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Abstract—Information extraction is one of the core 
fundamentals of natural language processing. Different 
recurrent neural network-based models have been 
implemented to perform text classification tasks like named 
entity recognition (NER). To increase the performance of 
recurrent networks, different factors play a vital role in 
which activation functions are one of them. Yet, no studies 
have perfectly analyzed the effectiveness of activation 
function on Named Entity Recognition based classification 
task of textual data. In this paper, we have implemented a 
Bi-LSTM-based CRF model for Named Entity Recognition 
on the semantically annotated corpus i.e., GMB, and 
analyzed the impact of all non-linear activation functions 
on the performance of the Neural Network. Our analysis 
has stated that only Sigmoid, Exponential, SoftPlus, and 
SoftMax activation functions have performed efficiently in 
the NER task and achieved an average accuracy of 95.17%, 
95.14%, 94.38%, and 94.76% respectively. 

Keywords—activation functions, Groningen Meaning Bank 
(GMB), named entity recognition, recurrent neural networks 

I. INTRODUCTION 
In the age of the modern era, traditional classification and 

recognition approaches have been overlapped by neural 
networks. This is due to the performance and efficient results 
of networks in the form of increased accuracy and reduced 
loss. Based on the type of data, different deep neural networks 
have been used to perfectly classify or recognize large image, 
textual, or speech data. Result analysis of deep neural 
networks is characterized by hyperparameter optimization 
including the impact of network optimizer and activation 
function used. For the task of tagging textual data for 
information extraction, recurrent neural networks (RNN) are 
often used. RNN based deep models work with the help of 
non-linear activation functions. The purpose of the non-linear 
activation function is to update input neurons to conceive data 
variation which helps model in understanding data structure 
efficiently. 

In the history of neural networks, there is a list of 
activation functions that have been used to perform specified 
tasks. Among different flavours of activation functions, step 
function, sigmoid function, and tangent hyperbolic (tanh) 
function are considered as classical activation functions. The 
impact of these activation functions clarifies the learning path 
for the network [1]. During the training of the network, 
classical activation functions transform high valued gradients 
approximately close to zero which implies the overall network 
inputs and the stochastic gradient descent values are updated 
with a very small value [2]. Networks facing this issue cannot 
perform classification or recognition tasks because the 
network does not learn perfectly from input data due to not 

significant changes of weights. This problem is referred to as 
the vanishing gradient problem [3]. To deal with the vanishing 
gradient problem, updated variants of activation functions in 
the form of ReLU and LeakyReLU are designed [4-5]. These 
activation functions conceive positive output as constant value 
and do not update weights close to vanishing points. 

In the modern era of research, designing and implementing 
activation functions with high accuracy, minimum loss and 
reduced training time is under deep consideration [6-8]. 
People working in the field of neural networks admit the effect 
of activation functions on the performance of the system. 
Indeed, considering RNN for text tagging, the impact of 
different activation functions on systematic accuracy and 
efficiency, at best of our knowledge, has not been extensively 
explored. To overcome this limitation, we have investigated 
the impact of activation functions on a modern high-
performing neural architecture, that is Bi-LSTM based 
sequential RNN network, by implementing a text tagging task, 
referred to as Named Entity Recognition (NER). 

NER is a task for tagging proper nouns and recognizing 
them as belonging to few specific entity categories, as 
PERson, ORGanization, GEOgraphical, TIMe, ARTifact, 
EVEnt, NATural etc.  In particular, we performed the NER 
tagging experiments on the Groningen Meaning Bank (GMB) 
dataset [7], that is a large semantic dataset containing various 
layers of integrated semantic annotation. GMB contains word 
sense, named entity, syntactic and semantic annotations. 
Indeed, we decided to us GMB since, as long-term goal, we 
want to build a high performing modular neural architecture 
for complete semantic analysis. So, NER tagging is the first 
step toward this ambitious project. 

In the experiments described in this paper, we have 
implemented 13 different activation functions i.e., ReLU, 
Leaky ReLU, Tanh, Binary step function, Linear, SeLU, ELU, 
Sigmoid, Parametric ReLU, SoftMax, SoftSign, SoftPlus, 
Swish, and GeLU separately on each layer of RNN for NER 
tagging and we analysed their impact in the form of accuracy 
and loss on the GMB dataset. 

