
14 October 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A field-based computing approach to sensing-driven clustering in robot swarms

Published version:

DOI:10.1007/s11721-022-00215-y

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1889559 since 2023-06-02T11:50:49Z

Springer Nature 2021 LATEX template

A Field-based Computing Approach to

Sensing-driven Clustering in Robot Swarms

Gianluca Aguzzi1, Giorgio Audrito2, Roberto
Casadei1*, Ferruccio Damiani2, Gianluca Torta2 and Mirko

Viroli1

1*Department of Computer Science and Engineering, Alma Mater
Studiorum – Università di Bologna, Via dell’Università, 50,

Cesena, 47521, Italy.
2Department of Computer Science, Università degli Studi di

Torino, C.so Svizzera, 185, Torino, 10149, Italy.

*Corresponding author(s). E-mail(s): roby.casadei@unibo.it;
Contributing authors: gianluca.aguzzi@unibo.it;

giorgio.audrito@unito.it; ferruccio.damiani@unito.it;
gianluca.torta@unito.it; mirko.viroli@unibo.it;

Abstract

Swarm intelligence leverages collective behaviours emerging from inter-
action and activity of several “simple” agents to solve problems in
various environments. One problem of interest in large swarms fea-
turing a variety of sub-goals is swarm clustering, where the individ-
uals of a swarm are assigned or choose to belong to zero or more
groups, also called clusters. In this work, we address the sensing-based
swarm clustering problem, where clusters are defined based on both
the values sensed from the environment and the spatial distribution
of the values and the agents. Moreover, we address it in a setting
characterised by decentralisation of computation and interaction, and
dynamicity of values and mobility of agents. For the solution, we pro-
pose to use the field-based computing paradigm, where computation
and interaction are expressed in terms of a functional manipulation
of fields, distributed and evolving data structures mapping each indi-
vidual of the system to values over time. We devise a solution to
sensing-based swarm clustering leveraging multiple concurrent field

1

Springer Nature 2021 LATEX template

2 Field-based Sensing-driven Clustering in Robot Swarms

computations with limited domain, and evaluate the approach experi-
mentally by means of simulations, showing that the programmed swarms
form clusters the underlying environmental phenomena dynamics.

Keywords: sensing-based clustering, swarm clustering, computational fields,
multi-agent cluster formation

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 3

1 Introduction

Swarm intelligence is the collective-level ability to solve problems in large
groups of relatively simple agents that interact with each other locally, i.e.,
based on physical/logical proximity (Bonabeau et al, 1999). Swarm intelli-
gence is a phenomenon observed both in natural systems (cf. social insects
and animals) and artificial systems (cf. computational ecosystems) (Bonabeau
et al, 1999). In computer science and engineering, research fields like swarm
robotics (Brambilla et al, 2013) and self-organising systems (Serugendo et al,
2011, 2007) emerged to study algorithms, models, and techniques for pro-
moting swarm intelligence in artificial systems for a variety of contexts and
applications including (but not limited to) environment monitoring (De Masi
and Ferrante, 2020; Casadei et al, 2020a), enterprise software service coor-
dination (Clark et al, 2015), crowd management (Beal et al, 2015), and
most specifically control of robot swarms (groups of relatively simple robots)
(Shen et al, 2004; Carrillo-Zapata et al, 2018). A common distinction is
between behaviour-based and automatic design methods (Brambilla et al,
2013): the former is based on a manual specification of individual behaviour,
whereas in the latter the individual behaviour is generated automatically,
by searching, adapting, or evolving individual behaviours for effective collec-
tive behaviour. Common but not exhaustive classes of collective behaviours
include spatial organisation (e.g., pattern formation), swarm navigation, and
collective-decision making (Brambilla et al, 2013).

In particular, one problem of interest is swarm clustering (Lee et al, 2005;
Cruz et al, 2017), whereby the classical data clustering task (i.e., the unsu-
pervised learning task where data items are grouped to promote intra-group
similarity) is brought in swarm settings. This problem revolves around splitting
the swarm into groups of individuals, called clusters, such that the individuals
in the same cluster are more similar to each other (for some definition of sim-
ilarity) than to those in other clusters. Once a cluster is formed, typically it is
assigned a sub-goal to be carried on collectively. Typical clustering approaches
may consider the spatial distribution of the individuals or the goals of the
individuals to define clusters teams or interaction domains. In this paper, we
focus on sensing-based clustering (Lin and Megerian, 2007), namely a cluster-
ing problem that considers both the spatial distribution of individuals and the
environmental values sensed by these individuals (through sensors). That is,
the goal is to seek for clusters of neighbour individuals with a similar perception
of some sensed value. The problem can be in a static form, where a snapshot
of the system state is considered, or in a dynamic form, where values change
over time and solutions have to deal with change somehow. The problem has
been considered in Wireless Sensor Networks (WSNs) and Internet-of-Things
(IoT) applications like environment monitoring and control (Lin and Mege-
rian, 2007), efficient distributed collection (Pham et al, 2010), and disaster
management (Kucuk et al, 2020). However, to the best of our knowledge no
existing work addresses the dynamic problem in mobile swarms, which requires

Springer Nature 2021 LATEX template

4 Field-based Sensing-driven Clustering in Robot Swarms

specific techniques to adaptively re-adjust clusters to face changes. Accord-
ingly, in this work, we present and address the dynamic sensing-based swarm
clustering problem.

Among the many approaches to express (and reason in terms of) collective
behaviour featuring inherent adaptivity we shall consider the field-based com-
puting approach (Viroli et al, 2019), for its suitability in addressing dynamic
problems by fostering “controlled self-organisation”. In this approach, com-
putations leverage an execution model based on repeated computation and
asynchronous neighbour-based communication. On top, complex collective
behaviour is described in terms of functional manipulations of (computational)
fields, i.e., data structures evolving over time that map agents in a domain to
computational values—sort of spatially distributed streams of values. This is
inspired by the common notion of fields found in physics (e.g., force or mag-
netic fields). Notice, however, that in our viewpoint, the computational fields
assign values to agents rather than to environment (space-time) positions as in
e.g. artificial potential fields (Warren, 1989), though the approaches are similar
and related. We adopt this approach as it has shown to conveniently express
a variety of collective swarm-like behaviour including self-healing distance
estimation (gradient) (Audrito et al, 2017), self-stabilising leader election (Mo
et al, 2018), distributed collection (Audrito et al, 2021), and team creation
and coordination (Casadei et al, 2021)—and to scale with complexity up to
high-level composite patterns (Pianini et al, 2021b).

Essentially, the core idea of our clustering approach is to make agents in
local of the sensed value spawn a spatial process of gathering for neigh-
bour devices until finding the proper size of the cluster, additionally managing
interactions with other clusters when there are overlaps.

In this manuscript we provide the following contributions:
• we provide a precise definition of the dynamic sensing-based mobile swarm

clustering problem;
• we present a field-based approach to address the problem, and describe a

novel configurable meta-algorithm for inducing self-organised clustering
in a system of neighbouring-interacting robots;

• we provide a publicly available and reproducible simulation framework
for evaluating the algorithm on a set of diverse environment configura-
tions, from which we observe that our solution can identify various cluster
shapes and cope with a certain degree of node mobility and changes in
sensed phenomena.

Therefore, the contribution lies both in the general of swarm intelligence as
well as in the specific thread of research in field-based computing.

The paper is organised as follows. Section 2 covers background, introduc-
ing the field-based computing paradigm and the swarm clustering problem.
Section 3 provides the novel technical contribution. Section 4 presents our
evaluation of the approach. Section 5 covers related work. Finally, Section 6
provides a summary and discusses future research directions.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 5

2 Background and Motivation

The background of this work includes field-based computing (Section 2.1) and
the problem of clustering in swarms (Section 2.2).

2.1 Field-based Computing

Field-based computing (Viroli et al, 2019) is an approach where computation
leverages a notion of computational fields (fields for short) (Warren, 1989;
Mamei et al, 2004; Viroli et al, 2019), namely distributed data structures evolv-
ing in time and associating locations with values. The approach originates
from previous work like Warren’s artificial potential fields (Warren, 1989) and
co-fields from Mamei et al. (Mamei et al, 2004). In particular, in co-fields, com-
putational fields represent contextual information, locally sensed by the agents
and repeatedly distributed by the agents themselves or the infrastructure
according to a propagation rule.

In this work, by field-based computing we mean a specific programming and
computational model, also known as aggregate computing in literature (Beal
et al, 2015), which is surveyed in (Viroli et al, 2019). In this model, collec-
tive and self-organising behaviour is programmed through a composition of
functions operating on fields mapping a set of individual agents (rather than
environment locations) to computational values. Therefore, fields can be used
to associate a certain domain of agents with what they sense, the information
they process, and actuation instructions for operating on the environment.
Fields are computed locally to the agents but are subject to a global viewpoint:
so, e.g., a field of velocity vectors can be seen as a movement command for
an entire swarm, or a field of reals can denote what an entire swarm perceives
in a certain environment. To understand field-based computing, two essential
parts have to be considered: the system model and the programming model.
Their interplay is what allows the local actions of the agents to yield emergent
collective behaviour.

2.1.1 System Model

We consider a network of computing and interacting agents situated in some
environment.

Structure. An agent is an autonomous entity equipped with sensors and actu-
ators, which serve as the interface towards a logical or physical environment.
By a logical point of view1, it also has state, a support for communicating with
other agents, and support for computing simple programs. An agent is con-
nected with other neighbour agents which collectively form its neighbourhood.
The set of neighbours depends on a neighbouring relationship, which is defined
by designers according to the application at hand and is subject to the con-
straints exerted by the underlying physical network. A typical neighbouring

1Actually, such requirements may be relaxed by considering different execution strategies on
available infrastructure (Casadei et al, 2020a).

Springer Nature 2021 LATEX template

6 Field-based Sensing-driven Clustering in Robot Swarms

rule is the one that mimics physical connectivity; so, e.g., a robot is a neigh-
bour of another robot if it manages to send a message to the latter over the
wireless channel. Another typical neighbouring rule is the one based on spatial
vicinity; so, e.g., a robot is a neighbour of another robot if the infrastructure
manages to deliver a message from the former to the latter (e.g., using other
robots as relays) and these two robots are at an estimated distance smaller
than a certain threshold (assuming a distance can be estimated through a
proper technology).

