, how the sequence is defined. A «base model» M is
selected that interprets the truth-free part of the language. At stage 0, nothing is in
the extension of the truth predicate, so that E0 is empty. At stage 1, truth-free atomic
sentences that are satisfied by the base model M (such as «0 = 0») are declared true
(so, they are added to E1), and truth-free atomic sentences that are not satisfied by
M (such as «grass is red») are declared false (so, their negation is added to E1).
At stage 2, E2 is obtained by applying the strong Kleene evaluation schema to the
sentences in E1. So, for example, if both ϕ and ψ are in E1, then their conjunction
ϕ ∧ψ is in E2; if χ is in E1, then its double negation ¬¬χ is in E2 (similar clauses
hold for the remaining connectives and quantifiers; the latter can be interpreted both
substitutionally or à la Tarski). Finally, truth predications work similarly: if ϕ is in
E1, then «⌜ϕ⌝ is true» is in E2, and if ¬ϕ is in E1, then «⌜ϕ⌝ is not true» is in E2.19

All subsequent successor stages are constructed in a similar fashion, while one takes
unions at limit stages. In this way, one builds a monotonic sequence:

E0,E1, . . . ,Eα , . . .

For cardinality reasons,20 there is a (limit) ordinal β s.t. the sequence stops including
new sentences from β onwards:

E0,E1, . . . ,Eα , . . . ,Eβ = Eβ+1 = . . .

Eβ is called a Kripkean fixed point, and is identified with the final interpretation E.
The sketch I just provided describes the least Kripkean fixed point, i.e. the fixed

point obtained setting E0 =∅. Non-minimal Kripkean fixed points (i.e. fixed points
that include the least one) result by letting E0 be non-empty. Every Kripkean fixed
point E satisfies the so-called transparency of truth: for every sentence ϕ , the sen-
tence «⌜ϕ⌝ is true» is in E if and only if ϕ is in E. A Kripkean fixed point E is
consistent if no ϕ is s.t. both ϕ and ¬ϕ are in E. The least Kripkean fixed point,
together with several others, is consistent (I will essentially only consider consistent
Kripkean fixed points). Finally, if a Kripkean fixed point E is consistent, then there
are sentences ϕ s.t. neither ϕ nor ¬ϕ is in E: the sentence λ equivalent to «⌜λ⌝ is
not true» is a case in point. In other words, consistent Kripkean fixed points provide
an essentially partial interpretation of the truth predicate. Indeed, the inner logic of
a consistent Kripkean fixed point is strong Kleene logic, and hence it is a partial,
non-classical logic (where, e.g., the law of excluded middle is not valid: λ ∨¬λ is a
counterexample). Sentences that are neither in the extension nor in the anti-extension
of a Kripkean fixed point are called gappy in it.

On Glanzberg’s approach, a consistent fixed point E is used to determine the ex-
tension of the predicate «is true in the context c». Glanzberg’s theory, however,
is classical, and hence a consistent fixed point E is not enough, since we’ve just
seen that it provides a partial, non-classical interpretation of the language. As we
have seen in the CONTEXTUALIST ARGUMENT FROM PARADOX, in a contextualist
framework λc is declared to be not true in c. But λc precisely says that λc is not true
in c. Therefore, a faithful contextualist model should satisfy λc. To accomplish this
result, Glanzberg takes the so-called closing-off of E. That is, the sentences that are
validated in his models are not merely those in the extension of the predicate «true in
c» (viz. E), but rather the set of (names of) sentences that are classically satisfied by
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⟨M ,E⟩. Now, λc is not in E. Therefore, ⟨M ,E⟩ does not satisfy «⌜λc⌝ is true in c».
Hence, ⟨M ,E⟩ satisfies «⌜λc⌝ is not true in c». But by definition of λc, this means
that ⟨M ,E⟩ satisfies λc, as required. More compactly:

⟨M ,E⟩ ̸|= ⌜λc⌝ is true in c iff

⟨M ,E⟩ |= ⌜λc⌝ is not true in c iff

⟨M ,E⟩ |= λc

While Kripkean fixed points unrestrictedly satisfy transparency, closed-off fixed
points don’t: if E is consistent, λc is in the closing-off of E (as just seen), but «⌜λc⌝
is true in c» clearly isn’t.

Now, in order to model the context shift, and interpret the predicate «is true in
c′», Glanzberg constructs a new fixed point, but rather than starting from the empty
set, he takes as starting point the sentences in the closing-off of E. And since λc is
in the closing-off of E, the sentence «⌜λc⌝ is true in c′» is in the fixed point built
over it. Recall that, in the construction of a Kripkean fixed point, if ϕ ∈ Eα , then
«⌜ϕ⌝ is true» ∈ Eα+1. So, «⌜λc⌝ is true in c′» is in the extension of the new fixed
point. And clearly, it is also in the closing-off of the new fixed point (a Kripkean
fixed point is always a subset of its own closing-off, by definition).

Putting things together, in Glanzberg’s theory λc receives a formal treatment that
matches the informal account of the LIAR IN CONTEXT. More specifically, λc is not
true in the original context c (modeled by the closing-off of the first Kripkean fixed
point), but is true in a subsequent context c′ (modeled by the closing-off of the second
fixed point). This succession of interpretations goes on indefinitely, for we can now
formulate a new Liar sentence λc′ equivalent to «⌜λc′⌝ is not true in c′», which is then
declared true in a subsequent closed-off fixed point which models «true in c′′». And
so on. As in the conclusion of the CONTEXTUALIST ARGUMENT FROM PARADOX,
orthodox contextualists take this line of reasoning to substantiate and formalize the
idea that the interpretation of the truth predicate in c is not maximally general, as
there are sentences that are neither true nor false in c, but true in c′. And since
the LIAR IN CONTEXT reasoning can be run in any context, and c is completely
arbitrary, no interpretation is maximally general.

2.2 Advantages of orthodox contextualism Orthodox contextualism has a number of
theoretical virtues. First, it preserves classical logic. As a result, unlike non-classical
approaches, mathematical and scientific theories can be combined with contextualist
theories of truth without losing any content.21

Second, contextualist theories can non-trivially model paradoxical reasonings
such as the Liar. Paradoxical reasonings are intuitively compelling—that is ar-
guably why they are so bewildering, and why identifying where they go wrong is so
controversial. However, virtually all non-contextualist theories limit themselves to
blocking paradoxical arguments in one place or another (to avoid triviality), without
providing reconstructions that do justice to the intuitive soundness of paradoxical
arguments. Contextualist theories, in addition to blocking paradoxical reasonings
as originally formulated, also provide sound re-interpretations of them (as shown
in the CONTEXTUALIST ARGUMENT FROM PARADOX). So, contextualists have a
simple explanation why paradoxical reasonings seem sound: because, once correctly
interpreted, they are sound.22 As a consequence, contextualist theories manage to
explain away the apparent awkwardness of accepting a sentence (namely λ ) which,
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by the theory’s own lights, is not true.23 In a contextualist’s construal, this is not
surprising: since λ is established from no premises and it «says» that λ is not true
in c, it actually isn’t true in c. However, such awkwardness is «made up for» in the
next context c′, where λ is shown to be true.

Third, contextualist theories offer a uniform solution to all semantic paradoxes,
including revenge paradoxes. Contextualist theories essentially trade on a restric-
tion of absolute generality, and revenge paradoxes for contextualism try to reinstate
absolute generality, in a form or another [e.g. 63]. However, absolute generality is
the price contextualists already pay: if a paradox results from re-instating absolute
generality, it hardly counts as a new, «revenge» paradox. Because of their ban on ab-
solute generality, contextualist approaches are not free from expressive limitations.
But they can offer a uniform solution to semantic paradoxes, including attempts at
revenge (more on this in §5.4).24

Finally, contextualist approaches improve on some of our best classical theories of
truth. Consider the theory KF (for Kripke-Feferman), an axiomatization of Kripke’s
theory of truth in classical logic developed by Solomon Feferman [15].25 KF has a
number of virtues, including a very good approximation of the Tarskian composi-
tional clauses for (type-free) truth, an elegant simplicity, and a high proof-theoretical
power. However, KF cannot be consistently supplemented with all the instances of
the following rules:
(Tr-Intro) from ϕ , infer Tr(⌜ϕ⌝) (Tr-Elim) from Tr(⌜ϕ⌝), infer ϕ

Now, KF can be closed under one of Tr-Intro and Tr-Elim but not both.26 The con-
textualist theory developed by Glanzberg [25] recovers essentially all the positive
features of KF (formulated in a contextualist setting) but, unlike KF, it can also be
closed under Tr-Elim and a context-shifting version of Tr-Intro, according to which if
ϕ holds in a context c, then ϕ is true in a suitably more extended context c′ (this is a
formal counterpart to the rule informally employed in the CONTEXTUALIST ARGU-
MENT FROM PARADOX). So, unlike in KF, in a contextualist theory one can always
declare that, if ϕ has been established, then it is true in a suitable context.

2.3 Disadvantages of orthodox contextualism The main disadvantage of orthodox
contextualism is its ban on absolute generality. More specifically, orthodox con-
textualism disallows maximally general interpretations of the truth predicate and,
therefore, generally speaking disallows absolute generality. But how can it be that
sentences such as «everything is self-identical» or «everything that is possible is
necessarily possible» do not talk about absolutely everything? At the very least, it
seems clear that one can use these sentences to talk about absolutely everything, nor
is there any danger of paradox in doing so. Yet, orthodox contextualists reject this
possibility, thereby imposing a highly revisionary semantics on general truths.