The remaining paper is structured as follows. Section 2 
discusses related works. Section 3 introduces the RNN 
architecture. Section 4 introduces the experimental 
implementation conducted in this paper. Results are discussed 
in Section 5 and Section 6 is focused on the conclusion of this 
paper and highlights future directions as well. 

II. BACKGROUND AND RELATED WORKS 
Deep neural networks are the most commonly used 

models in today’s era of modern technology. With the 
advancement of time, architectures and datasets are becoming 
more and more complex. To deal with these complex 
structures, a lot of different neural models have been 



introduced that take hours and sometimes days of time to 
properly train themselves. To improve the performance of 
neural networks, activation functions play an important role 
[9]. Effect of activation functions is directly interlinked with 
hidden neurons that change the biases interleaving within 
layers [10-13]. Based on the nature of the experiment like 
image classification, text classification, video sequences 
distribution, only one activation function is used [14-16]. The 
choice of the right activation function is a major problem that 
totally depends on the nature and size of data [17]. 

Different activation functions have been designed and 
implemented to date and they can be categorized in three 
major types. The first type includes rigid activation functions. 
Linear, ReLU, Heaviside, and Logistic are considered rigid 
activation functions [18-20]. The second type of activation 
function is known as Radial activation functions and includes 
Gaussian, Multiquadric, Inverse multiquadric, and 
Polyharmonic splines. The third type of activation function is 
known as folding activation functions and includes SoftMax, 
softplus, sigmoid, and exponential activation functions. 
Folding activation functions perform aggregate operations 
like min, max, mean on input data and help in learning non-
linearity. 

In this work, we have analysed the effect of changing 
activation functions on the performance of the network. We 
have used 13 different types of activation functions and 
checked network performance by analysing accuracy, loss, 
validation accuracy, validation loss, and mean loss values. Our 
experiment of NER has performed very well for Sigmoid, 
SoftMax, SoftPlus, and Exponential activation functions. 
Detailed analysis of performance and comparison of results 
will be discussed in sections given below. 

III. EXPERIMENTAL STRUCTURE OF RNN 
Recurrent Neural Network-based Bi-directional Long 

Short-Term Memory (Bi-LSTM) model having 4 layers 
embeddings is used for Named Entity Recognition (NER) 
task. The input sequence is fed into the embedding layer of the 
sequential model having 2523072 parameters and 64 
embedding dimensions. The input length of the sequence is 
kept at 50 and RNN units are taken as 100 units. CRF layer is 
used to computer log-likelihood of the model during training. 
For this purpose, we have used the Viterbi decoding scheme 
during the prediction of data values. After that, the dense layer 
is deeply connected with previous layers resulting in 1919 
resultant parameters having 19 different classified labels. 
Finally, the CRF layer is embedded and it is used to predict 
tagged sequences for final data evaluation. Complete model 
summary of implemented architecture is listed in Table I. 

TABLE I.  IMPLEMENTED SEQUENTIAL RNN MODEL  

Layers Output Shape No. of 
Parameters 

Embedding (None, 50, 64) 2623072 

Bi-directional (None, 50, 200) 132000 

Time distribution (None, 50, 100) 20100 

Dense (None, 50, 19) 1919 

CRF Multiple 361 

 

 The graphical representation of deployed architecture is 
shown in Fig. 1. Input textual sequence is passed through word 

embedding phase where data is balanced with respect to 
embedding layer. In the embedding layer, each word of the 
input sequence is converted into a vector of fixed length, and 
the size of the length is self-defined. In a bi-directional layer, 
RNN is actually connecting two hidden layers of opposite 
directions to the same output layer. 

 
 

Fig. 1. Graphical representation of implemented architecture with respect 
to layer embeddings 

Feedforward backpropagation mechanism is actually 
contributing to this layer. Purpose of using backpropagation 
is to deal with and minimize error rate of forward layers. If 
there is no backpropagation then there is no looping back of 
the processed information which may lead to miss the 
important features of the complex network. Backpropagation 
is a type of gradient decent technique that works in the reverse 
direction of feedforward gradients as shown in Fig. 2 given 
below. Feedforward backpropagation works on minimizing 
cost function by upgrading weights and biases values at each 
iteration of the network training. 