Interaction Interaction happens by sending messages to neighbours, asyn-
chronously. Interaction can also happen in a stigmergic way, by perceiving and
acting upon the environment through sensors and actuators. The content of
messages and when they are sent and received depend on the agent behaviour.
However, in general, as our goal is to model continuous collective behaviours, or
self-organising systems, we remark that interaction would typically be frequent
(in relation to the problem and environment dynamics).

Behaviour. As per the above consideration, the behaviour of any individual
agent is best understood in terms of repeated enaction of execution rounds,
where each round consists of the following steps (though some flexibility exists
especially in the actuation part):

1. Context acquisition. The agent gathers its context by considering its pre-
vious state as well as the most recent sensor readings and messages from
neighbours.

2. Computation. The agent runs a computation against the acquired context,
yielding (i) an output describing potential actuations; and (ii) a coordina-
tion message containing all the information to be sent to neighbours for
the purpose of coordination at a collective level.

3. Actuation . The agent performs the actuations described by the pro-
gram output and dispatches the coordination message to the entire
neighbourhood.

This system model provides a basic machinery for collective adaptive
behaviour, which however requires a proper description of the “local compu-
tation step”: this is fostered by the field-based programming model (discussed
in Section 2.1.2).

2.1.2 Field-based Programming Model

Field-based programs can be encoded with field-based programming languages
like ScaFi (Casadei et al, 2020b), . ScaFi is a domain-specific language (DSL)
embedded in Scala which supports field-based constructs and offers a library
of reusable functions.

A field-based expression or program (e.g., programmed in ScaFi) can be
subject to a local or global interpretation. Locally, an integer value like 7 has
the usual meaning; globally, a 7 denotes a field where each agent is mapped
to a local 7 (a uniform, constant field).

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 7

Locally, an integer expression add(a,b), or a+b, has the usual meaning,
given by the sum of a with b; globally, it denotes the application of a field
of functions add, or +, on a field a and a field b, yielding a field given by the
sum of a and b in an agent-wise fashion (notice that a may be a non-uniform
non-constant field having different local values for different agents over time).

The programming model does not deal directly with global fields (which
are essentially a denotational construct), but it deals only with neighbouring
fields, which enable one agent to collect data from its neighbours.

in the following, we briefly present a subset of the field-based computing
building blocks used for sensing-based clustering. See (Viroli et al, 2019) for
more details on how these blocks are actually developed.

Typically, in field-based computing applications, we are dealing with
sharing and collecting information from/to a device.

To do this, the gradient is an essential construct (Audrito et al, 2017).
This block produces a numeric field that expresses the minimum distance from
a source zone following a certain metric (e.g., Euclidean distance). Hence, it
maps a Boolean field (true where a node is a source, false otherwise) into a
distance field from the closest source. The signature of the function is defined
as2:

def gradient(source: Boolean, metric: Metric): Double

hrough this construct, it is possible to share generic data (a position, a tem-
perature, etc.) towards this resulting distance field. Such propagation of data
from a source of a gradient outwards is captured by a broadcast function :

def broadcast[D](source: Boolean, data: D): D

When we want to aggregate data in source agents, we use the block C (collect)
instead (Audrito et al, 2021):

def C[V](p: Double, acc: (V, V) => V, local: V, null: V): V

In this signature, p is a potential field usually computed through gradient;
acc is the logic that combines ; local is the local data we want to collect at a
point in space (e.g. a position); and null is the null data for the acc operation
(e.g. if we collect a real value, the null value could be 0). This is also an
essential operation for the definition of collective behaviours: it enables, e.g.
computation of the average temperature in a certain zone covered by agents.

val leader: Boolean = // true on leader devices

val potential: Double = gradient(leader, metric())

val collect: Int = C[Int](potential, (sum,v)=>sum+v, 1, 0)

val count: Int = broadcast[Int](leader, collect)

2

Springer Nature 2021 LATEX template

8 Field-based Sensing-driven Clustering in Robot Swarms

2.1.3 Field-based Concurrent Processes

Field-based concurrent processes, also called aggregate processes (Casadei et al,
2019, 2021), are field-based computations that exist dynamically: they can be
dynamically generated (usually by individual agents), execute on a dynamic
set of agents, and disappear once all its members withdraw. They have been
formalised in (Casadei et al, 2019) and deeply covered in (Casadei et al, 2021),
showing how they can support the design of intelligent collective behaviour
by extending the practical expressiveness of field-based programming mod-
els (Viroli et al, 2019). We provide a brief account of the details relevant for
this manuscript in the following.

Indeed, the aggregate process abstraction is relevant in this work since an
aggregate process instance, by running on a (evolving) subset of the agents,
can be used to denote a dynamic cluster. Therefore, clustering algorithms can
be expressed in terms of how aggregate processes are generated (candidate
cluster formation) and merged/removed (cluster selection).

Aggregate processes can be expressed as normal field-based functions and
spawned through a spawn construct with the following signature:

// spawn is a generic function which accepts 3 parameters

def spawn[K,A,R](process: K => A => (R,Boolean),

newProcesses: Set[K],

args: A): Map[K,R]

The generic type K instantiates to the type of a process key, also called a process
identifier (PID), which also works as construction parameter; the generic type
A instantiates to the type of runtime parameters for the currently running
process instances; the generic type R instantiates to the type of the output of
the process. A process definition has curried type K => A => (R,Boolean),
namely a function from a value of type K and a value of type A to a pair
of a value of type R and a Boolean. The Boolean value, called the process
status, expresses if the device that has executed a given process instance would
like to participate into the process (true status) or not (false status). The
crucial point is that every device that participates into a process with PID π
automatically propagates the process PID π to all its neighbours, which will
run a corresponding process instance when the spawn function is evaluated. So,
the spawn function accepts a function process of a field-based behaviour, a set
newProcesses of new process instances to be generated locally in the current
round, and a value of type A for the runtime input of the instances currently
running in the local round of a given device. Notice that, though process can
be a field of functions, it is typically a constant field of the same function,
which means that usually a spawn expression enables running zero or more
process instances of the same kind of process. Evaluation of spawn returns
a Map[K,R] (i.e., a hashmap or dictionary) which a set of entries mapping
the PIDs of executed process instances (with status true) to corresponding
outputs of type R.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 9

As an example, consider building a separate gradient computation for each
distinct source agent, that will expand within a certain range ρ. This could be
coded as follows in ScaFi:

type DeviceId = Int

// Process definition as a function

val proc: DeviceId => Boolean => (Double, Boolean) = id => isSource => {

val output = gradient(id == deviceId())

val status = if(id == deviceId()) isSource

else output < ρ
(output, status)

}

// Set of processes to be generated locally

val newProcesses: Set[DeviceId] =

if(isSource()) Set(deviceId()) else Set.empty

// Expression for handling acquired and generated processes

val gradients: Map[DeviceId,Double] =

spawn[DeviceId,Boolean,Double](process, newProcesses, isSource())

An example of the dynamics of such a program is provided in Figure 1.
In the picture: nodes are agents; labels on nodes are agent IDs; edges denote
neighbouring links, over which messages are sent and received; the output of
the spawn expression is shown above the nodes, unless it is an empty map (not
shown); the different sub-pictures are snapshots of a corresponding hypotheti-
cal system state trajectory that may result after multiple rounds of execution
in multiple devices. A more thorough introduction and description of aggregate
processes together with more examples is available in (Casadei et al, 2021).

2.2 Dynamic Cluster Formation in Swarms

Different cluster models exist and, for each cluster model, several algorithms
can be devised (Estivill-Castro, 2002). These are reviewed and compared with
our cluster model in Section 5.

In this paper, we focus on swarm clustering, which involves associating
each swarm member to zero or more clusters. So, this is a problem of cluster
formation (Ge et al, 2018), more than a problem of cluster analysis (which
generally includes cluster formation followed by cluster evaluation). A cluster,
in this setting, is essentially a label (cluster ID), which can be associated to
an agent, and that can be used to determine its behaviour. In field terms, a
clustering can be seen as a field mapping each agent to a set of cluster IDs—we
call this a clustering field.

Essentially, a cluster can be used to determine, query, and control a group
of agents. Such a group could represent a team, used for cooperation or to
solve a common goal, or a space-time domain for a field computation. Indeed,
as the agents are situated in space, they provide a means for extracting data
from their corresponding location, which may be instrumental for environment
monitoring, data acquisition, etc.

Springer Nature 2021 LATEX template

10 Field-based Sensing-driven Clustering in Robot Swarms

(a) Initial network. (b) A process is generated on agent 1.

(c) The process with PID 1 propagates
up to a certain range.

(d) The “border” of a process can
change dynamically.

(e) Another process is spawned by
source agent 3.

(f) Processes can overlap. Agents 2
and 6 run the two processes with PID
1 and 3.

(g) Process 1 ceases to exist.

Fig. 1: Examples of the dynamics of multiple concurrent gradient processes.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 11

Moreover, we consider dynamic clustering (Roa et al, 2019), where the
emphasis is not on identifying a single clustering for a given system configura-
tion, but to update and evolve a clustering solution as the system configuration
evolves (e.g., due to mobility, failure, or change in other clustering criteria).
The specific problem we tackle is dynamic sensing-based/space-based swarm
clustering, which involves associating each swarm member to zero or more clus-
ters, and to evolve such association by considering change in the environment
(sensing-based) and spatial location of the members (space-based).

In summary, our goal is to define a distributed, decentralised, field-based
clustering algorithm, for the system model described in Section 2.1.1, able to
create and dynamically maintain a clustering field. This work draws motiva-
tion from (i) the relevance of the problem for situated systems (e.g., in swarm
robotics), (ii) a scarcity of solutions to the problem of sensing-driven spatial
clustering in literature, and (iii) a general lack of effective field-based cluster-
ing solutions. Refer to Section 5 for a more detailed account on these research
gaps.

3 Contribution

3.1 Problem Definition

In this paper, we address the problem of situation awareness and recogni-
tion, where a value distributed in space (e.g., temperature as measured by
sensors) has to be monitored, by recognising compact clusters with similar
values (e.g., spatial regions with a similar temperature). This problem, called
sensing-driven clustering in literature, has been investigated largely in static
scenarios (Kucuk et al, 2020; Pham et al, 2010; Lin and Megerian, 2007), where
data from a fixed sensor network has to be processed in order to obtain the
relevant clusters. However, solutions for such networks do not extend well to
dynamic contexts, such as micro-drone swarms monitoring an environment: in
this scenario, mobility and proximity of communication are key, and need to
be handled by an algorithm that is resilient to changes in both values, network
structure and placement in space. To the best of our knowledge, this problem
has never been previously considered in the literature.