Such a revisionary semantics has high costs. For one thing, absolute generality
is required for theoretical purposes: semantic, scientific, and philosophical general-
izations arguably require the utmost level of generality [85]. For another, the blan-
ket ban that orthodox contextualism puts on absolute generality seems to overshoot:
even if one agrees with orthodox contextualists that the truth predicate should be
re-interpreted when it comes to modeling the semantics of Liar sentences (and rele-
vantly similar cases), no such re-interpretation is required for «⌜0= 0⌝ is is true», nor
is any domain restriction required for ∀x(x = x). So, why can’t such interpretations
be maximally general?
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We seem to have reached an impasse. On the one hand, orthodox contextualism
(à la Glanzberg) strikes an excellent balance as a theory of truth, for its scientific
applicability, uniformity, and strength. On the other, its ban on absolute generality
cripples its interpretation of simple generalizations and unproblematic truth predica-
tions. In the next section, I will argue that the impasse is illusory: contextualism is
broadly compatible with absolute generality. It follows, then, that the CONTEXTU-
ALIST ARGUMENT FROM PARADOX has to be rejected.

3 Bicontextualism

3.1 Heuristics The basic idea of bicontextualism is that whether the interpretation of
a sentence can be maximally general depends on that very sentence: in unproblem-
atic cases (e.g. unproblematic truths such as «everything is self-identical» and un-
problematic falsities such as «something is not is self-identical»), it can; in problem-
atic cases (such as a Liar sentence), it cannot.27 Therefore, the semantics developed
here is bipartite: it provides an absolutist interpretation for the former sentences,
and a relativist interpretation for the latter. The idea of curtailing the semantics only
when it comes to problematic sentences is not new. Most non-classical theories of
truth «recapture» classical logic when they deal with intuitively unproblematic sen-
tences, and classical theories satisfy instances of Tr-Intro and Tr-Elim for truth in
unproblematic cases.28 In a similar fashon, bicontextualism recovers absolute gener-
ality whenever possible.

There are various ways to draw the line between unproblematic and problematic
sentences.29 In the approach I follow here, I do not proceed by first distinguishing the
two cases, and then providing a semantics for them. Rather, the distinction between
problematic and unproblematic sentences is hardwired in the semantics, as it were. In
a nutshell, the unproblematic sentences are identified with the sentences in the least
Kripkean fixed point, built for suitable languages. Therefore, the first task of this
section is to introduce such languages (§3.2) and to provide an absolutist-friendly
version of Kripke’s construction (§3.3).

There are good reasons, I believe, to identify the unproblematic sentences with
those in the least Kripkean fixed point. The least fixed point contains only grounded
sentences, i.e. sentences whose value ultimately depends on the value of atomic
sentences of the truth-free fragment of the language.30 In particular, the least fixed
point does not contain sentences which are paradoxical and ungrounded [in the now-
standard terminology from Kripke 45] such as λ , or sentences that are unparadox-
ical and ungrounded. An example of ungrounded but unparadoxical sentence (in
Kripke’s sense) is given by a truth-teller sentence τ equivalent to «⌜τ⌝ is true». τ is
ungrounded in the sense just sketched, but it is unparadoxical because, while neither
τ not ¬τ are in the extension of the least Kripkean fixed point, either one of them can
be in the extension of some consistent non-minimal fixed point. For these reasons,
the least Kripkean fixed point constitutes a natural (and rather strict) option to filter
out sentences which are not completely unproblematic. However, other options are
possible; in particular, the theory to be developed in §§3.3-3.4 can be straightfor-
wardly adjusted to identify the unproblematic sentences with the sentences in some
non-minimal consistent Kripkean fixed point.

Having characterized the unproblematic sentences, I now turn to the problem-
atic ones. As seen in §2.1, sentences such as λ are outside of the extension of the
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least Kripkean fixed point together with their negation, but they are evaluated in
its closing-off. So, the problematic sentences are, roughly, those which are in the
closing-off without also being in the (now absolutist) least fixed point (the distinc-
tion will require more care, as we shall see). A relativist semantics for such sentences
is provided in §3.4. Finally, having developed both the absolutist and the relativist
components of the semantics, these two «halves» are combined together in a single,
bipartite interpretation, and a unified notion of consequence is provided (§3.5).

3.2 The object-language(s) Strictly speaking, I employ many object-languages.
This is merely a matter of convenience: I employ different languages in order to
straightforwardly model different interpretations of «true in c», as it will be clear
from the following (see also §5.1).31

Definition 3.1 Let L be a collection of first-order languages with identity, indexed
by ordinals:

L := L0,L1, . . . ,Lα , . . .

such that every language in L satisfies the following requirements (where α < β ):

(a) Lα includes the membership relation ∈, and has no function constants,
(b) Lα contains a fresh unary predicate Trα (for truth),
(c) Lα and Lβ have the same individual variables, individual constants, and

relation constants (with the exception of Trα ),
(d) Lα has at least one acceptable structure Mα (more on this shortly),
(e) For every acceptable structure Mα , for every Lα -expression e, there is a

closed term ⌜e⌝ that denotes the code of e in Mα (ditto),
(f) For every acceptable structure Mα , for every open Lα -formula ϕ(x) there is

a closed Lα -term tϕ such that (tϕ)Mα = (⌜ϕ(tϕ/x)⌝)Mα .

Some explanations are in order: I collect them in a single remark—the reader
uninterested in (or already familiar with) the technical details can skim or skip it.

Remark 3.2

- By (a), every Lα includes the language of set theory, so mathematical no-
tions can be represented in the usual way. Also, no Lα includes function
constants, which simplifies the definitions in §3.3, but is of no consequence
(functions can be defined as special cases of relations). (b) and (c) entail
that if α < β , Lα ⊆ Lβ . The same holds for the sets of constants (ConLα

),
variables (VarLα

), formulae (ForLα
), and sentences (SentLα

).
- (b) allows us to formulate truth predications and, together with (c), it ensures

that languages higher up in L only differ from languages lower down in L
in the new truth predicates. So, if ϕ is a sentence of Lα , then Trα+1(⌜ϕ⌝)
is a sentence of Lα+1 (more about ⌜·⌝ shortly). Ordinal indices are used to
identify contexts. The informal «ϕ is true in c» of §2 is now formalized as
Trα(⌜ϕ⌝), and will be interpreted by a suitable structure for Lα .

- An acceptable structure (required in (d)) is a model Mα s.t. a well-behaved
machinery to code and decode Lα -expressions is definable in Mα . A coding
is a function that associates Lα -expressions with elements of the domain of
Mα .32 (e) ensures that each Lα has sufficiently many terms for codes of Lα -
expressions. This provides a more precise formal counterpart for the notion
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of a «name» of ϕ employed in §2. I will often identify Lα -expressions with
their codes (no confusion will arise from this).

- Requirement (f) ensures that intuitively self-referential sentences, such as the
sentences λ and τ mentioned above, are part of the languages in L. So,
for instance, the formal counterpart of a Liar sentence in Lα is a sentence
¬Trα(tλα

), where tλα
denotes (in Mα ) the same element as ⌜¬Trα(tλα

)⌝.
Abbreviate ¬Trα(tλα

) as λα . A Liar sentence is thus a sentence λα equiv-
alent to ¬Trα(⌜λα⌝), i.e. «⌜λα⌝ is not true in context α», formalizing the
informally defined λc I used in §2.33

- I did not specify whether L is a proper class or a set (and, in the latter case,
which is supremum of the set of ordinals used as indices). This is on pur-
pose: many countable transfinite limit ordinals will do.34 However, if α is
sufficiently large, it becomes impossible to define codings as well-behaved
as is needed by the acceptability requirement. Nevertheless, weaker notions
of codings can be defined also for languages Lακ

(for ακ an ordinal of cardi-
nality κ , and κ large enough), and the semantic construction to be developed
in §§3.3-3.4 can be carried on employing these weaker codings as well.35

Summing up, our object-languages are given by any collection L that respects re-
quirements (a)-(f). (Many such collections exist.) This is for the sake of generality: a
bicontextualist semantics can be developed for a wide variety of (minimally expres-
sive) languages, and is not restricted to a specific vocabulary. I now turn to the tasks
outlined above: formulate an absolutist-friendly Kripkean construction to interpret
the unproblematic sentences of each Lα ∈ L, and a relativist-friendly version of the
Kripkean construction to model the problematic ones, and their context-shift.

3.3 Absolutist semantics Rayo and Uzquiano [66] have shown how to construct a
second-order, Tarskian semantics that interprets a first-order object-language in an
absolutist way. In §3.3.1, I sketch the basics of the Rayo-Uzquiano approach. In
§3.3.2, I adapt it to construct a second-order, Kripkean semantics that interprets the
languages in L in an absolutist way. This construction is then used to isolate the
unproblematic sentences, which are interpreted unrestrictedly.