 
 

Fig. 2. Workflow of feedforward backpropagation algorithm 

So, the past and future states of the recurrent model is 
working simultaneously in this step. Similarly, pre-processed 
time series data is handled in the time distribution layer. 
Instead of dealing with data as several inputs, the time 
distribution layer deals with one layer applied to each input 
sequence. This vector data is further processed towards the 
dense layer. Data dimensionality is altered and dealt with in 



this layer. Output generated by dense layer is also a vector 
having lower dimension but this resultant data is achieved 
after performing certain operations like scaling, rotation, 
translation, etc. and finally, tagged data is obtained as output 
sequences. 

IV. ACTIVATION FUNCTIONS 
Activation Function (AF) also known as Transfer 

Function (TF) is responsible for controlling and responding to 
the neuron inside the Neural Network. Depending on the type 
of input, an activation function helps in computing output 
values that are being fed into the neurol node. It operates by 
computing weighted sum of the input values thus adding non-
linearity into the model and transferring it to the next hidden 
or output layer as shown in Fig. 3. The purpose of adding non-
linearity into the neural model is to make model understand 
complexities. If non-linearity is not added into the network, 
then it is just a linear classifier not capable of dealing with 
computationally complex problems. Activation functions are 
categorized into binary, linear, and non-linear activation 
functions. All types of AFs are used subjectively. One 
activation function can perform very well in one case and 
others may not. As Named Entity Recognition is considered 
as one the complex tasks in Natural Language Processing 
(NLP), therefore we have focused more on non-linear types of 
activation functions. 

 
 

Fig. 3. Weighted sum of input and bias along with activation function inside 
the neural network   

A. Binary Activation Function 
Binary activation function act as a switch for the neuron. 

Based on the threshold value, it decides whether a neuron 
should be active or not. If input provided is higher than the 
threshold, neuron is activated otherwise not. Main issue of 
binary AF is that, it cannot deal with multi-class scenarios. 
And also, the gradient of values less than the threshold is 
always zero which is not good for Backpropagation. 
Mathematical equation of Binary AF is given below.  

 f(x) = !
0	𝑓𝑜𝑟	𝑥 < 0
1	𝑓𝑜𝑟	𝑥 ≥ 0+ (1) 

B. Linear Activation Function 
Linearity of AF refers towards no activation i.e., just 

proportional to the input of NN. Here weighted sum of input 
is not computed rather it just let the input pass as it is. Linear 
AF is not considered helpful for backpropagation as the 
derivative of input is always constant. Secondly, all AF layers 
are considered as single layer due to linear relation between 
them. Mathematical equation of Linear AF is given below.  

 𝑓(𝑥) = 𝑥 (2) 

C. Non-Linear Activation Function 
Problem of backpropagation and updating weights as input 

to the model is solved with the help of non-linear AFs. With 
updating every neuron of NN, prediction of complex input 
sequences is made easy. This non-linearity of AF also 
supports multi-layered structure due to different weights of 
neurons on each layer.  

For this experiment, we have totally focused on non-linear 
AFs because of our input data. Collectively we implemented 
NER task on 13 different activation functions to analyze the 
high-performance impact in this regard. For text classification 
task, there is no proper description of the choice of activation 
function. So, our focus is to recommend high performing AF 
for NER task. Among 13 different AF (mentioned in 
introduction), our experiment was successful only in 4 types 
of AF i.e., Sigmoid, SoftMax, SoftPlus, and Exponential. Other 
authors working in this task and focusing on Hyperparameter 
Optimization can choose among these only, despite of looking 
for all other types of AFs. Specifically, for Neural-NER task 
on GMB dataset, the best Activation Function is Sigmoid. 
Table II provides the information of mathematical equations 
of 4 above mentioned AFs used in this experiment. 

TABLE II.  MATHEMATICAL EQUATIONS OF NON-LINEAR 
ACTIVATION FUNCTIONS USED IN THIS EXPERIMENT  

Activation 
Function Mathematical Equation 

Sigmoid 𝑓(𝑥) = 1/1 + 𝑒!" 