A sensing-driven clustering algorithm for mobile could be useful for several
outcomes. Clusters may provide a compressed summary of the value distribu-
tion in space, to upload on the cloud and be graphically represented for human
convenience. Clusters may also be used to drive more complex situation recog-
nition patterns: algorithms to detect dangerous situations may be run in each
cluster separately, using information from that cluster to reach a verdict, with-
out interference from information on neighbouring clusters. Clusters may also
be used to drive task assignment to the monitoring drones, possibly guiding
their placement in space, by directing more drones in clusters where the need
arises.

More formally, we consider the following problem:
• Input: for each device, a unique identifier i and a value vi of type T

Springer Nature 2021 LATEX template

12 Field-based Sensing-driven Clustering in Robot Swarms

• Output: for each device, a list of clusters to which the device belongs,
represented as a map from unique identifiers l of cluster leaders to
corresponding cluster summary values wl of type S.

In order to formally specify the output, we need some further details char-
acterising what a cluster is, how they should be selected, and what is their
summary. This is attained through the following problem parameters.

• Metric: a data type M with
– a null value 0M ;
– a partial order3 x ≤ y defined for x, y of type M ;
– an addition operator x + y defined for x, y of type M , such that
x+ 0M = x and x+ y > x if y > 0M ;

– a positive function d(i, j) > 0M returning a value in M representing
a distance between a device i and j (depending on the devices’ sensor
states and possibly values vi).

• Summary: a data type S with
– a value s(i) of type S in every device i (depending on sensor state);
– an associative and commutative function f : (S, S) → S, used to

aggregate values s(i) for devices in a same cluster.
• Leader selection:

– a candidate radius r(i) in M (depending on sensor state and values),
so that only devices with a relative distance strictly lower than r(i)
can belong to a cluster whose leader is i;4

– a commutative similarity predicate p : (S, S) → {>,⊥}, identifying
similar clusters based on their summary.

According to this description, a candidate cluster C is a set of devices with
a leader i, such that every j ∈ C is within a distance of r(i) from the leader
i, according to the metric given by d. The summary wi of such cluster is the
repeated aggregation through f of the values {vj : j ∈ C}. Nearby clusters are
merged if their summaries are similar according to predicate p, and in such
case, the lowest identifier is selected as the leader of the merged cluster.

We highlight that we aim to solve this problem by an adaptive algorithm,
that is, a program that is able to handle changes in its input, by periodically
and asynchronously updating its internal values.

3.2 Adaptive Centroid-based Clustering on Numeric
Values

In the evaluation section, we consider a specific instantiation of the for
centroid-based clustering on numeric values. In this context, the metric is a
simple distance on values, so that d(i, j) = |vi − vj |. To prevent the creation
of a candidate cluster for every device, the candidate radius r(i) is set to zero
whenever i is not a local minimum (i.e., has a neighbouring device j such
that vj < vi). If instead i is a local minimum, r(i) is set to a fixed difference

3A partial order is a reflexive, transitive and anti-symmetric relation; with no requirement that
either x ≤ y or y ≤ x for x, y of type M .

4Notice that r(i) = 0M implies that no device can be in a cluster whose leader is i.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 13

i current device N (i) neighbour set
` candidate leader Si candidate leader set
m`

i metric in i from ` c`i whether i belongs to cluster `
p`i parent of i in cluster ` t`i partial summary in i for cluster `
u`i candidate leader summary in i for `
li selected leader for cluster i, if any wi selected summary for cluster i, if any
l`i selected leader for cluster ` in i w`

i selected summary for cluster ` in i

Table 1: State variables used in the state equations.

value θ. The values s(i) to be summarised are set to a tuple [xi, yi, vi, 1] of the
devices’ positions5 and values with the number 1, with an aggregator function
f that is a component-wise sum, so that the overall aggregate of a cluster C is
(eventually) equal to the tuple [

∑
i∈C xi,

∑
i∈C yi,

∑
i∈C vi,#C] (where #C is

the actual number of members of cluster C). The similarity predicate p then
declares two clusters as similar if they have centroids within a radius of γ, in
a 3D space mixing spatial coordinates with a value coordinate:

p([x, y, v, n], [x′, y′, v′, n′]) := ‖ (x, y, v)

n
− (x′, y′, v′)

n′
‖ < γ

where (x, y, v) denotes a 3D vector and ‖·‖ denotes the norm of a vector. By
setting the problem parameters as described, the meta-algorithm can select
clusters of similar value, led by their minima, and merge overlapping clusters
that are too close together and with a similar value.

3.3 Adaptive Clustering Meta-Algorithm

We now describe meta-algorithm for the stated problem through state
equations. The algorithm state is distributed, hence composed of variables xi
depending on a device identifier i: we assume that such a variable is stored
in device i and periodically updated by it through the state equations. Each
equation may involve inspecting the state of variables in neighbour devices j:
we assume that every device periodically shares its state with neighbours, so
that a (not necessarily updated) view of neighbours’ state is available in each
device, and each state equation can be computed locally in the current device
i, without remote memory accesses. We use N (i) to denote the set of current
neighbours of device i, i.e., the set of devices j for which a view of their state is
locally available in i (not including i itself). The execution of state equations
can be performed in asynchronous rounds, as described in Section 2.1.

Table 1 summarises the state variables used in state equations. Every device
maintains a candidate leader set Si, of possible clusters to which the device
may belong. Every round, this set is updated as:

Si = {` ∈ Sj for j ∈ N (i) s.t. c`j = >} ∪

{
∅ if r(i) = 0M

{i} otherwise

5We assume that a GPS-like sensor is available.

Springer Nature 2021 LATEX template

14 Field-based Sensing-driven Clustering in Robot Swarms

Thus, Si includes i provided that r(i) > 0M , together with other candidate
leaders ` considered by neighbours (in their candidate leader set and which
have computed to be within the cluster). In field-based computing, this set is
implicitly maintained by the spawn construct, given c`i as process return status
and {i} as new process key (if r(i) > 0M).

Most of the meta-algorithm computation is repeated for each of the candi-
date leaders ` ∈ Si. First, a metric m`

i of distance between ` and i is computed,
through the following equation (called the gradient block in field-based
computing—cf. Section 2.1):

m`
i =

{
0M if ` = i

min{m`
j + d(i, j) : j ∈ N (i)} otherwise

Then, an optional parent p`i for ` 6= i is determined as the neighbour j with
minimal m`

j (resolving ties by the identifier j itself):

p`i =

{
arg minj∈N (i){(m`

j , j)} if ` 6= i

None otherwise

Through it, partial summaries t`i can be computed (C block in field-based
computing—cf. Section 2.1):

t`i = reduce({s(i)} ∪ {t`j : j ∈ N (i) and p`j = i}, f)

where “reduce” is a function accumulating every element of a given set with
the given binary function, and thus aggregates with f the value s(i) together
with the t`j values of neighbours j which chose the current device i as their
parent. The value of the partial summary in the leader is then propagated
through the cluster by a broadcast function:

u`i =

{
t`i if ` = i

u`
p`
i

otherwise

Every candidate leader i with r(i) > 0M is now able to choose its selected
leader li, as the minimum candidate leader j (possibly i itself) with a summary
similar to that of i according to predicate p:

(li, wi) =

{
min{(`, u`i) : ` ∈ Si and p(u`i , u

i
i)} if r(i) > 0M

None otherwise

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 15

// process starts when r(i) is positive

val newProc = mux (r(i) > 0) { Set(mid) } { Set.empty }

// collect map from ` ∈ to (m`
i , u

`
i)

val clusters = spawn(` => _ => {

val m`
i = gradient(mid == `, d) // distance estimation

val c`i = m`
i < r(`) // whether device is in cluster

val t`i = C(m`
i, f, s(i)) // summary collection

val u`i = broadcast(m`
i, t`i) // summary broadcast

return ((m`
i, u`i), c`i) // process result and status

}, newProc, ())

// selected leader

val li = mux (r(i) > 0) {

clusters.filter(x => p(x._2, clusters(mid))).keys.min

} { mid }

// selected leader summary

val wi = mux (r(i) > 0) { clusters(li)._2 } { None }

// propagate in process

val result = spawn(` => _ => {

val m`
i = clusters(`)._1 // recover distances

val c`i = m`
i < r(`) // whether device is in cluster

val (l`i, w`
i) = broadcast(m`

i, (li, wi)) // final broadcast

return ((l`i, w`
i), c`i) // process result and status

}, newProc, ())

// build result map

return result.map(x => { x._2._1 -> x._2._2 })

Fig. 2: Scafi pseudo-code of the meta-algorithm.

The selected leader li and corresponding summary wi is then propagated by
broadcast through the cluster of i. For every ` ∈ Si:

(l`i , w
`
i) =

{
(li, wi) if ` = i

(l`
p`
i
, w`

p`
i
) otherwise

Finally, in every device i, the meta-algorithm output is the map:

{l`i 7→ w`
i : ` ∈ Si}.

This meta-algorithm is presented as ScaFi pseudo-code in Figure 2, using
ScaFi library functions gradient, C, and broadcast—cf. Section 2.1. We also
remark that although values vi are not directly used by the meta-algorithms,
the parameters r(i) and d(i, j) are allowed to depend on them (and usually
do), so that values are indirectly used. An example of such behaviour is given
in the next section.

Springer Nature 2021 LATEX template

16 Field-based Sensing-driven Clustering in Robot Swarms

4 Evaluation

In this section, we evaluate the meta-algorithm proposed in Section 3.3 in a
case study of situation recognition within a synthetic environment . The goal
is to show how the algorithm can cluster agents in a sensing-based fashion,
hence identifying various temperature cluster shapes. Furthermore, we assess
how the algorithm works in mobile settings, where a swarm of agents moves
across an environment—which can be representative for exploration scenarios.

4.1 Scenario Description

A swarm group of robots is interested in identifying areas where environmental
data varies within a known range. In particular, we assume that the robots
are both capable of sensing the environmental temperature, perceiving their
position in space (e.g., using GPS), and exploring a limited area (i.e., a square
with a side of 1 km). The temperature is just an arbitrary choice of a sensible
physical quantity that should drive, together with the spatial distribution, the
clustering; the idea is that a temperature can be indicative for an environment
situation that could require attention or intervention (cf. wildfires which can
start and spread in hot, dry, and windy conditions). The scenarios are plausible,
but we are not interested in full realism: simplifications and generalisations are
introduced to study the algorithm in diverse controlled situations. Since the
absence of central authority and the limited robot communication capability,
we suppose that the robots can only interact with their neighbours (i.e., the
devices with which a robot manages to establish a connection). In particular,
we imagine that each robot is equipped with a LoRa module with a connection
range of 100 m. Notice that these assumptions are coherent with the system
model of Section 2.1.1.