3.3.1 The Rayo-Uzquiano approach to absolutist models Rayo and Uzquiano take the
language of first-order set theory as their object-language, and the corresponding
second-order language as their meta-language. However, their proposal applies to
any first-order language. Therefore, I will take an arbitrary Lα ∈ L as object-
language, and the corresponding second-order language (L 2

α ) as meta-language.
In model theory, models are sets. More specifically, a model M of a language L

is a set ⟨M, I⟩, where M is a non-empty set of individuals (the domain of the model),
and I is a set of tuples of elements of M which provides the extension of the indi-
vidual and relation constants of L . That a model is a set, as is well-known, makes
it impossible for it to interpret quantifiers unrestrictedly: no set includes absolutely
everything. Therefore, «everything is self-identical» (∀x(x = x)) or «nothing belongs
to the empty set» (¬∃x(x ∈∅)) are not interpreted as being about absolutely every-
thing (or absolutely every set): they are about the (set-many) things which are in M.
As Rayo and Uzquiano [66, pp. 316-317] argue, this is no minor incident: it entails
that «no standard model provides the language of set theory with its intended inter-
pretation». To solve the problem, Rayo and Uzquiano propose an alternative notion
of model:
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The core of our proposal is that we conceive of a model, not as a single set-
theoretic object, but rather as given by the values of a second-order variable X .
Accordingly, we take satisfaction to be a relation that a formula ϕ bears, not
to a certain structured set, but to the values of X . These objects will encode a
specification of the individuals over which our first-order quantifiers are to range
and a specification of the ordered pairs that are to be assigned to «∈».

[66, pp. 318-319, notation adapted]

So, rather than using a set as a model, they define a second-order formula M(X),
with a free second-order variable X , which encodes what it takes for X to work as a
model. To distinguish it from the usual notion of model, we will read M(X) as «X
is an RU-model». The values of the variable X then provide instances of the newly
defined RU-models.36 Here is the definition.37

Definition 3.3 (RU-model) For every unary second-order variable X , the formula
«X is an RU-model», in symbols M(X), is defined as:

∃xX(⟨⌜∀⌝,x⟩)∧
∀x

[
X(x)→∃y

(
x = ⟨⌜∀⌝,y⟩

)
∨∃y∃z1, . . . ,∃zn

(
RelLα

(y)∧ x = ⟨⌜y⌝,⟨z1, . . . ,zn⟩⟩
)]
∧

∀x
[
ConLα

(x)∨VarLα
(x)→

(
X(⟨⌜∀⌝,⌜x⌝⟩)

)]
∧

∀x∀y1, . . . ,yn
[
RelLα

(x)∧X(⟨⌜x⌝,⟨y1, . . . ,yn⟩⟩)→ X(⟨⌜∀⌝,y1⟩)∧ . . .∧X(⟨⌜∀⌝,yn⟩)
]

Let’s unpack the definition.

Remark 3.4

- I follow Rayo and Uzquiano [66, p. 319] in taking an RU-model «to be given
by ordered pairs of two different types: (1) ordered pairs of the form ⟨⌜∀⌝,x⟩,
which [. . .] encode the fact that x is to be within the range of our quantifiers»,
and (2) ordered pairs of the form ⟨⌜R⌝,⟨y1, . . . ,yn⟩⟩, for R a relation constant
of Lα , which encode the fact that the tuple ⟨y1, . . . ,yn⟩ is part of the inter-
pretation of the relation R. This is what the second conjunct of the definition
says, i.e. that every x to which X applies (informally: «everything in the
RU-model») is either a pair of the first kind or a pair of the second kind.

- The first conjunct of the definition says that X applies to something, i.e. some-
thing is in the range of the quantifiers. In standard model-theoretic terms, this
corresponds to the assumption that a model has a non-empty domain.

- The third conjunct says that every Lα -individual constant or variable is as-
sociated with one element in the range of the quantifiers (together with the
second conjunct, this ensures that each constant or variable is associated with
exactly one element). In standard model-theoretic terms, this corresponds to
the assumption that a model specifies a denotation for individual constants
and individual variables.38

- The last conjunct says that every Lα -relation constant is associated with a
tuple of elements in the range of the quantifiers. In standard model-theoretic
terms, this corresponds to the assumption that a model specifies the extension
of the relation constants.

RU-models are given by values of X in M(X).39 Thus, certain values of X will
yield standard, set-theoretic models, those where the collections forming the «do-
main» in M(X) and the «denotation» and «extension» of the vocabulary of Lα
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in M(X) form sets. Some others will not be set-theoretical models. An absolutist
model is one in which the value corresponding to the «domain» in M(X) is given
by absolutely everything, and the «denotations» of constants and variables, and the
«extension» of relations are defined on absolutely everything.40

Once one has the absolutist notion of RU-model, one can use it to provide a
semantics—that is, a notion of satisfaction—for each Lα . To this end, it will be
useful to first isolate the «domain» component of the formula M(X).

Definition 3.5 (RU-domain) For all second-order variables X and Y , the formula
«Y is the RU-domain of the RU-model X», in symbols D(X ,Y ), is defined as:

D(X ,Y ) iff M(X)∧∀x
(
Y x ↔∃y(Xy∧ y = ⟨⌜∀⌝,x⟩)

)
So, D(X ,Y ) holds just in case X is an RU-model, and Y applies exactly to the

things which constitute the second element of the first kind of pairs in X (as explained
in the first item in Remark 3.4), namely its «domain»—henceforth, its «RU-domain».

Next, we need the analogue of a y-variant of a variable assignment, namely an
RU-model Y which differs from the RU-model X at most in the value it assigns to
the Lα -variable y.

Definition 3.6 (RU-variant) For all first-order variables y, and unary second-order
variables X and Y , the formula «Y is an RU-y-variant of X», in symbols V(y,Y,X),
is defined as:

VarLα
(y)∧M(X)∧M(Y )∧∃!Z

(
D(X ,Z)∧D(Y,Z)

)
∧

∀x
[
x ̸= y →∀z

(
X(⟨z,x⟩)↔ Y (⟨z,x⟩)

)]
So, X and Y are RU-y-variants of each other if they (i) are both RU-models, (ii)

have the same RU-domain, and (iii) disagree at most on their interpretation of the
Lα -variable y.41

Definitions 3.3-3.6 provide us with all the ingredients to formulate absolutist-
friendly satisfaction conditions for the languages in L. This is, indeed, what Rayo
and Uzquiano proceed to do, offering a Tarskian semantics. However, the Rayo-
Uzquiano method does not only apply to Tarskian satisfaction: it applies to any
inductive definition of satisfaction. In particular, as anticipated, I now use it to for-
mulate Kripkean, absolutist-friendly satisfaction conditions for each language Lα ,
which I then use to interpret its unproblematic sentences.
3.3.2 A Kripkean absolutist semantics for unproblematic sentences We now define a
predicate which can be informally (if imprecisely) rendered as «the RU-model X
with RU-domain Y Kripke-satisfies x relative to the accepted Z» (more on «the ac-
cepted Z» in a moment).42 I also assume that the RU-model X we use as base model
is acceptable, i.e. that its definition includes a conjunct which translates the accept-
ability conditions (see Remark 3.2) into our official meta-language L 2

α —as this is
obviously possible, I skip the lengthy definition for space reasons.

Definition 3.7 Let x be a first-order variable, and X , Y , and Z be second-order
variables. KSatα(x,X ,Y,Z) if and only if:43 M(X) and D(X ,Y ) and

(i) Zx, or
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(ii) x is ⌜R(t1, . . . , tn)⌝ and there are y1, . . . ,yn s.t. X(⟨⌜∀⌝,y1⟩)∧. . .∧X(⟨⌜∀⌝,y1⟩)
and X(⟨⌜R⌝,⟨y1, . . . ,yn⟩⟩), or

(iii) x is ⌜¬R(t1, . . . , tn)⌝ and there are y1, . . . ,yn s.t. X(⟨⌜∀⌝,y1⟩)∧. . .∧X(⟨⌜∀⌝,y1⟩)
and ¬X(⟨⌜R⌝,⟨y1, . . . ,yn⟩⟩), or

(iv) x is ¬. ¬. y and KSatα(y,X ,Y,Z), or
(v) x is y∧. z and KSatα(y,X ,Y,Z) and KSatα(z,X ,Y,Z), or

(vi) x is ¬. (y∧. z) and KSatα(¬. y,X ,Y,Z) or KSatα(¬. z,X ,Y,Z), or
(vii) x is ∀. yz(y) and for every W s.t. V(y,W,X), KSatα(z(y),W,Y,Z), or

(viii) x is ¬. ∀. yz(y) and for some W s.t. V(y,W,X), KSatα(¬. z(y),W,Y,Z), or
(ix) x is Trα(y) and y is ⌜z⌝ for z ∈ Lα and KSatα(z,X ,Y,Z), or
(x) x is ¬. Trα(y) and either y does not code an Lα -sentence, or y is ⌜z⌝ for z∈Lα

and KSatα(¬. z,X ,Y,Z).

This definition formalizes the inductive construction of the extension of a Krip-
kean fixed point for languages in L in a higher-order framework. Let’s highlight its
main features.

Remark 3.8

- In §2.1, a Kripkean fixed point was defined as an an element occurring at
certain stages in a succession indexed by ordinals. By contrast, and following
Halbach [32] (Ch. 15), here I directly define the fixed point (rather than a
succession which reaches a fixed point), as shown by the «if and only if» at
the beginning of Definition 3.7. Nothing crucial hinges on these differences.

- The second-order variables X and Y appear in the conjuncts M(X) and
D(X ,Y ). So, the value of X is the base, acceptable RU-model, and the value
of Y is the RU-domain where the quantifiers of Lα range. I do not specify a
single value for X and Y , so that they can be assigned both set-theoretic and
absolutist models.