SoftMax 𝜎(𝑧)# = 	𝑒
$!
∑ 𝑒$!%
&'(

/  

SoftPlus 𝑓(𝑥) = 	 𝑙𝑜𝑔)(1 + 𝑒") 

Exponential 𝑓(𝑥) = 	 3𝛼
(𝑒" − 1)	𝑓𝑜𝑟	𝑥 < 0
𝑥	𝑓𝑜𝑟	𝑥 ≥ 0  

 

V. EXPERIMENTATION 
For the implementation of the NER task on the GMB 

dataset, we have used Bi-LSTM based RNN model with the 
embedding of the Conditional Random Field (CRF) layer. 
Structure of input data is completely based on tagged textual 
data having 62010 sentences in total. Dataset is divided into 
training, development, and testing split of 80%, 10%, and 10% 
respectively. The NER layer of the complete GMB dataset, 
that we have used as training in our experiment, has 2677091 
parameters. To train this large dataset we have used an 
NVIDIA-based GPU having CUDA accelerated libraries 
embedded in it. Our experiment is completely executed on 
GPU for fast and efficient computation of results. Since a 
focus of this experiment is analysing the impact of activation 
function on the performance of the network, we have trained 
and tested the RNN model 13 times each one with respect to 
a new activation function. Considering hyperparameters, one 
optimizer is taken into consideration at a time and the 
activation function is changed each time respectively. In this 
experiment, we have used Stochastic Gradient Decent (SGD) 
as an optimizer and trained RNN model for all activation 
functions. Our experimental finding states that only sigmoid, 
exponential, SoftMax and softplus activation functions help 
the RNN model in training perfectly. All other activation 
functions perform very badly thus resulting in very poor 
accuracy and high loss values. Performance of the network is 
analysed with respect to the training accuracy, validation 
accuracy, mean loss, validation loss, and testing accuracy of 
the network. 



Statistical information of the model gives a clear 
understanding of deployed architecture. This information 
includes embedding dimensions of the neural network, units 
used in the network, batch size, model type, length of the input 
sequence, marginal dropout value, optimizer used, loss 
category, learning rate, and activation function. The 
hyperparameters used in the implementation of the current 
experiment are listed in Table III. 

TABLE III.  STATISTICAL INFORMATION OF IMPLEMENTED 
SEQUENTIAL RNN MODEL  

Parameters Values 
Embedding Dimensions 64 

RNN Units 100 

Batch Size 128 

Model Sequential 

Input Length 50 

Dropout 0.2 

Kernel Initializer He_normal 

Optimizer SGD 

Loss Categorical Cross Entropy 

Validation Split 0.2 

Learning Rate 1e-3 

Activation Functions Sigmoid, SoftMax, SoftPlus, 
Exponential 

 

At this moment, we have only used SGD as one type of 
optimizer and have not changed optimizer. Because the main 
focus of this experiment is the analysis of activation function 
on the overall performance of the network. For this reason, we 
have implemented 13 different types of activation functions 
on textual data for the NER task. Among all activation 
functions, only Sigmoid, SoftMax, Softplus, and Exponential 
activation functions have performed well whereas all 
remaining activation functions completely distracted the path 
by updating false weight values of the network and performed 
poorly in making the network understand complex input data 
sequences. 

VI. RESULTS 
In this section we discuss the effect of different activation 

functions after the implementation on the Bi-LSTM based 
RNN model. Performance of different activation functions on 
training accuracy, training loss, validation accuracy, 
validation loss, and mean loss is focused in this experiment. 
Among a variety of different activation functions, we have 
used almost 13 different types of activation functions and 
analysed their effect one by one. Among all, only SoftMax, 
Sigmoid, SoftPlus, and Exponential functions produced good 
results. For hyperparameter optimization, we have focused 
only on the effect of activation functions by keeping all other 
hyperparameters fixed. Only SGD optimizer is used to carry 
out the whole experiment. Performance comparison of 
mentioned activation functions is displayed in Fig 4. 

 

 
 

Fig. 4. Comparison of training accuracy, training loss, validation loss and 
mean loss of implemented Sigmoid, SoftMax, SoftPlus and Exponential 
activation functions  

Accuracy of the neural model is calculated by comparing 
ground truth values with the predicted values. Here ground 
truth values correspond to reference labels of NER model and 
predicted values corresponds to the values generated by our 
neural model. For the clear understanding of evaluation, a 
sample of reference data and predicted data is shown below in 
Fig. 5.  