In the experiments described in the following, we are only interested in
the clusters determined by the swarm cooperatively, not in how clusters are
leveraged at the application level.

4.2 Evaluation Goals

We set up these simulations to:
G.1 verify the capability of the algorithm to find different cluster shapes: we

want to check that our algorithm is robust enough to correctly identify
any kind of distribution, whether Gaussian or not;

G.2 examine how can cope with drone movement : once verified the algorithm
results in stationary conditions, we would examine how mobility influ-
ences the clustering process by controlling both clusters count, shape, and
size;

G.3 test the algorithm dynamics when the temperature distribution changes:
That is, these goals reflect the design requirement of supporting
sensing/spatial-based clustering in static, mobile, and environment-dynamic
scenarios.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 17

4.3 Simulation Framework

We verify our sensing-driven clustering algorithm using simulations. The
simulation experiments, resulting data, source code, and instructions for
reproducibility are available at a public GitHub repository6.

Among the many simulators available for swarm-like robots behaviours
(e.g. ARGoS (Pinciroli et al, 2012)), we choose Alchemist (Pianini et al,
2013), a meta-simulator for pervasive-computing like applications. Alchemist
is already used in similar scenarios (Casadei et al, 2021) and it supports the
ScaFi language (Casadei et al, 2020b), that has been chosen among other field-
based languages (Viroli et al, 2019) as it supports aggregate processes (Casadei
et al, 2019), which we consider essential in order to implement our clustering
algorithm.

4.3.1 Parameters

To check the effectiveness of our solution, we evaluate the aggregate program
behaviour using different parameters, summarised in Table 2 and described in
the following.

One of the most important parameters is the in cluster threshold (θ). It
defines if a node is inside the cluster or outside; so, it guides the process
expansion among the nodes. If the value is too low, the programs take into
consideration only a few nodes; if it is too high, the cluster will be expanded
to nodes that should not belong to that cluster. This parameter is application-
dependent, so developers should carefully choose the right balance between
node inclusion and boundedness, ultimately affecting the cluster shape.

The same cluster threshold (γ), instead, is used by the cluster leader to
define when two clusters are similar (as shown in Section 3.3). This parameter
plays a crucial role in finding the right cluster boundaries. Indeed, if γ is too
high, two clusters could be merged even if they are different. On the other
hand, if γ is too low, multiple overlapped clusters remain even if they could
be merged.

A clustering process starts when a node becomes a candidate. waiting can-
didate time (β) rules the rounds needed by a node to spawn a process after
it has become a candidate. This helps in avoiding the excessive process spawn
due to small local temperature variations.

We are interested in the robustness of the clustering process against the
node movement. Therefore, we tested our solution varying the drone speed (ω)
and the exploration range (ζ). We expect that the higher the movement speed,
the greater the instability of the identified clusters. ω does not affect candidate
nodes, they will stand still until they stay candidates.

We check also how the output changes varying the density (α) of drones.
Theoretically, we expect a better result with high-density swarms. N =
(10/α)2, e.g. with α = 0.5, N = 400 and with α = 0.75, N = 173.

6https://github.com/cric96/experiment-2021-swarm-intelligence-si

https://github.com/cric96/experiment-2021-swarm-intelligence-si

Springer Nature 2021 LATEX template

18 Field-based Sensing-driven Clustering in Robot Swarms

Parameter Unit Description Values
In Cluster Threshold – θ °C A real value used to verify if the

temperature perceived in a cer-
tain node could be considered as
a part of the current cluster

[0.5, 1.0, 1.5]

Same Cluster Threshold – γ n.a A real value used to verify if two
clusters could be considered as
the same

[0.1, 0.3, 0.7]

Speed – ω km/s The constant velocity used by
drone to explore the areas

[7, 10, 14]

Exploration range – ζ km The maximum range area in
which drones could move

[0.5, 0.6]

Density – α n.a A parameter used to define how
many nodes will be placed in the
environment

[0.5, 0.75]

Waiting candidate time – β n.a Rounds needed to mark a node
as candidate

[3, 5, 7]

Failure frequency – ξ Hz Failure frequency of random
nodes that participate in the
system

[0.5, 0.1, 0]

Spawn frequency – τ Hz Spawn frequency of a node in
a random position within the
environment

[0.5, 0.1, 0]

Table 2: A summary of the parameters used in simulations

4.3.2 Metrics

The clustering results are verified using different metrics. First of all, we extract
the number of total unique clusters found by the collective to check if the
program produces the correct partitioning. This value gives a quick overview
of the clustering result. Along with this value, we evaluate the total number of
unique merged clusters. The latter should be as near as possible to the correct
cluster number.

However, neither the number of total unique clusters nor the total number
of unique merged clusters tells us anything about the shape of the clusters. To
this aim, we compute several metrics:

• the number of nodes for each cluster, stating the overall device partitions;
• the Silhouette (Rousseeuw, 1987) and Dunn (Dunn, 1974) indexes, used

as internal evaluation schemes;
• the error rate, observable only when we know the ground truth.

By observing the value of the Silhouette index, we can understand if the clus-
ters extracted are overlapped. Indeed, if the Silhouette tends to be 0, it means
that the clusters are overlapped. Instead, if it tends to 1, the clusters found are
disjointed. The Dunn index, instead, is used as a control value. When we have
a Silhouette that tends to be 1, we expect to have a higher Dunn index value.

The error rate metric measures the misclassified nodes: if a node is asso-
ciated with a cluster but it is far from all the targets in the systems (false
positive) or should be associated with a cluster but the algorithm identifies it

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 19

(a) (b) (c)

(d) (e) (f)

Fig. 3: Graphical representation of temperature field distributions used in the
simulations. The lighter the colour, the lower the temperature.

as an external node. The error rate is computed as:

E =
FP + FN

TP + TN

Where TP stand for true positive (i.e., number of nodes classified within a
cluster and they are placed near to a temperature distribution) and TN stands
for true negative (i.e., number of nodes classified as external and far from all
the temperature distribution) This value is used to understand how well the
algorithm performs when the drone explores the areas.

4.4 Simulations

We evaluate the behaviour of our algorithm in several experiments. The sim-
ulations have in common i) the environment area (a square with a side of
1km), ii) the communication radius (100 m), and iii) the average evaluation
frequency of aggregate programs (1 Hz). The drones are uniformly placed to
cover the entire zone. We run the simulations in a modern machine equipped
with two AMD EPYC 7301 with 128 GB RAM. The results are reproducible
in any modern machine, but consider that it might take a long time to finish
(in our configuration, the simulations end after 8 h). Each scenario is executed
20 times with different random seeds for a total of 100 simulated seconds
(some simulations lasts 150 s to reach convergence). The data generated by
the simulator is handled using NumPy (Harris et al, 2020) and plotted using
matplotlib (Hunter, 2007). The plotted results consist of the average (lines)

Springer Nature 2021 LATEX template

20 Field-based Sensing-driven Clustering in Robot Swarms

Fig. 4: Snapshots of simulation executions. The colour of the square identifies
the cluster id found in that point. Black colour means no cluster. The green
circle means that the node is a candidate. The blue gradient circles are a
graphical representation of temperature distribution. On the left is shown a
snapshot of a simulation before the merge policy has been applied (multiple
clusters per point are found). On the right, there is the snapshot of the same
simulation after the merge policy action.

and the standard deviation (area behind lines) of the values of interest in dif-
ferent episodes. In Figure 4 there is a graphical representation of a run of our
algorithm.

Scenario 1: Gaussian patterns (Figure 3a)

Description. In this scenario, the drones are stationary (i.e., they stand still).
There are five zones with a Gaussian distribution, and there is no overlap
between distributions. Given the stationary situation, the number of candidate
nodes is equal to the number of zones of interest.

Why. Used to verify G.1, particularly we expect that the algorithm finds
clusters without making any errors and that they will be stable over time.

Scenario 2: Stretched Gaussian patterns (Figure 3b)

Description. These simulations are similar to the previous one, but in this
case, the Gaussian distributions have an ellipse-like shape.

Why. With these experiments, we would check that the shape does not make
such a difference in the clustering process. Indeed, we expect a result similar
to the one in the previous example (G.1).

Scenario 3: One direction temperature field (Figures 3c and 3d)

Description. In this case, we imagine that only one cluster is present (fixing
θ to 1 °C and putting a total variation of temperature equal to 1 °C). Tem-
peratures grow from left to right in a constant fashion. . we are interested to

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 21

see what happens when multiple candidates are elected. In this case, there are
several relative minima (the set of nodes that are leftmost with minimum id in
their neighbourhood). But, eventually, the processes will expand them in the
same way. Thus, we expect that the merging policy tends to create only one
cluster. We use the scenario shown in Figure 3d as a reference. Indeed, there
will be only one candidate (located in the bottom left corner), and hence the
algorithm should result in one cluster.

Why. We devise these experiments to test the effectiveness of the merging
policy and to verify the goal G.1.

Scenario 4: Gaussian overlapped patterns (Figure 3e)

Description. In this case, we have several Gaussian patterns that could be
overlapped. We imagine that the θ value is essential here: if the value is too
high, the system will recognise the set of overlapping clusters as one; otherwise,
it will consider disjointed.

Why. This experiment serves to emphasize that θ is a domain-dependent
choice. Moreover, it will show that the algorithm could be used also to find
overlapped situations (G.1).

Scenario 5: Non convex patterns (Figure 3f)

Description. In this case, there are two zones, one with a non-convex shape
with a lower temperature than the outer zone. Here we expect that, eventually,
the system will identify the presence of only two clusters. The program might
identify several candidates in the transitory phases (cf. one for each edge).
Hence, the merging policy should fix this issue by producing only two clusters.

Why. With this scenario, we want to point out that the program can cope
with zones of arbitrary shape.

Scenario 6: Gaussian patterns with movement

Description. We test the result using four Gaussian distributions (arranged
similarly to Figure 3a) combined with movement. Here, both merging policy,
and waiting candidate time (β) will be essential. In particular, β helps to avoid
false positives since it waits before spawning a new clustering process when
encounters small local temperature variations. In general, we imagine that high
values of ω and ζ will make the algorithm more unstable.