- The variable Z appears in (i), as the disjunct «Zx»: this guarantees that, if Z
applies to x, then KSatα(x,X ,Y,Z) holds, i.e. x is in the fixed point defined
by KSatα(x,X ,Y,Z). This clause allows us to define both the least and non-
minimal Kripkean fixed points in our framework. If Z takes an empty value,
the clause Zx is never satisfied, and one obtains the least fixed point. I will
write KSatα(x,X ,Y,∅) for the least fixed point whose RU-domain is Y . If Z
takes a non-empty value, then KSatα(x,X ,Y,Z) yields the non-minimal fixed
point built over that value.44

Summing up: the second-order formula KSatα(x,X ,Y,Z) characterizes the notion
of «(possibly) absolute Kripkean satisfaction» for each Lα . Using it, we can finally
define the set of absolutely general truths of each Lα .

Definition 3.9 For every Lα ∈ L, the set of absolutely general truths of Lα , in
symbols Absα , is defined as follows:

Absα := {ϕ ∈ Lα |KSatα(⌜ϕ⌝,X ,Y,∅)}

Simply put, Absα contains the sentences that are in the least Kripkean fixed point
for the language Lα , over a base RU-model X and its RU-domain Y . Clearly, here
I am mostly interested in the case in which the value of Y is given by absolutely
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everything, but, again, I leave it open for the sake of generality. Since Absα is
given by the least fixed point of the (absolutist-friendly) Kripke construction, these
sentences match the intuition spelled out in §3.1 that such fixed point provides an
appropriate way to isolate the unproblematic sentences. However, variants of Absα

can easily be defined that correspond to consistent non-minimal fixed points.

3.4 Relativist semantics I now turn to the problematic sentences, and their relativist
semantics. Recall (from §2 and §3.1) that, in the bicontextualist picture, the prob-
lematic sentences of each language Lα must:

(a) first be declared to be neither trueα nor falseα , and then be declared either
trueα+1 or falseα+1, in order to model the context shift;

(b) always be interpreted over domains that are not absolutely general.
Concerning (b), for the sake of simplicity, I will always employ set-size domains
in the case of problematic sentences, but this restriction can also be relaxed.45 As
discussed in §2 and §3.1, problematic sentences are (roughly) identified as those
sentences that are gappy in the least Kripkean fixed point. Therefore, if ϕ is prob-
lematic, KSatα(x,X ,Y,∅) does not apply to ϕ , nor to ¬ϕ , but the closing-off of the
fixed point defined by KSatα(x,X ,Y,∅) applies to exactly one of them. In order
to accomplish this, I reproduce the closing-off in my higher-order framework, mak-
ing sure the domain is always set-sized and using different set-sized closed-off fixed
points to interpret problematic sentences in different contexts.46

3.4.1 Closing-off

Definition 3.10 Let M0 be an acceptable model of the Tr0-free fragment of L0
(namely L0 \{Tr0}), and M0 its domain. The relativistic closing-off for L0 (relative
to M0) is:

C-Off0 :=
{

ϕ ∈ SentL0 | ⟨M0,{x ∈M0 |KSat0(x,M0,M0,∅)}⟩ |= ϕ
}

Let α > 0, and let Mα be an acceptable Lα \{Trα}-structure s.t. for every β < α ,
Mβ ≺⋃

β<α C-Offβ
Mα , i.e. Mα is an elementary extension of Mβ with respect to

the sentences in
⋃

β<α C-Offβ .47 Then, the relativistic closing-off of Lα (relative to
Mα ) is given by:

C-Offα :=
{

ϕ ∈ SentLα
|
〈
Mα ,{x ∈Mα |KSatα(x,Mα ,Mα ,

⋃
β<α

C-Offβ )}
〉
|= ϕ

}

Let me unpack the above definition.

Remark 3.11

- First, one constructs the set of sentences defined by KSat0(x,M0,M0,∅), i.e.
the extension of the least Kripkean fixed point for L0. By construction, the
RU-domain of KSat0(x,M0,M0,∅) is a set, M0, and hence cannot contain
absolutely everything—as desired. Then, one considers the set of sentences
that are classically true in ⟨M0,{x ∈M0 |KSat0(x,M0,M0,∅)}⟩, where M0
interprets the Trα -free fragment of L0 and {x ∈ M0 |KSat0(x,M0,M0,∅)}
is the extension of Tr0. This is the closing off proper, C-Off0.

- Then, one builds a new fixed point over C-Off0, defined by the formula
KSat1(x,M1,M1,C-Off0). Once that fixed point is closed-off, we have the
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set C-Off1, which interprets L1, and agrees with the interpretation of L0 of-
fered by C-Off0. Again, the RU-domain of C-Off1 is a set, namely M1. And
so on: the process goes on, unaltered, for every language in L.

- The requirement that Mα is an elementary extension of every Mβ for β < α

with respect to the sentences in
⋃

β<α C-Offβ ensures that Mα agrees with all
the previous Mβ s concerning the sentences in the closing-offs of the fixed-
points defined over them. Therefore, all the fixed points that are built along
the sequence are consistent (and so are the corresponding closing-offs), and
extend each other. So, taking

⋃
β<α C-Offβ as ‘the accepted Z’ (as per Def-

inition 3.7) does not result in inconsistent sets of Lα -sentences. Finally, the
acceptability requirement ensures that there are definable coding functions
for all the Lβ s up to Lα . Note that the existence of such an Mα is an imme-
diate consequence of Kripke’s original construction.

What happens to the intuitively problematic sentences? Definition 3.10 yields a
succession of set-sized closed-off fixed points, so it works exactly as Glanzberg’s
construction reviewed in §2.1. Let λ0 be a Liar sentence in L0. Now, λ0 is not in
the extension of the fixed point defined by KSat0(x,M0,M0,∅). Clearly, then, since
KSat0(x,M0,M0,∅) yields the extension of Tr0, λ0 is not in it. Therefore (cf. §2.1):

⟨M0,{x ∈M0 |KSat0(x,M0,M0,∅)}⟩ ̸|= Tr0(⌜λ0⌝)

|= ¬Tr0(⌜λ0⌝)

|= λ0

In words: λ0 is not true in L0. The sentence that says of itself that it is not true in
L0 is indeed untrue in L0—as desired.

Things change when one moves to L1 and C-Off1. C-Off1 agrees with C-Off0
on L0, but it interprets L1, which also features a new, more encompassing notion
of truth, namely Tr1. Since λ0 ∈ C-Off0, λ0 goes into the extension of Tr1 given by
the fixed point for L1 built over C-Off0. In other words, KSat1(x,M1,M1,C-Off0)
applies to (the code of) λ0, and therefore:

⟨M1,{x ∈M1 |KSat1(x,M1,M1,C-Off0)}⟩ |= Tr1(⌜λ0⌝)

Namely, λ0 is true in L1—again, as desired.
In turn, L1 has its own problematic sentences, e.g. a sentence λ1 equivalent to

¬Tr1(⌜λ1⌝), and they are treated exactly as sketched above in C-Off2. And so on for
every Lα ∈ L.
3.4.2 A Kripkean relativist semantics for problematic sentences Having constructed the
succession of closed-off fixed points for languages in L, one can finally use them
to single out the problematic senences, which are to be interpreted over set-sized
domains, separating them from the absolutely general ones.

Definition 3.12 For every Lα ∈ L, the set of relatively general truths of Lα , in
symbols Relα , is defined as follows:

Relα := C-Offα \ (Absα ∪{ϕ ∈ Lα |¬ϕ ∈ Absα})

Again, let’s unpack the above definition, to make sure Relα captures its intended
extension.
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Remark 3.13

- The problematic sentences are obtained as a complement: since the closing-
off of a Kripkean fixed point includes that fixed point, C-Offα includes all the
sentences in the least Kripkean fixed point over base model Mα —including
∀x(x = x) and many other unproblematic sentences which are also in Absα .
This explains the first complement: we need to remove Absα from C-Offα .

- Second, we need to remove from C-Offα all the Lα -sentences ϕ s.t. that
C-Offα disagrees about ϕ with Absα , i.e. the ϕs s.t. ϕ ∈ C-Offα but
¬ϕ ∈ Absα . C-Offα and Absα might disagree over sentences which have
nothing do to with semantic paradoxes, merely because their domains are
different—e.g. if one is absolutely general, and the other one is set-sized.
Suppose Absα is defined with reference to absolutely all sets, and suppose κ

is a cardinal s.t. |Mα | < κ . Let ϕ be the sentence «there is no set of cardi-
nality κ». Clearly, C-Offα and Absα disagree about ϕ , since ϕ ∈ C-Offα but
¬ϕ ∈ Absα . In this case, we should remove ϕ from Relα , since we accept
Absα for unproblematic sentences. This explains the second complement in
the definition of Relα .

- Finally, note that problematic sentences that are validated by closed-off fixed
points, such as λα , are in Relα (while, of course, ¬λα is not), as required.

3.5 Bicontextualism: the full story With the notions of absolute and relative truth
in place, one can finally provide a bicontextualist notion of consequence, and thus a
theory of truth proper.

Definition 3.14 For every Lα ∈ L, and every {Γ,ϕ} ⊆ SentLα
, the argument

from Γ to ϕ is bicontextually valid, in symbols Γ |=bc
α ϕ , if and only if:

if all the sentences in Γ are in Absα ∪Relα , so is ϕ .