 
 

Fig. 5. Accuracy comparison of implemented Sigmoid, SoftMax, SoftPlus 
and Exponential activation functions 

Comparison analysis of activation functions is based on 
accuracy and loss values. Loss is actually referred to as a 
prediction error for a deep neural network. A system is 
considered accurate if it has maximum accuracy and minimum 
loss. In our experiment, we have analysed that for this specific 
task: among all activation functions, the accuracy of Sigmoid 
is the highest one, and the accuracy of SoftMax is the lowest 
one. Similarly, considering mean loss values, we have found 
that exponential and SoftMax activation functions have the 
minimum mean loss than other activation functions. Results 
based on training accuracy, training loss, validation loss, and 
mean loss are graphically reported in Fig. 4. Validation 
accuracy of model is displayed in Fig. 6 and accuracy 
comparison of mentioned activation functions is reported in 
Fig. 7. 

 



 
 

Fig. 6. Validation accuracy comparison of implemented Sigmoid, SoftMax, 
SoftPlus and Exponential activation functions 

Comparison of our results with recent literature is listed in 
table IV given below. This comparison is based on the 
accuracy achieved by the models used for Named Entity 
Recognition task by focusing on LSTM, Bi-LSTM or any 
variant of these models. For the comparison, we have focused 
on the papers published recently and using State of The Art 
(SOTA) models. Our implementation has got more accuracy 
than all the implemented models. 

TABLE IV.  IMPLEMENTED SEQUENTIAL RNN MODEL  

Ref. No Model Accuracy 

[1] RNN Bi-LSTM CRF 92.82% 

[2] BERT Bi-LSTM CRF 80.76% 

[3] Bi-LSTM CRF 84.5% 

[4] Bi-LSTM CNN CRF 89.22% 

[5] LSTM  91.00% 

[6] BERT Bi-LSTM-CNN CRF 94.89% 

[7] BERT Bi-LSTM CRF 89.16 

Our 
Implementation 

Bi-LSTM CRF (Sigmoid) 95.17% 

Bi-LSTM CRF (Exponential) 95.14% 

Bi-LSTM CRF (SoftMax) 94.76% 

Bi-LSTM CRF (SoftPlus) 94.38% 

 Among these activation functions, best performance of 
the model is achieved using Sigmoid activation function.
  

 
 

Fig. 7. Accuracy comparison of implemented Sigmoid, SoftMax, SoftPlus 
and Exponential activation functions 

VII. CONCLUSION 
The method of choosing the best activation function is 

considered a hit and trial process. If we have to train complex 
deep neural architectures with a very large dataset, it will be 
very difficult to repeat the process for choosing the best 
activation function. Considering the importance of the role of 
activation functions in neural networks, we have implemented 
Bi-LSTM based RNN on the GMB dataset for the NER task 
and have analysed the effect of activation functions. We have 
analysed the effect of all activation functions for this specific 
task and found that only 4 activation functions have produced 
good results. Sigmoid, SoftMax, SoftPlus, and Exponential 
activation functions performed very well in terms of accuracy 
and loss. Based on experimental results, we recommend 
Sigmoid activation function due to maximum accuracy and 
minimum loss values. In future experiments, we will tune 
other hyperparameters and will deeply analyse the effect of 
optimizers in RNN-based models. Moreover, we will work on 
higher levels of the GMB annotation schema (e.g. Semantic 
Role Labelling), in order to build a high-performance 
semantic analyser. 

REFERENCES 
[1] Warto, Muljono, Purwanto and E. Noersasongko, "Capitalization 

Feature and Learning Rate for Improving NER Based on RNN 
BiLSTM-CRF," 2022 IEEE International Conference on Cybernetics 
and Computational Intelligence (CyberneticsCom), 2022, pp. 398-403, 
doi: 10.1109/CyberneticsCom55287.2022.9865660. 

[2] J. Wang et al., "Fine-Grained Chinese Named Entity Recognition 
Based on MacBERT-Attn-BiLSTM-CRF Model," 2022 IEEE 12th 
Annual Computing and Communication Workshop and Conference 
(CCWC), 2022, pp. 0125-0131, doi: 
10.1109/CCWC54503.2022.9720911. 

[3] X. Hu, H. Zhang and S. Hu, "Chinese Named Entity Recognition based 
on BERTbased-BiLSTM-CRF Model," 2022 IEEE/ACIS 22nd 
International Conference on Computer and Information Science (ICIS), 
2022, pp. 100-104, doi: 10.1109/ICIS54925.2022.9882432. 

[4] V. Sornlertlamvanich and S. Yuenyong, "Thai Named Entity 
Recognition Using BiLSTM-CNN-CRF Enhanced by TCC," in IEEE 
Access, vol. 10, pp. 53043-53052, 2022, doi: 
10.1109/ACCESS.2022.3175201. 