Why. We are interested in seeing how movement affects the result of the
clustering process (G.2).

Scenario 7: Variable size Gaussian pattern

Description. In this experiment, the temperature distributions are placed
similarly as Figure 3a, but then the size of areas evolves in time. We expand the
areas until a time T and then contract them to their initial size. The starting

Springer Nature 2021 LATEX template

22 Field-based Sensing-driven Clustering in Robot Swarms

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er
Scenario 1: cluster count

 =0.5 =1. =0.3
=3.

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

of

 u
ni

qu
e

clu
st

er

Scenario 2: cluster count
 =0.5 =1. =0.1

=3.

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0

5

10

15

of

 u
ni

qu
e

clu
st

er

Scenario 3-c: cluster count
 =0.5 =1. =0.3

=3.

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er

Scenario 4: cluster count
 =0.5 =1. =0.3

=3.

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

of
 u

ni
qu

e
clu

st
er

Scenario 5: cluster count
 =0.5 =1. =0.3

=3.

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

of

 u
ni

qu
e

clu
st

er

Scenario 6: cluster count
 =0.5 =1. =0.3

=3. =7.
=0.5 =0.1

=0.1
all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er

Scenario 7: cluster count
 =0.5 =1. =0.3

=3.

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er

Scenario 8cluster count
 =0.5 =1. =0.1

=3.
=0.5

=0.001
all clusters
clusters

Fig. 5: Overview of simulation results. The dotted lines identify the ideal
cluster division count. The blue lines show the unique cluster found. Instead,
the cyan lines indicate the unique cluster number after the merging phase.

area range is 100 m, and the maximum area expansion is 1 km. Here we expect
that the cluster area follows the underlying temperature distribution.

Why. In this experiment, we verify the algorithm’s robustness against
temperature changes (G.3).

4.5 Results

The simulations underline that the algorithm can find good subdivisions into
clusters. Indeed, Figure 5 shows that our algorithm can eventually produce
the correct number of clusters after a certain settling period. In the following,
we present the result focussing on the evaluation goals stated in Section 4.2.

Goal 1 (G.1): static sensing/spatial-based clustering

Running the simulations of scenarios 1-5 we verified how much the clusters
extracted follow the underlying temperature distribution in the static context.
Figure 5 shows that the algorithm correctly extracts the cluster number – with
the optimal parameters configuration. Furthermore, observing Figure 6, we
can deduce that the cluster shape is correct too. Indeed, the Silhouette index
tends to be 1 when the clusters are disjointed, and the error rate is negligible.

Here, θ plays a key role. Observing the behaviour of scenario 4 in Figure 7,
we see that with too low θ we overestimate the cluster numbers and, with a

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 23

0 20 40 60 80 100
Time

0

5

10

15

20

25

of

 n
od

es
Scenario 1:

 =0.5 =1. =0.3
=3.

cluster-1
cluster-2
cluster-3
cluster-4
cluster-5

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 1: errors
 =0.5 =1. =0.3

=3.

errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x
va

lu
e

Scenario 1: Internal metrics
 =0.5 =1. =0.3

=3.

silhouette
dunn index

0 20 40 60 80 100
Time

0

10

20

30

of

 n
od

es

Scenario 2:
 =0.5 =1. =0.3

=3.

cluster-1
cluster-2
cluster-3
cluster-4

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0
er

ro
r r

at
e

Scenario 2: errors
 =0.5 =1. =0.3

=3.

errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x
va

lu
e

Scenario 2: Internal metrics
 =0.5 =1. =0.3

=3.

silhouette
dunn index

0 20 40 60 80 100 120 140
Time

0

10

20

30

40

of

 n
od

es

Scenario 4:
 =0.5 =1. =0.3

=3.

cluster-1
cluster-2
cluster-3
cluster-4
cluster-5

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 4: errors
 =0.5 =1. =0.3

=3.

errors

0 20 40 60 80 100 120 140
Time

2

1

0

1

2

3

4

in
de

x
va

lu
e

Scenario 4: Internal metrics
 =0.5 =1. =0.3

=3.

silhouette
dunn index

0 20 40 60 80 100
Time

0

5

10

15

20

25

of

 n
od

es

Scenario 6:
 =0.5 =1. =0.3

=3. =7.
=0.5 =0.1

=0.1
cluster-1
cluster-2
cluster-3
cluster-4

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1. =0.3

=3. =7.
=0.5 =0.1

=0.1
errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x
va

lu
e

Scenario 6: Internal metrics
 =0.5 =1. =0.3

=3. =7.
=0.5 =0.1

=0.1
silhouette
dunn index

0 20 40 60 80 100
Time

0

5

10

15

20

25

of

 n
od

es

Scenario 7:
 =0.5 =1. =0.3

=3.

cluster-1
cluster-2
cluster-3
cluster-4

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 7: errors
 =0.5 =1. =0.3

=3.

errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x
va

lu
e

Scenario 7: Internal metrics
 =0.5 =1. =0.3

=3.

silhouette
dunn index

0 20 40 60 80 100
Time

0

5

10

15

20

25

of

 n
od

es

Scenario 8
 =0.5 =1. =0.1

=3.
=0.5

=0.001
cluster-1
cluster-2
cluster-3
cluster-4
cluster-5

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors
 =0.5 =1. =0.1

=3.
=0.5

=0.001
errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x
va

lu
e

Scenario 8Internal metrics
 =0.5 =1. =0.1

=3.

silhouette
dunn index

Fig. 6: In-depth analysis of good simulation results. In general, the algorithm
produces good results.

high level of θ, we underestimate the cluster number. But this was the expected
behaviour, as it depends directly on the trend of the target distributions.

Springer Nature 2021 LATEX template

24 Field-based Sensing-driven Clustering in Robot Swarms

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er
Scenario 4: cluster count

 =0.5 =1. =0.3
=3.

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er

Scenario 4: cluster count
 =0.5 =1.5 =0.3

=3.

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

of

 u
ni

qu
e

clu
st

er

Scenario 4: cluster count
 =0.5 =0.5 =0.3

=3.

all clusters
clusters

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 7: errors
 =0.75 =1.5 =0.7

=7.

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0
er

ro
r r

at
e

Scenario 1: errors
 =0.75 =1.5 =0.1

=7.

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 2: errors
 =0.75 =1.5 =0.3

=5.

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1. =0.3

=3. =7.
=0.5 =0.1

=0.1
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1. =0.3

=3. =10.
=0.5 =0.1

=0.1
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1. =0.3

=3. =14.
=0.5 =0.1

=0.1
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1.5 =0.1

=3. =7.
=0.6 =0.1

=0.1
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1. =0.1

=3. =7.
=0.6 =0.1

=0.1
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors
 =0.5 =1. =0.7

=3. =10.
=0.6 =0.1

=0.1
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors
 =0.75 =0.5 =0.1

=7.
=0.5

=0.001
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors
 =0.75 =0.5 =0.1

=7.
=0.5
=0.1

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors
 =0.75 =0.5 =0.1

=7.
=0.5
=0.5

errors

Fig. 7: Main examples of bad clustering results. In the first line, the images
show different behaviour varying θ. In the second line, the plots show how the
algorithm does not handle well low-density robot swarms. In the third line, the
charts show how the algorithm handles various movement speeds. The fourth
line shows how the exploration range impacts the clustering results.

Finally, Another important aspect is the density (α) of the system. With a
small number of nodes, candidate nodes may be positioned far from the cluster
centre, thus identifying wider areas than expected.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 25

Goal 2 (G.2): robustness against node mobility and failures

When nodes have a low mobility and exploration range, the system is robust
to node movements (Figure 6). The exploring policy introduces errors, but the
results are comparable to solutions where the nodes are stationary. Moreover,
even in case of failures, the clustering process is practically not affected at
all. However, in the worst case, mobility and failures lead to false positives
(Figure 7). Indeed, some processes start in areas where the temperature is
almost constant. Therefore, that process approximately covers the whole area
(and hence produces a high error rate).

Goal 3 (G.3): robustness against temperature changes

The result of scenario 7 is comparable to the static scenario. Indeed, Figure 6
shows that the cluster number is correct, and Figure 6 shows that the error
rate is low and the shape is accurate. The solution suffers from low-density
values and wrong θ values as scenarios 1-5 (Figure 7).

4.6 Discussion

Ultimately, our algorithm can support a certain degree of movement, , find
various cluster shapes, and cope with temperature changes in the optimal
condition: high density (α), limited exploration range (ζ), and an appropriate
value for in cluster threshold (θ) value.

However, when drones move randomly, the algorithm starts to produce sub-
optimal cluster divisions since the nodes do not care about the cluster found,
and they continue to explore the area. But this could lead to becoming a false
candidate and then starting an unwanted clustering process. Furthermore, it
could be argued that uniform zones are part of a cluster that is not identified
as there are no relative minima. For this reason, when a node starts the process
in a non-correct zone, the cluster identification will expand in the nearly whole
system. This problem could be reduced by changing ω and ζ when the nodes
belong to a cluster.

It is worth noting that with a low value of α the algorithm starts to produce
bad cluster divisions—. This behaviour is unavoidable since we base our algo-
rithm on the presence of a centroid that starts the clustering process. Indeed,
with a low α value, it is more probable that the node that starts the process is
far from the real cluster centroid, and hence the process expansion can escape
from the underlying distribution, misclassifying a large population of nodes.

5 Related Work

This section covers related work. Coverage of related work is organised to
separately cover related clustering models and problems (Section 5.1), research
work related to the sensing-based clustering problem we address (Section 5.2),
research work related to field-based computing (Section 5.3), and related field-
based algorithms (Section 5.4).

Springer Nature 2021 LATEX template

26 Field-based Sensing-driven Clustering in Robot Swarms

5.1 Related Clustering Models and Problems

Clustering is a well-known problem in data analysis and machine learning,
and has been widely studied in the literature (Jain et al, 1999; Estivill-Castro,
2002; Jain, 2010). In a classical setting, the data to be clustered is stored in
a single dataset, and a single algorithm (or agent) is in charge of finding the
“best” clusters according to some optimisation criteria. Each data point in the
input data set is described by the values of a fixed set of features; the number
of such features constitutes the dimensionality of the data set and, typically,
high dimensional data is harder to cluster meaningfully.