In a nutshell, for every language Lα , its bicontextualist semantics interprets all the
unproblematic sentences over a possibly absolutely unrestricted domain, and the
problematic ones over a restricted, always extendable domain. Bicontextual validity
is then defined as preservation of either absolute truth in a model (Absα ) or relative
truth in a model (Relα ). Given that absolute and relative truth in a model are exhaus-
tive and exclusive (as far as the true sentences of Lα are concerned), Definition 3.14
is in effect a bicontextualist version of preservation of truth in a model, as it is to be
expected for a classical theory.48

Bicontextualism validates several desirable truth-theoretical principles. First, it
validates all the axioms of the theory KF (discussed in §2.2) for every language
Lα . This means that, for every Lα ∈ L, the axioms of KF formulated for Lα are
made either absolutely or relatively true in the bicontextualist semantics for Lα . For
example, in a bicontextualist construal, the axiom KF4 reads:

∀x[SentLα
(x∧. y)→ (Trα(x∧. y)↔ Trα(x)∧Trα(y))].

The bicontextualist can therefore argue that the notion of truth we find in natural
language satisfies the axioms of KF, but the latter are subject to a sort of typical
ambiguity, since the semantics has to determine the appropriate context (i.e. level in
the hierarchy of languages and models) to interpret them.49
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Moreover, bicontextualism is closed under the following truth-elimination rule,
for ϕ ∈ Lα :

Trα(⌜ϕ⌝) |=bc
α ϕ

and the following truth-introduction rule, for ϕ ∈ Lα :

if Γ |=bc
α ϕ, then Γ |=bc

α+1 Trα+1(⌜ϕ⌝)

(The limit case reduces to the successor one, since limit stages are defined as unions).
The proof is immediate, and follows from the construction of the Kripkean fixed
points and their closing-off explained in §3.3.2 and §3.4.1. These rules are closely
related to the principles Tr-Intro and Tr-Elim discussed in §2.2. However, while clas-
sical theories of truth cannot consistently feature both truth-elimination and truth-
introduction principles, bicontextualism can unproblematically have both, provided
that the truth-introduction rule is in general context-shifting. However, if ϕ ∈ Absα ,
then Trα(⌜ϕ⌝) ∈ Absα as well. In other words, applying the truth predicate to an
absolutely true sentence does not require a context shift. The context-shifting na-
ture of truth-introduction in general is uniquely due to the presence of problematic
sentences, and their relativist interpretation.

Clearly, the converse rules hold as well, for ϕ ∈ Lα :

¬ϕ |=bc
α ¬Trα(⌜ϕ⌝)

if Γ |=bc
α+1 ¬Trα+1(⌜ϕ⌝), then Γ |=bc

α ¬ϕ

And while the truth introduction rule in general induces a shift to a language higher
up in the hierarchy, the ¬Tr elimination rule induces a shift to a language lower down
in the hierarchy.

In conclusion, bicontextualism improves on the main shortcoming of orthodox
contextualism: the lack of an absolutely general interpretation for arguably general
truths and falsities. At the same time, bicontextualism retains the attractive features
of orthodox contextualism (§2.2): the preservation of classical logic, the ability to
reconstruct paradoxical reasonings and explain their intuitive soundness, and a uni-
form solution to standard and revenge paradoxes (more on this in §5.4). Finally,
bicontextualism validates appealing truth-theoretical principles, such as the ones of
KF, as well as versions of both truth-introduction and truth-elimination principles.
The latter principles arguably bring the semantics of the truth predicate fairly close
to a naïve interpretation, while remaining within the boundaries imposed by classical
logic.

4 Revisiting the CONTEXTUALIST ARGUMENT FROM PARADOX

In addition to its consequences for formal theories of truth, the development of bi-
contextualism has some consequences for the foundations of semantics more gener-
ally. Both absolutist and relativist semantics get some things right, and some things
wrong. Absolutist semantics is well-suited to interpret absolutely general claims
such as «everything is self-identical», but cannot model paradoxical arguments as
arguments that expand a given interpretation of the truth predicate, or a given do-
main of quantification. Conversely, relativist semantics offers an adequate account of
paradoxical reasonings, but systematically misinterprets absolutely general claims.
Both problems have a common source: the assumption, shared by absolutists and
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relativists alike, that every language—even one as simple as Lα —has a unified in-
terpretation:

UNIFIED INTERPRETATION: All the sentences of a given languages are given a
single interpretation (be it first- or higher-order, relativist or absolutist).

This assumption lies at the heart of contemporary semantics. In model-theoretic se-
mantics, for example, models are ordered pairs of the form ⟨M, I⟩, where M is a set
and I is a function (also a set) that maps linguistic expressions to appropriate exten-
sions in M (see §3.3.1). In a higher-order absolutist semantics, the situation is sim-
ilar: even though here RU-domains are not sets, the semantics still defines a unique
satisfaction relation (as in Rayo and Uzquiano [66]) and/or a unique interpretation
(as in Rayo and Williamson [68]) that relates syntactic objects of the appropriate
kind (such as terms or formulae) and things that belong to an RU-domain.

Bicontextualism challenges UNIFIED INTERPRETATION. By bicontextualist
lights, every minimally expressive language such as Lα (and, a fortiori, natural
language) has two kinds of sentences: the problematic and the unproblematic ones.
The appropriate interpretation for a sentence ϕ depends on whether ϕ is one of the
former or one of the latter. In order to do justice to the semantics of both kinds of
sentences, UNIFIED INTERPRETATION has to be abandoned in favor of a bipartite
one. Such a bipartite interpretation is clearly visible in Definition 3.14, which em-
ploys both Absα (with its possibly absolutely general RU-domain given by the value
of X), and Relα (with its necessarily restricted domain Mα ). This also shows that
the revision to the framework of standard semantics provided by bicontextualism is
not particularly radical: one kind of interpretation is not sufficient, while more than
two are not necessary. Two kinds of interpretations—one for problematic and one
for unproblematic sentences—are just right.

We are now in a position to provide a diagnosis of what goes wrong in the CON-
TEXTUALIST ARGUMENT FROM PARADOX. The final part of the argument (see §2)
can now be recast as follows.

[The LIAR IN CONTEXT] shows that the interpretation of the language in context
c is not maximally general: there are sentences which are true or false in c′ but
neither true nor false in c. But since the LIAR IN CONTEXT can be performed in
any context, and by UNIFIED INTERPRETATION there is a single interpretation
for all sentences, no interpretation can be maximally general.

The argument breaks down at the second step. The fallacy: UNIFIED INTER-
PRETATION. By bicontextualist lights, problematic sentences such as Liar sentences
show that there just isn’t a single interpretation for every sentence of the language.
All that follows from the CONTEXTUALIST ARGUMENT FROM PARADOX, properly
understood, is that the initial interpretation of the truth predicate in problematic sen-
tences, like Liar sentences, can always be expanded. Consequently, all that can be
recovered from the CONTEXTUALIST ARGUMENT FROM PARADOX is the follow-
ing:

[The LIAR IN CONTEXT] shows that the interpretation of some sentences in con-
text c is not maximally general: there are sentences which are true or false in c′

but neither true nor false in c. Therefore, one cannot provide a maximal interpre-
tation for the truth predicate when it is applied to such sentences (e.g. λc).

Orthodox contextualists—and relativists working in the tradition of Russell and
Zermelo—are right to see problematic sentences as sentences that can be used to
expand any interpretation of the truth predicate as it applies to such sentences. But it
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simply does not follow from this that the interpretation of every sentence (including,
e.g., Trα(⌜0 = 0⌝) and ∀x(x = x)) can similarly be expanded.

5 Objections and replies

I will now discuss some potential objections. I will address the worry that bicontex-
tualism suffers from severe expressive limitations (§5.1), the alleged non-uniqueness
of the interpretation for unproblematic sentences (§5.2), worries related to the object-
language/meta-language distinction (§5.3), and revenge paradoxes (§5.4).

5.1 Expressive limitations A first objection to bicontextualism claims that it is a
typed theory of truth, as it provides interpretations for a hierarchy of languages.
Worse still, the objection continues, in the bicontextualist setting we have a new
truth predicate Trα for each new language Lα . But, the objection concludes, nat-
ural languages feature a type-free truth predicate, and therefore no typed theory is
applicable to or relevant for them.

However, such an objection would be misguided. The hierarchy of languages
in L is a mere technical expedient aimed at offering a simple presentation of the
context shift that takes place in the interpretation of problematic sentences. First,
all the languages in L share all the non-truth-theoretic vocabulary. Second, every
language in L allows for iterated truth-predications and self-referential sentences,
and is interpreted in a completely uniform way—the construction of Absα and Relα
is always the same, across the hierarchy of languages.

A related worry is that infinitary generalizations and blind ascriptions cannot in
general be modeled in a hierarchical theory, as they might be paradoxical. Suppose
Bach and Telemann only utter, respectively, the following sentences:

(9) Everything Telemann says about Händel is true;
(10) Everything Bach says about Händel is not true.

Kripke [45, p. 695-696] used sentences such as (9) and (10) to argue for the in-
adequacy of Tarskian hierarchical approaches, and one might worry that they show
contextualist and bicontextualist approaches to be similarly inadequate. However,
Glanzberg [28, p. 233] correctly observes that Kripke’s objection does not apply to
his version of contextualism, and his defense covers bicontextualism as well. The
reason, in short, is that both versions of contextualism employ iterations of Kripkean
fixed points, and thus can easily interpret (9) and (10) in any such fixed point. More
explicitly, applying the construction of §3.4 to (9) and (10), it’s clear that neither of
them is true or false in Lα , while (10) is true in Lα+1 and (9) is false, as expected.