[5] B. G. Pallavi, E. R. Kumar, R. Karnati and R. A. Kumar, "LSTM Based 
Named Entity Chunking and Entity Extraction," 2022 First 
International Conference on Artificial Intelligence Trends and Pattern 
Recognition (ICAITPR), 2022, pp. 1-4, doi: 
10.1109/ICAITPR51569.2022.9844180. 

[6] X. Wu, T. Zhang, S. Yuan and Y. Yan, "One Improved Model of 
Named Entity Recognition by Combining BERT and BiLSTM-CNN 
for Domain of Chinese Railway Construction," 2022 7th International 
Conference on Intelligent Computing and Signal Processing (ICSP), 
2022, pp. 728-732, doi: 10.1109/ICSP54964.2022.9778794. 

[7] Y. Tian, "Named Entity Recognition in Emergency Domain based on 
BERT-BILSTM-CRF," 2022 IEEE 2nd International Conference on 
Electronic Technology, Communication and Information (ICETCI), 
2022, pp. 817-820, doi: 10.1109/ICETCI55101.2022.9832114. 

[8] Rosebrock, A. 2017. Deep Learning for Computer Vision with Python. 
PyImageSearch. 

[9] Ide, H., and Kurita, T. 2017. "Improvement of learning for CNN with 
ReLU activation by sparse regularization," In Proceedings of 2017 
International Joint Conference on Neural Networks (IJCNN), pp. 
2684–2691. https://doi.org/10.1109/IJCNN.2017.7966185. 

[10] Hochreiter, S. 1998. "The vanishing gradient problem during learning 
recurrent neural nets and problem solutions," International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems 6(02), pp. 107–
116. 

[11] Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., 
and Seung, H. S. 2000. "Digital selection and analogue amplification 
coexist in a cortex-inspired silicon circuit," Nature (405), pp. 947- 951. 

[12] Maas, A. L., Hannun, A. Y., and Ng, A. Y. 2013. "Rectifier 
Nonlinearities Improve Neural Network Acoustic Models," In 



Proceedings of the 30th International Conference on Machine 
Learning. 

[13] Agostinelli, F., Hoffman, M., Sadowski, P., and Baldi, P. 2014. 
"Learning Activation Functions to Improve Deep Neural Networks," 
ArXiv:1412.6830 [Cs, Stat]. http://arxiv.org/abs/1412.6830. 

[14] J. Bos, V. Basile, K. Evang, N. Venhuizen, and J. Bjerva. The 
groningen meaning bank. In N. Ide and J. Pustejovsky, editors, 
Handbook of Linguistic Annotation, volume 2, pages 463–496. 
Springer, 2017. 

[15] Hinkelmann, Knut. "Neural Networks, p. 7". University of Applied 
Sciences Northwestern Switzerland, 2018. 

[16] Hodgkin, A. L.; Huxley, A. F. (1952-08-28). "A quantitative 
description of membrane current and its application to conduction and 
excitation in nerve". The Journal of Physiology. 117 (4): 500–544. 
doi:10.1113/jphysiol.1952.sp004764. 

[17] Hinton, Geoffrey; Deng, Li; Deng, Li; Yu, Dong; Dahl, George; 
Mohamed, Abdel-rahman; Jaitly, Navdeep; Senior, Andrew; 
Vanhoucke, Vincent; Nguyen, Patrick; Sainath, Tara; Kingsbury, Brian 
(2012). "Deep Neural Networks for Acoustic Modeling in Speech 
Recognition". IEEE Signal Processing Magazine. 29 (6): 82–
97. doi:10.1109/MSP.2012.2205597. S2CID 206485943 

[18] Hendrycks, Dan; Gimpel, Kevin (2016). "Gaussian Error Linear Units 
(GELUs)". arXiv:1606.08415 

[19] Cybenko, G. (December 1989). "Approximation by superpositions of a 
sigmoidal function". Mathematics of Control, Signals, and 
Systems. 2 (4): 303–314. doi:10.1007/BF02551274 

[20] Snyman, Jan (3 March 2005). Practical Mathematical Optimization: 
An Introduction to Basic Optimization Theory and Classical and New 
Gradient-Based Algorithms. Springer Science & Business 
Media. ISBN 978-0-387-24348-1 

 