A characteristic of the clustering tasks considered in the present paper (and
in general, of sensing-based methods, see the next section), is that besides the
sensed data, a main source of information is the spatial distance between the
agents. In (Thrun and Ultsch, 2021), the authors consider high-dimensional
data sets that exhibit natural clusters, characterised by distances and/or
density-based structures. They propose a semi-automated method whereby
the clusters are automatically proposed and manually selected starting from
a topographic visualisation of the high-dimensional data. Notably, they use
swarm intelligence for computing the topographic map, while other techniques
are adopted for the interactive process of clusters computation.

There are, however, several works that address swarm-based clustering,
using swarm intelligence for the clustering task itself (Martens et al, 2011). It
is important to note that such methods (both those based on particle swarm
optimisation (PSO), and those based on ant colony systems (ACS)) exploit
swarms just as a computational means for finding clusters in a data set. Their
goal is not to cluster the elements of the swarm itself, as it is the case for the
present work, but to simulate a virtual swarm to find good quality clusters.

Some works directly address the clustering of swarms. In (Hu et al, 2021),
the clustering of a team of special robots (i.e., aerial drones) is part of a larger
process that, after cluster formation, also involves formation tracking (i.e.,
tracking a target through a suitable formation), and containment control (i.e.,
surround ground robots cooperating in the mission). The method proposed
to form clusters is based on a game-theoretic framework named GRAPE. A
significant difference w.r.t. the present work is that the number (and nature)
of clusters is determined by a given set of targets, while we do not assume such
a priori knowledge. Another significant work with similar goals is (Ge et al,
2018), where a team of robots must be partitioned into clusters organised as
suitable formations (i.e., geometric spatial patterns). The proposed solution
inter-mixes the determination of clusters and their formation (based, among
other things, on the agents dynamics), assuming that the number and nature
of such formations is known a priori.

Since we consider clustering over a given topology (network), the problem
can be related to graph-based clustering (Chen and Ji, 2010). Graph-based
clustering, however, assumes that the given graph can be partitioned into
densely connected subgraphs that are sparsely connected to each other; i.e.,
it assumes that all the similarity information is expressed by the presence of

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 27

edges between nodes (and, possibly, by their weights). This is not necessarily
the case with the networks formed by our swarms, where connections are just
determined by spatial distance, and the clustering is strongly influenced by
the sensed data. Also, community detection methods can be viewed as clus-
tering of the nodes of a graph representing a network of relations (e.g. a social
network) (Javed et al, 2018). Interestingly, unlike in generic graph-based clus-
tering, communities can easily overlap, since a node (e.g., user) may belong to
several communities at once.

5.2 Related Work on Sensing-based Clustering

Sensing-based clustering typically applies to sensor networks that are dis-
tributed on a geographical area and exploit clustering mainly to reduce the
communication bandwidth and/or energy consumption of the net. The role
played by sensing a (possibly dynamic) geographic environment makes such
problem and the proposed approaches to solve it relevant to the present work,
although the agents considered here are themselves dynamic entities moving
and acting across the space.

In (Lin and Megerian, 2007), the goal is to partition sensors for indoor
monitoring and control. The cluster heads are predetermined (based on the
sources to be monitored and controlled), while cluster formation is periodically
scheduled in order to adapt to changes in the sensed data. In our work, instead,
the cluster heads are not a priori given: they are determined according to
the sensed data (e.g., the agents perceiving local minima) and can change
dynamically (e.g., because a candidate withdraws and joins a different cluster).

The goal of (Gedik et al, 2007) is, instead, to obtain energy savings in data
collection from a wireless sensor network (WSN) by receiving values from only
a subset of selected representatives and predicting the other valuer through
automatically generated statistical models. Cluster heads are chosen (proba-
bilistically) based on the amount of energy they have. Cluster formation is
periodically scheduled, and the assignment of a sensor to a cluster is based
on the distance from the head and the similarity of the sensed value with the
head’s value. A work with similar goals is (Cai and Zhang, 2018), where again
energy savings in a WSN is the primary motivation. Here, the cluster heads
are chosen based on residual energy level and data gradient. Moreover, an
autoregressive prediction model for sensory data is maintained by each head
to self-adjust temporal sampling intervals within the cluster.

A sensing-based clustering problem is also studied in (Kucuk et al, 2020)
where, however, instead of being a high energy-constrained WSN, the deployed
system involves sensorised units and mobile phones able to upload all the
relevant data to the cloud, through cellular and Wi-Fi connections. In a disaster
scenario, the mobile phones data is used to centrally compute density-based
clusters that can inform the SAR (Search and Rescue) teams about the location
of people in the area.

The DyClee approach described in (Roa et al, 2019) is also centralised.
The authors assume that streams of sensors observations (e.g. in an Industrial

Springer Nature 2021 LATEX template

28 Field-based Sensing-driven Clustering in Robot Swarms

IoT) are continually tracked by their system, and are classified (e.g., as healthy
or faulty) based on a set of clusters that capture the patterns corresponding
to different states. The main focus is on the novelty detection problem, or
concept drift, which implies the ability to update the clusters as new behaviour
is learned, while ignoring noise and occasional outliers. The online clustering
algorithm consists of two stages based, respectively, on distance and density,
and is fully dynamic in that it is able to create, eliminate, drift, merge, and
split clusters as data is processed.

5.3 Related Approaches and Programming Models

Programming swarms of agents is a difficult task, because of the need of coor-
dinating their local behaviours to achieve global, swarm-level goals. In this
work, we adopt the field-based computing and programming approach (Viroli
et al, 2019) for expressing self-organising, collective behaviour of swarms. Our
focus is on decentralised behaviour-based approaches (rather than automatic
design methods like e.g. reinforcement learning), as surveyed e.g. in (Brambilla
et al, 2013; Viroli et al, 2019) and briefly in the following.

An approach to the problem that has proven to be quite effective is genera-
tive communication through tuple-based coordination models, as offered, e.g.,
in the Linda language (Gelernter, 1985) and its descendants; essentially, several
processes running on the same system can synchronise by writing and retriev-
ing information in a shared (tuple-)space. A derived idea is that of allowing
programmability of the tuple space itself, so that the coordination logic of pro-
cesses can be embedded in the communication medium–see, e.g., (Omicini and
Denti, 2001). An obvious limitation of the mentioned approaches for the task
of swarm programming is that they assume a central memory accessible by all
the agents/processes. However, the idea of tuple-spaces has been extended also
to distributed systems, e.g., in the IBM TSpaces framework (Wyckoff et al,
1998).

An important feature of swarm systems is their adaptivity achieved through
self-organisation. A support to build such kind of systems is offered by frame-
works inspired by other sciences such as biology (Tolksdorf and Menezes, 2003)
and chemistry (Sayama, 2009). The field-based computing approach adopted
in the present paper is based, instead, on the concept of field, borrowed from
physics. The related idea of a field of tuples has been implemented in the
TOTA middleware (Mamei and Zambonelli, 2009).

As seen in this paper, the field-based approach is particularly well suited to
mobile, spatially situated agents. A related (and precursor) thread of research
of that of spatial computing, where space is both an abstraction and a means
for computation. Spatial computing approaches have been largely surveyed
in (Beal et al, 2013). They are also related to macro-programming (New-
ton et al, 2007), where distributed systems as wholes are programmed by a
centralised perspective. For instance, a prominent related macro approach to
swarm programming is Buzz (Pinciroli and Beltrame, 2016), where swarms are
first-class collection-like abstractions.

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 29

5.4 Related Field-based Algorithms

The field-based computing approach adopted in this paper has been applied
for programming several swarm intelligence algorithms such as robust dis-
tance estimation (gradient) (Audrito et al, 2017), leader election (Mo et al,
2018), distributed data collection (Audrito et al, 2021), and team formation
and coordination (Casadei et al, 2021).

Field-based computing has the peculiar ability to capture collective
behaviours as functions operating on fields and to compose them together as
“building blocks” to address problems of increasing complexity (Viroli et al,
2019). Of particular relevance for the present discussion is the implementa-
tion of the SCR (Self-Organising Coordination Regions) pattern in (Pianini
et al, 2021b), where three building blocks are composed to support control and
monitoring of a distributed system: the sparse-choice S block (used for leader
election); the generalised gradient G block (for information broadcasting along
gradient fields); and the information collection C block. Most specifically, the
SCR pattern can be denoted as a feedback chain S-G-C-G: leaders are elected
(S); then, a gradient from leaders builds the communication structure (G);
then, data from members (indirectly defined by the information path towards
a leader) is collected towards leaders (C); then, data from leaders is prop-
agated back to the members of the regions (G). However, the SCR pattern
is not limited to clustering (S-G part), but also regulates interactions within
regions (C-G part). Roughly, the sensing-based clustering algorithm covered
in this paper could replace the initial C-G composition that determines the
system regions.

Similarly to a clustering algorithm, the S block (Mo et al, 2018) provides a
distributed mechanism to elect leaders from a set of candidates, and to assign
each remaining user node to a leader, thus partitioning the system into regions.
The approach presented here is different in several respects: first of all, the
candidate leaders are determined by a characteristic of a sensed measure (e.g.,
local minimum); second, each candidate cluster head spawns an aggregate
process to recruit other nodes within the cluster; finally, the other nodes can
join more than one cluster, based on the similarity of their sensed values with
the ones sensed by leaders.

6 Conclusion and Future Work

In this paper, we precisely define and address the dynamic sensing-based
mobile swarm clustering problem. Most specifically, we use the field-based
paradigm to develop a novel configurable meta-algorithm promoting self-
organised clustering in a swarm of neighbouring-interacting robots. The
algorithm is evaluated on a set of synthetic environment configurations. In
particular, we show that a swarm can autonomously create clusters reflecting
the underlying dynamics of the perceptible target phenomenon in the environ-
ment, and is able to deal with a certain degree of change in the swarm topology

Springer Nature 2021 LATEX template

30 Field-based Sensing-driven Clustering in Robot Swarms

and environment. In order to perform the evaluation, we have implemented
our algorithms using the ScaFi Scala framework for field-based computing.

Future work could be devised in multiple directions. First of all, it could
be interesting to stress and possibly refine the algorithm on more extreme
environmental conditions, or to investigate it under different assumptions (e.g.,
a more constrained or rich system model). Secondly, it could be interesting
to compare (or combine) the meta-algorithm against (with) automated swarm
behaviour design methods like multi-agent reinforcement learning. Last but
not least, we would like to evaluate our algorithms on real use cases, e.g. in
smart logistics and precision agriculture scenarios, by implementing them on
actual drones or robots.