Finally, one could object that the distinction between problematic and unproblem-
atic sentences is not robust, since contingent Liars (such as the pair (9)-(10) above)
show that it might be contingent whether a sentence is problematic (see Kripke [45,
p. 696 and following]). The point is not well-taken, however. Essentially every
semantic theory of truth has to interpret contingent Liars depending on contingent
facts, but this does not make the problematic/unproblematic distinction ill-defined
or unusable. Given any relevant collection of contingent facts that determines the
extension of the non-semantic fragment of the language, bicontextualism, just like
any other semantic theory of truth, categorizes the resulting sentence as problematic
or unproblematic.
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5.2 Non-uniqueness One might worry that bicontextualism doesn’t provide the
treatment of unproblematic sentences we were originally after. In §2.3, the worry
continues, orthodox contextualism was criticized for not providing a unique, max-
imal interpretation of unproblematic sentences, but bicontextualism also provides
an unending succession of distinct interpretations Abs0, Abs1, Abs2, . . ., and not a
single one. Where is, therefore, the advantage of bicontextualism with respect to
orthodox contextualism?

The worry is legitimate but misguided, for at least two reasons:

(i) Unproblematic truth-predications receive a maximal interpretation: once they
are declared to be absolutely true or untrue (or false), they remain so, and their
interpretation is never altered (as required in §2.3). To see this more precisely,
assume β < α . Therefore, since Absβ ⊆ Absα , by the fact that every Absβ is
the extension of a consistent Kripkean fixed point, we have that:
(a) If ϕ ∈ Absβ , then Trβ (⌜ϕ⌝) ∈ Absβ ⊆ Absα , and Trα(⌜ϕ⌝) ∈ Absα .
(b) If ϕ ∈ Absβ , then ¬Trβ (⌜ϕ⌝) /∈ Absβ , ¬Trβ (⌜ϕ⌝) /∈ Absα , and

¬Trα(⌜ϕ⌝) /∈ Absα .50

(a) and (b) entail that absolute truth is preserved upwards across the languages
in L, and no unproblematic sentence can be declared to be trueβ first and
untrueα (or falseα ) later, or untrueβ (or falseβ ) first and trueα later.

(ii) Unproblematic quantified sentences can always be interpreted over the same,
maximally general RU-domain. Setting X in the definition of every Absα to
be absolutely general, every Absα is defined over the same RU-domain, i.e.
absolutely everything (again, as required in §2.3).

The situation is very different for the problematic, relatively general sentences: as
we have seen, truth-predications in Rel0, Rel1, Rel2, . . . receive two distinct interpre-
tations. For β < α , λβ is declared untrueβ first, and trueα later (against (i) above).
Moreover, quantified sentences are interpreted over always different, never-maximal,
ever-growing domains (against (ii) above). This picture is in line with the core idea
of bicontextualism: unproblematic sentences are interpreted «once and for all», in a
maximally general way (a maximally general interpretation for the truth predicate,
and a maximally general domain of quantification), while problematic sentences un-
dergo the contextualist treatment described in §2.1 and §3.4.

On a diagnostic level, this worry is structurally similar to the ones in §5.1: it
takes a technical (and presentational) aspect of bicontextualism—namely that it fea-
tures more than one language and, consequently, more than one collection Absα —to
distort and invalidate its basic intuition concerning absolutely general and relatively
general truths. We have seen, however, that this is not the case.

5.3 The object-language/meta-language distinction Bicontextualism employs a
higher-order meta-theory to provide a semantics for first-order languages. But the
second-order language employed in the meta-theory is not given a bicontextualist
interpretation. Indeed, it is given no interpretation at all. Does this show that
bicontextualist semantics is expressively incomplete?51

A first avenue of reply for the bicontextualist is to insist that:

(i) natural languages do not feature genuine higher-order quantification, and
therefore a semantics for an (idealized version of a) natural language should
not be concerned with higher-order sentences;52
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(ii) the semantics can legitimately make a purely instrumental use of higher-order
quantification in the meta-theory, to provide an absolutist interpretation for a
fragment of the target object-language, which is first-order.

Relatively to (i), by genuine higher-order quantification I mean a quantification into
predicate position that is not paraphrased away as a first-order quantification. For
instance, consider ∀X∀x(X(x)). A literal reading of ∀X∀x(X(x)) would be nonsen-
sical, as it would amount to something like «every X Xs every x», which is not an
English sentence. That is, the X would need to simultaneously be the syntactic ob-
ject to which the quantifier applies and the predicate in the expression following the
quantifier. Yet this doesn’t seem possible in languages such as English. To be sure,
plenty of English paraphrases of ∀X∀x(X(x)) are available, e.g. «everything has ev-
ery property». However, this paraphrase is not genuine, as it effectively treats X as a
first-order variable, and not as a predicate.53

One might object that, even conceding (i), (ii) is not satisfactory: how can one
plausibly make use, even instrumentally, of a meta-theory one cannot express in
English, and which has no interpretation? To address this further objection, the bi-
contextualist might follow Williamson [85] and argue that even if higher-order quan-
tification cannot be expressed in natural languages, it can still be understood by the
«direct method». As Williamson puts it:

Perhaps no reading in a natural language of quantification into predicate position
is wholly satisfactory. If so, that does not show that something is wrong with
quantification into predicate position, for it may reflect an expressive inadequacy
in natural languages. We may have to learn second-order languages by the di-
rect method, not by translating them into a language with which we are already
familiar. [85, p. 459]

In conclusion, the objection that bicontextualism is an incomplete semantics because
it does not interpret the higher-order meta-language is misplaced: bicontextualism is
an intelligible and workable semantics for (fragments of) natural languages even in
absence of such an interpretation.54

5.4 Revenge Can one formulate revenge paradoxes for bicontextualism? The an-
swer, in a nutshell, is: yes, but revenge sentences are treated exactly as the standard
problematic sentences. Therefore, bicontextualism is not subject to «new» revenge
paradoxes: it stands or falls on its treatment of standard paradoxes.

Consider Parsons’s «Superliar» (1974): a sentence λA which, roughly, says that
for every α , it is not trueα . Then, λA intuitively says that λA is not true in absolutely
any context. Therefore, one can argue that λA cannot be treated as bicontextualism
prescribes, i.e. as being neither true nor false in one context, and being true in another
because, when one establishes λA in the course of the LIAR IN CONTEXT, one proves
that λA is neither true nor false in absolutely any context. How can then λA turn out
to be true in some context after all?

However, on a bicontextualist view, one cannot simply take for granted that λA

is interpreted as actually saying that λA is neither true nor false in absolutely any
context. On a bicontextualist view, whether λA can be interpreted unrestrictedly
depends on whether λA is problematic or not. But it quite clearly is. Indeed, λA

is in the gap of the least Kripkean fixed point for its language. Appearances to the
contrary, λA effectively fails to talk about absolutely every context, and is interpreted
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in a restricted way. Bicontextualism treats λA in its relativistic, context-shifting part,
exactly as it does with the original Liar sentences.

To be sure, the would-be revenger will object that this simply misconstrues λA.
After all, λA is designed to say precisely that it is neither true nor false in absolutely
any context. However, the objection is misplaced: what a sentence effectively says
is determined by its interpretation, not merely by its superficial form. And, on a
bicontextualist semantics, λA is simply not interpreted in an absolutely unrestricted
way. To be sure, one can insist that λA be interpreted unrestrictedly. But this would
be like insisting, in the face of Tarski’s Theorem, that truth be naïve even if logic is
classical.

The above arguments and replies clearly do not show that bicontextualism is free
from expressive limitations. Quite the contrary: the cases of λα and λA show that in-
terpreting some sentences as absolutely unrestricted is precluded to a bicontextualist
semantics. But what ultimately matters for bicontextualism as a theory of truth is that
it does not suffer from «new» expressive limitations, i.e. revenge paradoxes which
would undermine its applicability. No theory of truth is free from expressive limita-
tions. The best a theory can hope for is to address all semantic paradoxes, standard
and revenge alike, uniformly. Bicontextualism arguably satisfies this requirement.

6 Concluding remarks

I opened this paper asking whether one can quantify over absolutely everything. Ab-
solutists answer «yes», relativists answer «no». In the framework of semantic theo-
ries of truth, bicontextualists offer a more nuanced view, and answer «sometimes».

Absolutists and relativists disagree on fundamental issues about quantification,
yet the strengths of their respective theories concern distinct kinds of sentences: ab-
solutists can do justice to the semantics of utterly general truths, while relativists can
accurately capture the more elusive meaning of paradoxical sentences, and model
paradoxical reasonings. Absolutism and relativism are incompatible, but their cru-
cial insights are not in tension: they can be harmonized in a comprehensive view,
without generating «new» revenge paradoxes. At the same time, bicontextualism is
not merely the result of putting the best of absolutism and relativism together. It is
a distinct and coherent view, with implications for the notions of interpretation and
domain, and therefore for the foundations of semantics more generally.

Notes

1. This quick gloss only is intended to informally introduce absolutism and relativism, not
to fully characterize them. For absolutism, see e.g. Lewis [50], McGee [57], Rayo
and Uzquiano [66], Rayo and Williamson [68], Williamson [85]; for relativism, see e.g.
Hellman [38], Linnebo [52], Button [6], Studd [83]. For intermediate or hybrid positions
between absolutism and relativism, see e.g. Williamson [87], Shapiro [76], Fine [18],
Linnebo [53, 54], Uzquiano [84]. The view I defend here is also a hybrid one, albeit of
a quite different kind.

2. See also Russell [74], Dummett [12], Simmons [78], Dummett [13], Simmons [79],
Giaquinto [23, Ch. 6.2], Studd [83, Ch. 2.2-2.3].
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3. Cantor [9]; see also Hallett [36], Lavine [46, Chs. III.4, IV, and V], and Studd [83, Ch.
7.3].

4. See Parsons [63], Glanzberg [24, 25, 26, 27, 28]. More details, and references, are
provided in §2.

5. I intentionally omitted to specify what such contextual element consists in, and how
are contexts identified, since different contextualist theories adopt different proposals.
However, the structural features of contextualism can be presented without committing
oneself to any specific view of the contextual elements in the Liar reasoning (more on
this in §2). Moreover, contextualism is compatible with essentially every formal repre-
sentation of contexts [e.g. 49, 44, 81, 82]. For example, if contexts are thought to include
propositions, and propositions are taken as truth-bearers, one could argue (as Glanzberg
[24] does) that it is the proposition expressed by λ which is lacking in the first context
but not in the second.

6. There is a clear analogy between the contextualist interpretation of semantic paradoxes
and the relativist interpretation of set-theoretic paradoxes (see e.g. Dummett [12, 13]
and Studd [83, Ch. 4.5 and 7]). The analogy becomes even more evident if, following
Glanzberg [24, 25], a Liar sentence is construed as a sentence λe which says that there is
no true proposition expressed by λe, and the context shift is interpreted as an expansion
in the domain of the existential quantifier in λe. In this way, one establishes that λe does
not express a true proposition when the quantifier in λe is interpreted over the starting
domain, and that λe expresses a true proposition when the quantifier in λe is interpreted
over another domain. I did not follow Glanzberg’s presentation here because it departs
from the usual formulation of Liar sentences (by treating them as quantified statements).
However, as it will become clear in §2, such differences are inessential: the contextualist
construal of the Liar reasoning can be rendered equally well using λ or λe, and (more
generally) taking sentences or propositions as truth-bearers.

7. A precise characterization of «problematic» and «unproblematic» sentences is offered in
§§3.3-3.4.

8. See Glanzberg [28] and Glanzberg and Rossi [29].

9. Other varieties of contextualism include Burge [5], Barwise and Etchemendy [2], Sim-
mons [79], Gaifman [21], Simmons [80]. I focus on the Parsons-Glanzberg tradition
because it lends itself easily to the modifications I propose here.

10. «The view about the Liar paradox here presented has to meet two objections: first, that
it presupposes the dubious notion of sentences as expressing propositions, and of propo-
sitions as the primary bearers of truth or falsity; [. . .]. [. . .] the approach can also be
formulated in the situation where truth-values are attributed to sentences as I shall do in
the next section» [63, p. 391].

11. For more on this, see Glanzberg [28], especially footnote 27 and infra.

12. If one further assumes that a sentence expresses at most one proposition in a given con-
text, then «⌜ϕ⌝ is true in c» is interpreted as «⌜ϕ⌝ expresses exactly one true proposition
in c». See Parsons [63, p. 392 and following] for more details on the switch between the
sentential and the propositional settings.
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13. The Liar Paradox is often presented making use of the so-called T-SCHEMA, i.e.:
ϕ ↔ «⌜ϕ⌝ is true», but it is more convenient to use the corresponding inference rules in
the present setting. See Field [16, Ch. 13] and Murzi and Rossi [61] for more details on
the differences between the T-SCHEMA, the truth rules, and other principles for naïve
truth. This presentation of the LIAR IN CONTEXT follows Glanzberg [25].

14. The question of what triggers and explains the context-shift, and where exactly such
a shift takes place in paradoxical derivations, is a matter of debate in the literature. I
follow Murzi and Rossi [59] in identifying the truth-introduction rule as the context-
shifting principle. For more details and discussion, see Glanzberg [25, especially pp.
33-4], Gauker [22], and Mankowitz [55].

15. Again, the point can also be made in terms of propositions. In terms of propositions,
(5) means that λc does not express a proposition in c, and (7) means that λc expresses
a proposition in c′. So, there are propositions not quantified over in c but quantified
over in c′. Therefore, the quantification in c was not maximally general. But c is arbi-
trary and the LIAR IN CONTEXT can be performed in any given context, so one cannot
quantify over absolutely all propositions. A fortiori, one cannot quantify over absolutely
everything.

16. Glanzberg’s theory is a rich and complex one, and I must limit myself to sketching
it. For reasons of space, I will also not explicitly advocate Glanzberg’s own brand of
contextualism (for that, I refer the reader to Glanzberg’s own papers), and simply take it
as the starting point to articulate my own view.

17. Kripke’s construction does not provide, by itself, a context-relative interpretation of the
truth predicate. For this reason, when presenting Kripke’s theory, I simply write «⌜ϕ⌝ is
true», rather than «⌜ϕ⌝ is true in c». Later, iterations of Kripke’s theory will be used to
model context-relative truth predications.

18. In Kripke’s original construction, not a single set E but a pair ⟨E,A⟩ is constructed, where
A is the anti-extension of the truth predicate, i.e. the set of (names of) false sentences,
i.e. sentences whose negation is true. By contrast, here I only define E, but its definition
also specifies conditions under which negations are true. Thus, A can be immediately
obtained as the set of (names of) sentences ϕ s.t. ¬ϕ is in E. Nothing crucial hinges on
this, but this presentation considerably simplifies the construction in §3.3.2. For more
details on this and other variants of Kripke’s construction, see Halbach [32, Ch. 15 ].

19. For a presentation of the strong Kleene scheme, and a fuller presentation of Kripke’s
theory, see, e.g., McGee [56, Ch. 4], Field [16, Ch. 3], Horsten [41, Ch. 9], and Halbach
[32, Ch. 15].

20. I.e., because there are more ordinal stages than sets of sentences that can be interpreted
in this way.

21. For the criterion of scientific applicability of theories of truth, see Leitgeb [48]. One
widely discussed example of «loss of content» concerns theories of truth formulated in a
non-classical logic over a mathematical base theory. In some such theories, one can show
that less theorems are provable than in the same base theory formulated in classical logic.
The theory Partial Kripke-Feferman (PKF) formulated over Peano Arithmetic (PA) in a
non-classical logic is a case in point [35]. In the arithmetical context, a precise measure



Bicontextualism 25

of the loss of mathematical content is available, in terms of proof-theoretic ordinals,
i.e. ordinals that measure the amount of transfinite induction that a theory can prove.
Halbach and Horsten [35] have shown that the proof-theoretic ordinal of PKF over PA
in the target non-classical logic is much smaller than the proof-theoretic ordinal of PA
in classical logic. In other words, the former theory proves less arithmetical theorems
than the latter and therefore, one can argue, some «mathematical content» is lost. For
more on the loss of mathematical content in non-classical theories of truth, see [33, 17].
Thanks to an anonymous referee for helpful comments on this point.

22. Delia Graff Fara [30, p. 50] has famously argued that a convincing solution to a para-
dox should explain why the paradox is intuitively compelling. Graff Fara’s discussion
concerns the Sorites Paradox, but there is no reason not to extend her requirement of
psychological adequacy to semantic paradoxes.

23. See Horsten [41, Ch. 9.3], Field [16, Ch. 3.3-3.4], and Sagi [75] for similar arguments.

24. See also Juhl [43], Bacon [1, pp. 312-313] and Murzi and Rossi [59] (§5).

25. In order to present the truth-theoretical axioms of KF, I follow Halbach [32, Chs. 5 and
7]. L is some (suitable) language for which the axioms are given. «Sent» and «ClTer»
are formulae of L denoting the class of sentences and closed terms, respectively; a dot
under a logical operator represents the corresponding primitive recursive operations (on
names of formulae). For details on the encoding of syntax, see Feferman [14]. ∀tϕ(t.)
abbreviates ∀x(ClTerL (x) → ϕ(x)). Moreover, Tr(⌜ϕ(t./x)⌝) indicates that the result
of substituting all free occurrences of x with t in ϕ(x) is true, where x is the only free
variable in ϕ(x). Finally, t◦ indicates the value of the term t, i.e. the element denoted
by t (a number, if t is a numeral, and L is the language of arithmetic). As Picollo
[65] points out, the function symbol ◦ cannot be part of any language that satisfies the
premises of Strong Diagonalization, on pain of triviality, but (as customary) I write it as
an object-linguistic function symbol to preserve readability. In its original formulation,
KF is not a contextualist theory, so its axioms concern truth simpliciter rather than truth
in context. (Notice that one instance of the first two axioms is needed for every predicate
of the base language L ):

(KF1) ∀t1, . . . ,∀tn[Tr(R. (t1, . . . , tn))↔ R(t◦1 , . . . , t
◦
n )]

(KF2) ∀t1, . . . ,∀tn[Tr(¬. R. (t1, . . . , tn))↔¬R(t◦1 , . . . , t
◦
n )]

(KF3) ∀x[SentLTr
(x)→ (Tr(¬. ¬. x)↔ Tr(x))]

(KF4) ∀x[SentLTr
(x∧. y)→ (Tr(x∧. y)↔ Tr(x)∧Tr(y))]

(KF5) ∀x[SentLTr
(x∧. y)→ (Tr(¬. (x∧. y))↔ Tr(¬. x)∨Tr(¬. y))]

(KF6) ∀x∀y[SentLTr
(∀. xy)→ (Tr(∀. xy)↔∀t(Tr(y(t/x))))]

(KF7) ∀x∀y[SentLTr
(∀. xy)→ (Tr(¬. ∀. xy)↔∃t(Tr(¬. y(t/x))))]

(KF8) ∀t[Tr(Tr. (t))↔ Tr(t◦)]
(KF9) ∀t[Tr(¬. Tr. (t))↔ Tr(¬. t◦)∨¬SentLTr

(t◦)]

Similar axioms can be stated for ∨, →, ↔, and ∃.