Declarations

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Funding

Data Availability Statement

The datasets generated during the current study and the simulation framework
usable to replicate them are available in a public GitHub repository, https:
//github.com/cric96/experiment-2021-swarm-intelligence-si.

References

Audrito G (2020) FCPP: an efficient and extensible field calculus framework.
In: IEEE International Conference on Autonomic Computing and Self-
Organizing Systems, ACSOS 2020, Washington, DC, USA, August 17-21,
2020. IEEE, pp 153–159, https://doi.org/10.1109/ACSOS49614.2020.00037

Audrito G, Casadei R, Damiani F, et al (2017) Compositional blocks for
optimal self-healing gradients. In: 11th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, SASO 2017, Tucson, AZ, USA,
September 18-22, 2017. IEEE Computer Society, pp 91–100, https://doi.
org/10.1109/SASO.2017.18

Audrito G, Casadei R, Damiani F, et al (2020) Computation against a neigh-
bour: Addressing large-scale distribution and adaptivity with functional
programming and scala. https://doi.org/10.48550/ARXIV.2012.08626, URL
https://arxiv.org/abs/2012.08626

Audrito G, Casadei R, Damiani F, et al (2021) Optimal resilient dis-
tributed data collection in mobile edge environments. Computers &

https://github.com/cric96/experiment-2021-swarm-intelligence-si
https://github.com/cric96/experiment-2021-swarm-intelligence-si
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.48550/ARXIV.2012.08626
https://arxiv.org/abs/2012.08626

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 31

Electrical Engineering p 107580. https://doi.org/https://doi.org/10.1016/
j.compeleceng.2021.107580, URL https://www.sciencedirect.com/science/
article/pii/S0045790621005140

Ball D, Ross P, English A, et al (2013) Robotics for sustainable broad-acre
agriculture. In: Alvarez LM, Corke PI, Roberts JM (eds) Field and Ser-
vice Robotics - Results of the 9th International Conference, December 9-11,
2013, Brisbane, Australia, Springer Tracts in Advanced Robotics, vol 105.
Springer, pp 439–453, https://doi.org/10.1007/978-3-319-07488-7 30

Beal J, Dulman S, Usbeck K, et al (2013) Organizing the aggregate: Languages
for spatial computing. In: Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments. IGI Global, chap 16, p 436–501, https:
//doi.org/10.4018/978-1-4666-2092-6.ch016

Beal J, Pianini D, Viroli M (2015) Aggregate programming for the internet of
things. Computer 48(9):22–30. https://doi.org/10.1109/MC.2015.261

Best G, Faigl J, Fitch R (2018) Online planning for multi-robot active percep-
tion with self-organising maps. Auton Robots 42(4):715–738. https://doi.
org/10.1007/s10514-017-9691-4

Best G, Cliff OM, Patten T, et al (2019) Dec-mcts: Decentralized planning for
multi-robot active perception. Int J Robotics Res 38(2-3). https://doi.org/
10.1177/0278364918755924

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence - From Nat-
ural to Artificial Systems. Studies in the sciences of complexity, Oxford
University Press

Brambilla M, Ferrante E, Birattari M, et al (2013) Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell 7(1):1–41. https://
doi.org/10.1007/s11721-012-0075-2

Cai W, Zhang M (2018) Spatiotemporal correlation-based adaptive sampling
algorithm for clustered wireless sensor networks. Int J Distributed Sens
Networks 14(8). https://doi.org/10.1177/1550147718794614

Carrillo-Zapata D, Carranza N, Diego X, et al (2018) Morphogenesis in robot
swarms. Sci Robotics 3(25). https://doi.org/10.1126/scirobotics.aau9178

Casadei R, Viroli M, Audrito G, et al (2019) Aggregate processes in field cal-
culus. In: Nielson HR, Tuosto E (eds) Coordination Models and Languages -
21st IFIP WG 6.1 International Conference, COORDINATION 2019, Held
as Part of the 14th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21,
2019, Proceedings, Lecture Notes in Computer Science, vol 11533. Springer,

https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107580
https://www.sciencedirect.com/science/article/pii/S0045790621005140
https://www.sciencedirect.com/science/article/pii/S0045790621005140
https://doi.org/10.1007/978-3-319-07488-7_30
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1007/s10514-017-9691-4
https://doi.org/10.1007/s10514-017-9691-4
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1177/1550147718794614
https://doi.org/10.1126/scirobotics.aau9178

Springer Nature 2021 LATEX template

32 Field-based Sensing-driven Clustering in Robot Swarms

pp 200–217, https://doi.org/10.1007/978-3-030-22397-7 12

Casadei R, Pianini D, Placuzzi A, et al (2020a) Pulverization in cyber-physical
systems: Engineering the self-organizing logic separated from deployment.
Future Internet 12(11):203. https://doi.org/10.3390/fi12110203

Casadei R, Viroli M, Audrito G, et al (2020b) Fscafi : A core calculus for
collective adaptive systems programming. In: Margaria T, Steffen B (eds)
Leveraging Applications of Formal Methods, Verification and Validation:
Engineering Principles - 9th International Symposium on Leveraging Appli-
cations of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30,
2020, Proceedings, Part II, Lecture Notes in Computer Science, vol 12477.
Springer, pp 344–360, https://doi.org/10.1007/978-3-030-61470-6 21

Casadei R, Viroli M, Audrito G, et al (2021) Engineering collective intelligence
at the edge with aggregate processes. Eng Appl Artif Intell 97:104,081. https:
//doi.org/10.1016/j.engappai.2020.104081

Casadei R, Mariani S, Pianini D, et al (2022a) Space-fluid adaptive sam-
pling: a field-based, self-organising approach. In: ter Beek MH, Sirjani M
(eds) Coordination Models and Languages - 24th International Conference,
COORDINATION 2022, Held as Part of the 17th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2022, Lucca,
Italy, June 13-17, 2022, Proceedings, in press

Casadei R, Pianini D, Viroli M, et al (2022b) Digital twins, virtual devices,
and augmentations for self-organising cyber-physical collectives. Applied
Sciences 12(1). https://doi.org/10.3390/app12010349, URL https://www.
mdpi.com/2076-3417/12/1/349

Chen Z, Ji H (2010) Graph-based clustering for computational linguistics: A
survey. In: Proceedings of the 2010 Workshop on Graph-Based Methods for
Natural Language Processing. Association for Computational Linguistics,
USA, TextGraphs-5, p 1–9, URL https://aclanthology.org/W10-2301/

Clark SS, Beal J, Pal PP (2015) Distributed recovery for enterprise services.
In: 2015 IEEE 9th International Conference on Self-Adaptive and Self-
Organizing Systems, Cambridge, MA, USA, September 21-25, 2015. IEEE
Computer Society, pp 111–120, https://doi.org/10.1109/SASO.2015.19

Cruz NB, Nedjah N, de Macedo Mourelle L (2017) Robust distributed spatial
clustering for swarm robotic based systems. Appl Soft Comput 57:727–737.
https://doi.org/10.1016/j.asoc.2016.06.002

De Masi G, Ferrante E (2020) Quality-dependent adaptation in a swarm of
drones for environmental monitoring. In: 2020 Advances in Science and
Engineering Technology International Conferences (ASET), pp 1–6, https:

https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.3390/fi12110203
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.3390/app12010349
https://www.mdpi.com/2076-3417/12/1/349
https://www.mdpi.com/2076-3417/12/1/349
https://aclanthology.org/W10-2301/
https://doi.org/10.1109/SASO.2015.19
https://doi.org/10.1016/j.asoc.2016.06.002
https://doi.org/10.1109/ASET48392.2020.9118235
https://doi.org/10.1109/ASET48392.2020.9118235

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 33

//doi.org/10.1109/ASET48392.2020.9118235

Dolev S (2000) Self-Stabilization. MIT Press

Dunbabin M, Marques L (2012) Robots for environmental monitoring:
Significant advancements and applications. IEEE Robotics Autom Mag
19(1):24–39. https://doi.org/10.1109/MRA.2011.2181683

Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. Journal
of cybernetics 4(1):95–104. https://doi.org/10.1080/01969727408546059

Estivill-Castro V (2002) Why so many clustering algorithms: a position paper.
SIGKDD Explor 4(1):65–75. https://doi.org/10.1145/568574.568575

Farinelli A, Raeissi MM, Marchi N, et al (2017) Interacting with team oriented
plans in multi-robot systems. Auton Agent Multi Agent Syst 31(2):332–361

Garg S, Ayanian N (2014) Persistent monitoring of stochastic spatio-temporal
phenomena with a small team of robots. In: Fox D, Kavraki LE, Kurniawati
H (eds) Robotics: Science and Systems X, University of California, Berkeley,
USA, July 12-16, 2014, https://doi.org/10.15607/RSS.2014.X.038

Ge X, Han Q, Zhang X (2018) Achieving cluster formation of multi-agent
systems under aperiodic sampling and communication delays. IEEE Trans
Ind Electron 65(4):3417–3426. https://doi.org/10.1109/TIE.2017.2752148

Gedik B, Liu L, Yu PS (2007) ASAP: an adaptive sampling approach to
data collection in sensor networks. IEEE Trans Parallel Distributed Syst
18(12):1766–1783. https://doi.org/10.1109/TPDS.2007.1110

Gelernter D (1985) Generative communication in linda. ACM Trans Program
Lang Syst 7(1):80–112. https://doi.org/10.1145/2363.2433

Harris CR, Millman KJ, van der Walt SJ, et al (2020) Array program-
ming with NumPy. Nature 585(7825):357–362. https://doi.org/10.1038/
s41586-020-2649-2

Hoshino S (2013) Reactive clustering method for platooning autonomous
mobile robots. IFAC Proceedings Volumes 46(10):152–157. https://doi.org/
https://doi.org/10.3182/20130626-3-AU-2035.00009, URL https://www.
sciencedirect.com/science/article/pii/S1474667015349259, 8th IFAC Sym-
posium on Intelligent Autonomous Vehicles