26. See Halbach [32, Ch. 15], and Field [16, Chs. 7, 13] for more on Tr-Intro and Tr-Elim
in classical theories.

27. Bicontextualism is developed in detail for mathematical languages (which however can
model paradoxical phenomena). In §5.1, I sketch how bicontextualism can address sen-
tences whose (un)problematic status depends on contingent factors («contingent Liars»).
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28. See Murzi and Rossi [60] and Rosenblatt [71, 72] for classical recapture (and its prob-
lems) in non-classical logics, and Reinhardt [70], Bacon [1] for the classical case.

29. For a theory which identifies «problematic» sentences and their properties, see Rossi
[73].

30. For more details on dependence and grounding, see Yablo [88], Leitgeb [47], Beringer
and Schindler [3], Rossi [73], Picollo [64]. Which sentences count as grounded also
depends on the evaluation scheme employed in Kripke’s construction. Under the strong
Kleene scheme (which we have been adopting), λ is ungrounded, while λ ∨ 0 = 0 and
¬(λ ∧0 = 1) are grounded, as they are in the extension of the least Kripkean fixed point.
This is because a true disjunct and a false conjunct suffice to make a disjunction true
and a conjunction false (respectively) in strong Kleene logic. By contrast, λ ∨ 0 = 1
and λ ∧ 0 = 0 are ungrounded. And this is because a disjunction with a false and an
undefined disjunct is undefined in strong Kleene logic, as is a conjunction with a true
and an undefined conjunct. However, Kripke’s construction can be developed with other
evaluation schemes too. In the weak Kleene scheme, for instance, all of λ , λ ∨ 0 = 0,
λ ∧ 0 = 1, λ ∨ 0 = 1, and λ ∧ 0 = 0 would count as ungrounded [8]. I do not discuss
these variants in the interest of space.

31. Much of the mathematical complexity of Glanzberg’s original construction derives from
the need to re-interpret the same language. Availing oneself to multiple languages helps
avoiding some of that complexity.

32. A full definition of acceptable structure is provided in Moschovakis [58, Ch. 5]. There’s
a minor complication here. Moschovakis’s original notion of acceptability requires Mα

to have an isomorphic copy of the natural numbers in the standard signature {0,S,+, ·} as
a substructure. Since isomorphisms are only defined for structures in the same signature,
the signature of Mα (i.e. Lα ) has to include {0,S,+, ·}. However, since we want to
avoid languages with function constants, we have to employ a variant of Moschovakis’s
original notion, as spelled out, for example, in McGee [56], Ch. 1, where the natural
number structure is only required to be interpretable in Mα . See Hodges [40, Ch. 5]
and Button and Walsh [7, Ch. 5] for more details the notion of interpretability. As such
variant notion is easily specified model-theoretically, I will implicitly assume it.

33. Working axiomatically, the form of diagonalization involving the provable identity be-
tween the terms tϕ and ⌜ϕ(tϕ )⌝ is sometimes referred to as «strong diagonalization»
(and contrasted with «weak diagonalization», which involves the material equivalence
between ψ and ϕ(⌜ψ⌝)). The corresponding Strong Diagonalization Lemma is due to
Jeroslow [42]. For more discussion, see Heck [37], Picollo [64]. The approach I adopt
here is model-theoretic: rather than adopting a base theory and proving a diagonalization
lemma for it, I consider general requirements on languages and structures, which include
the availability of strong diagonalization.

34. Hierarchies of languages similar to L are studied in Halbach [34, 31] and Halbach [32,
Ch. 9]

35. Essentially, such codings are ZFC-definable functions (that are absolute w.r.t. transitive
models) from Lα -expressions to structures of the form ⟨H(κ),∈↾H(κ)⟩, where H(κ) is
the set of all sets hereditarily of cardinality < κ , and ∈↾H(κ) is the membership relation
restricted to it. Constructions of codings for languages of high cardinality can be found
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in Dickmann [11]. Such codings are employed in the construction of semantic theories
of truth in Glanzberg and Rossi [29].

36. Rayo and Uzquiano use the informal paraphrase «X is a model», but its surface form
should be taken with some care. X is a second-order variable, whereas in «X is a model»
it occurs in the scope of the predicate «is a model», i.e. as taking the place of an individ-
ual. But only first-order variables take the place of individuals: second-order variables
take the place of predicates. I follow them (e.g. when writing «X is an RU-model»),
with the proviso that this grammatical form should not be given much weight.

37. The following definition follows Rayo and Williamson [68], which adapt the RU-models
of Rayo and Uzquiano [66] to an arbitrary first-order language, such as Lα .

38. Standardly, models do not specify the denotation of individual variables—assignments
(over a given model) do that. Here I follow Rayo and Williamson [68] and take models to
provide the values of variables too. This minor change comes at no cost, but substantially
simplifies the formulation of some clauses in Definition 3.7.

39. X is a second-order variable. So, its values are not single individuals. By analogy,
consider the formula «Y (John)». Two possible values of Y are the individuals who eat,
and the individuals who run, so that «Y (John)» will be interpreted as «John eats» and
«John runs» respectively.

40. The above paraphrases, with their reifying talk of «domain», «extension», and the like,
improperly (if inevitably) gloss higher-order quantification as first-order quantification.
Taking the talk about, say, domains literally in an absolutist higher-order setting is prob-
lematic, for it seemingly presupposes that such «domains» are themselves objects—be
they sets, proper classes, what have you. See Cartwright [10] and Studd [83, §1.4].
Rayo and Williamson [68, p. 3] make a related point: «Such informal explanations are
a kind of useful nonsense, a ladder to be thrown away once climbed, because they use
the second-order (predicate) variable [«X»] in first-order (name) positions in sentences of
natural language; nevertheless, they draw attention to helpful analogies between [second-
order]-interpretations and [model-theoretic]-interpretations.»

41. I require that the RU-domain Z is unique in order to ensure that the variants defined on
the RU-models X and Y are defined on the same domain. However, since RU-domains
are extensional, one could define identity between them as is standardly done in second-
order logic (i.e. letting Z1 = Z2 ↔∀x(Z1(x)↔ Z2(x))), and require that the RU-domains
of the RU-models X and Y are identical.

42. Again, we are restricting ourselves to the strong Kleene version of Kripke’s construction,
so «Kripke-satisfies» should be understood as «Kripke-Kleene satisfies».

43. For the sake of readability, I omit the requirement that x is a sentence of Lα .

44. Non-minimal fixed points will be used in §3.4 to interpret the problematic Lα -sentences,
as outlined in §2.1.

45. I employ set-sized domains in order to make the contrast between the quantifier do-
mains of problematic and unproblematic sentences vivid, but one could employ the very
apparatus of bicontextualism to provide a Glanzberg-style contextualist theory where
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the interpretation of the truth predicate shifts (when it comes to problematic sentences),
and yet the quantifiers are still ranging over non-set-sized collections, including proper
classes. Thanks to an anonymous referee for helpful comments on this point.

46. Recall that unproblematic sentences are interpreted in non-closed-off fixed points be-
cause they require no context shift (and the context shift, as per Glanzberg’s original
treatment, is modeled by the closing off).

47. For the notion of elementary extension, see Hodges [40, Ch. 2].

48. That the consequence relation of Definition 3.14 is classical follows from the construc-
tion of Absα and Relα : the inner logic of both sets of sentences is classical logic. One
might worry that, since the base acceptable RU-model X and the base acceptable model
Mα employed in defining Absα and Relα are kept fixed, Definition 3.14 does not pro-
vide a notion of validity. This is largely a terminological issue, but can easily be reme-
died by considering a variant of Definition 3.14 where X is kept fixed (and is maximally
general), and one quantifies over all the acceptable Mα s used in defining Relα .

49. I owe this suggestion to Hannes Leitgeb.

50. The same holds replacing claims formalizing untruth (e.g. ¬Trβ (⌜ϕ⌝)) with correspond-
ing claims formalizing falsity (Trβ (⌜¬ϕ⌝)).

51. The question how to interpret higher-order languages is a deep and ramified issue, and
cannot be exhaustively addressed here. For discussion, see Boolos [4], Shapiro [77],
Linnebo [51], Williamson [85, 86], Rayo and Uzquiano [67], Rayo [69], Oliver and
Smiley [62], Florio [19], Florio and Linnebo [20].

52. Of course, one could further object that the bicontextualist’s meta-theory can be given
using plural logic rather than second-order logic, which would put more pressure on the
need to interpret the meta-language.

53. See Higginbotham [39] for further discussion. Thanks to Salvatore Florio, Michael
Glanzberg, Julien Murzi, Simon Schmitt, and Brett Topey for fruitful discussion on this
issue.

54. An alternative line of defense for the bicontextualist would be to insist that the second-
order meta-language needs no semantics at all, because the meta-theoretic notions em-
ployed are sufficiently well characterized inferentially, i.e. by the axioms and rules of
second-order logic and second-order ZF implicitly adopted in the meta-theory. A ver-
sion of this position in the context of arithmetic, set theory, and model theory itself is
articulated by Button and Walsh [7, Chs. 10-12].
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