Hu J, Bhowmick P, Jang I, et al (2021) A decentralized cluster forma-
tion containment framework for multirobot systems. IEEE Trans Robotics
37(6):1936–1955. https://doi.org/10.1109/TRO.2021.3071615

https://doi.org/10.1109/ASET48392.2020.9118235
https://doi.org/10.1109/ASET48392.2020.9118235
https://doi.org/10.1109/MRA.2011.2181683
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1145/568574.568575
https://doi.org/10.15607/RSS.2014.X.038
https://doi.org/10.1109/TIE.2017.2752148
https://doi.org/10.1109/TPDS.2007.1110
https://doi.org/10.1145/2363.2433
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.3182/20130626-3-AU-2035.00009
https://doi.org/https://doi.org/10.3182/20130626-3-AU-2035.00009
https://www.sciencedirect.com/science/article/pii/S1474667015349259
https://www.sciencedirect.com/science/article/pii/S1474667015349259
https://doi.org/10.1109/TRO.2021.3071615

Springer Nature 2021 LATEX template

34 Field-based Sensing-driven Clustering in Robot Swarms

Hunter JD (2007) Matplotlib: A 2d graphics environment. Computing in
Science & Engineering 9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recog-
nition Letters 31(8):651–666. https://doi.org/https://doi.org/10.1016/j.
patrec.2009.09.011

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: A review. ACM
Comput Surv 31(3):264–323. https://doi.org/10.1145/331499.331504

Javed MA, Younis MS, Latif S, et al (2018) Community detection in networks:
A multidisciplinary review. J Netw Comput Appl 108:87–111. https://doi.
org/10.1016/j.jnca.2018.02.011

Kemna S, Rogers JG, Nieto-Granda C, et al (2017) Multi-robot coordination
through dynamic voronoi partitioning for informative adaptive sampling in
communication-constrained environments. In: 2017 IEEE International Con-
ference on Robotics and Automation, ICRA 2017, Singapore, Singapore,
May 29 - June 3, 2017. IEEE, pp 2124–2130, https://doi.org/10.1109/ICRA.
2017.7989245

Kucuk K, Bayilmis C, Sonmez AF, et al (2020) Crowd sensing aware disaster
framework design with iot technologies. J Ambient Intell Humaniz Comput
11(4):1709–1725. https://doi.org/10.1007/s12652-019-01384-1

Lee C, Kim M, Kazadi S (2005) Robot clustering. In: Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, Waikoloa,
Hawaii, USA, October 10-12, 2005. IEEE, pp 1449–1454, https://doi.org/
10.1109/ICSMC.2005.1571350

Lin Y, Megerian S (2007) Sensing driven clustering for monitoring and con-
trol applications. In: 4th IEEE Consumer Communications and Networking
Conference, CCNC 2007, Las Vegas, NV, USA, January 11-13, 2007. IEEE,
pp 202–206, https://doi.org/10.1109/CCNC.2007.47

Mamei M, Zambonelli F (2009) Programming pervasive and mobile comput-
ing applications: The tota approach. ACM Trans on Software Engineering
Methodologies 18(4):1–56. https://doi.org/10.1145/1538942.1538945

Mamei M, Zambonelli F, Leonardi L (2004) Co-fields: A physically inspired
approach to motion coordination. IEEE Pervasive Comput 3(2):52–61. https:
//doi.org/10.1109/MPRV.2004.1316820

Martens D, Baesens B, Fawcett T (2011) Editorial survey: swarm intelli-
gence for data mining. Machine Learning 82:1–42. https://doi.org/https:
//doi.org/10.1007/s10994-010-5216-5

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1145/331499.331504
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1109/ICRA.2017.7989245
https://doi.org/10.1109/ICRA.2017.7989245
https://doi.org/10.1007/s12652-019-01384-1
https://doi.org/10.1109/ICSMC.2005.1571350
https://doi.org/10.1109/ICSMC.2005.1571350
https://doi.org/10.1109/CCNC.2007.47
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/https://doi.org/10.1007/s10994-010-5216-5
https://doi.org/https://doi.org/10.1007/s10994-010-5216-5

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 35

Mo Y, Beal J, Dasgupta S (2018) An aggregate computing approach to self-
stabilizing leader election. In: 2018 IEEE 3rd International Workshops on
Foundations and Applications of Self* Systems (FAS*W), Trento, Italy,
September 3-7, 2018. IEEE, pp 112–117, https://doi.org/10.1109/FAS-W.
2018.00034

Newton R, Morrisett G, Welsh M (2007) The regiment macroprogramming
system. In: Abdelzaher TF, Guibas LJ, Welsh M (eds) Proceedings of the
6th International Conference on Information Processing in Sensor Networks,
IPSN 2007, Cambridge, Massachusetts, USA, April 25-27, 2007. ACM, pp
489–498, https://doi.org/10.1145/1236360.1236422

Omicini A, Denti E (2001) From tuple spaces to tuple centres. Sci Comput
Program 41(3):277–294. https://doi.org/10.1016/S0167-6423(01)00011-9

Pham ND, Le TD, Park K, et al (2010) SCCS: spatiotemporal clustering and
compressing schemes for efficient data collection applications in wsns. Int J
Commun Syst 23(11):1311–1333. https://doi.org/10.1002/dac.1104

Pianini D, Montagna S, Viroli M (2013) Chemical-oriented simulation of com-
putational systems with ALCHEMIST. J Simulation 7(3):202–215. https:
//doi.org/10.1057/jos.2012.27

Pianini D, Casadei R, Viroli M, et al (2021a) Time-fluid field-based coordi-
nation through programmable distributed schedulers. Logical Methods in
Computer Science Volume 17, Issue 4. https://doi.org/10.46298/lmcs-17(4:
13)2021

Pianini D, Casadei R, Viroli M, et al (2021b) Partitioned integration and coor-
dination via the self-organising coordination regions pattern. Future Gener
Comput Syst 114:44–68. https://doi.org/10.1016/j.future.2020.07.032

Pinciroli C, Beltrame G (2016) Buzz: A programming language for robot
swarms. IEEE Softw 33(4):97–100. https://doi.org/10.1109/MS.2016.95

Pinciroli C, Trianni V, O’Grady R, et al (2012) Argos: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intell 6(4):271–295.
https://doi.org/10.1007/s11721-012-0072-5

Roa NB, Travé-Massuyès L, Grisales VH (2019) DyClee: Dynamic clustering
for tracking evolving environments. Pattern Recognit 94:162–186. https://
doi.org/10.1016/j.patcog.2019.05.024

Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpre-
tation and validation of cluster analysis. Journal of Computational
and Applied Mathematics 20:53–65. https://doi.org/https://doi.org/10.
1016/0377-0427(87)90125-7, URL https://www.sciencedirect.com/science/

https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1145/1236360.1236422
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1002/dac.1104
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1016/j.patcog.2019.05.024
https://doi.org/10.1016/j.patcog.2019.05.024
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257

Springer Nature 2021 LATEX template

36 Field-based Sensing-driven Clustering in Robot Swarms

article/pii/0377042787901257

Saez-Pons J, Alboul L, Penders J, et al (2010) Multi-robot team formation
control in the GUARDIANS project. Ind Rob 37(4):372–383

Sayama H (2009) Swarm chemistry. Artif Life 15(1):105–114. https://doi.org/
10.1162/artl.2009.15.1.15107

Schranz M, Umlauft M, Sende M, et al (2020) Swarm robotic behaviors and
current applications. Frontiers Robotics AI 7:36. https://doi.org/10.3389/
frobt.2020.00036

Serugendo GDM, Martin-Flatin JP, Jelasity M, et al (eds) (2007) Proceedings
of the First International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007, IEEE Computer
Society

Serugendo GDM, Gleizes M, Karageorgos A (eds) (2011) Self-organising Soft-
ware - From Natural to Artificial Adaptation. Natural Computing Series,
Springer, https://doi.org/10.1007/978-3-642-17348-6

Shen W, Will PM, Galstyan A, et al (2004) Hormone-inspired self-organization
and distributed control of robotic swarms. Auton Robots 17(1):93–105.
https://doi.org/10.1023/B:AURO.0000032940.08116.f1

Testa L, Audrito G, Damiani F, et al (2022) Aggregate processes as distributed
adaptive services for the industrial internet of things. Pervasive and Mobile
Computing (to appear)

Thrun MC, Ultsch A (2021) Swarm intelligence for self-organized clustering.
Artificial Intelligence 290. https://doi.org/https://doi.org/10.1016/j.artint.
2020.103237

Tolksdorf R, Menezes R (2003) Using swarm intelligence in linda systems.
In: Omicini A, Petta P, Pitt J (eds) Engineering Societies in the Agents
World IV, 4th International Workshop, ESAW 2003, London, UK, Octo-
ber 29-31, 2003, Revised Selected and Invited Papers, Lecture Notes in
Computer Science, vol 3071. Springer, pp 49–65, https://doi.org/10.1007/
978-3-540-25946-6 3

Viroli M, Beal J, Damiani F, et al (2019) From distributed coordination to
field calculus and aggregate computing. J Log Algebraic Methods Program
109. https://doi.org/10.1016/j.jlamp.2019.100486

Warren CW (1989) Global path planning using artificial potential fields. In:
Proceedings of the 1989 IEEE International Conference on Robotics and
Automation, Scottsdale, Arizona, USA, May 14-19, 1989. IEEE Computer

https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1162/artl.2009.15.1.15107
https://doi.org/10.1162/artl.2009.15.1.15107
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1007/978-3-642-17348-6
https://doi.org/10.1023/B:AURO.0000032940.08116.f1
https://doi.org/https://doi.org/10.1016/j.artint.2020.103237
https://doi.org/https://doi.org/10.1016/j.artint.2020.103237
https://doi.org/10.1007/978-3-540-25946-6_3
https://doi.org/10.1007/978-3-540-25946-6_3
https://doi.org/10.1016/j.jlamp.2019.100486

Springer Nature 2021 LATEX template

Field-based Sensing-driven Clustering in Robot Swarms 37

Society, pp 316–321, https://doi.org/10.1109/ROBOT.1989.100007

Wolf TD, Holvoet T (2007) Designing self-organising emergent systems based
on information flows and feedback-loops. In: Proceedings of the First Inter-
national Conference on Self-Adaptive and Self-Organizing Systems, SASO
2007, Boston, MA, USA, July 9-11, 2007. IEEE Computer Society, pp
295–298, https://doi.org/10.1109/SASO.2007.16

Wyckoff P, McLaughry SW, Lehman TJ, et al (1998) T spaces. IBM Systems
Journal 37(3):454–474. https://doi.org/10.1147/sj.373.0454

https://doi.org/10.1109/ROBOT.1989.100007
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1147/sj.373.0454

