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Abstract. After pioneering gaseous detectors of single photon for RICH applications using CsI
solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions
for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded
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COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel
photon detectors, covering a total active area of 1.5 m2, have been installed in order to cope
with the challenging efficiency and stability requirements of the COMPASS physics programme.
They are the first application in an experiment of MPGD-based single photon detectors. All
aspects of the upgrade are presented, including engineering, mass production, quality assessment
and performance.

Perspectives for further developments in the field of gaseous single photon detectors are also
indicated.

1. Introduction
The RICH-1 detector [1, 2, 3, 4] of the COMPASS Experiment [5, 6] at CERN SPS has been
upgraded: four new Photon Detectors (unit size: 600×600 mm2), based on MPGD technology
and covering a total active area of 1.5 m2 replace the previously used MWPC-based photon
detectors in order to cope with the challenging efficiency and stability requirements of the new
COMPASS measurements. In fact, COMPASS goal is to deal with trigger rates up to O(105) Hz
and beam rates up to O(108) Hz. Concerning increased stability, this is provided by the new
detector architecture, as explained in the following. In COMPASS RICH-1, MPGD photon
detectors are used for the first time in a running experiment. This realization also opens the
way of a more extended use of novel gaseous photon detectors in the domain of the Cherenkov
imaging technique for Particle IDentification (PID), key detectors in several research sectors and,
in particular, in hadron physics. The relevance is related to the role of gaseous photon detectors,
which are still the only available option to instrument detection surfaces when insensitivity to
magnetic field, low material budget, and affordable costs in view of large detection systems are
required. The MPGD-based photon detectors overcome the limitation of the previous generation
of gaseous photon detectors thanks to two essential performance characteristics: reduced ion and
photon backflow to the photocathode, namely reduced ageing and increased electrical stability,
and faster signal development, namely higher rate capabilities.

2. The novel photon detectors
The detector architecture is the result of a seven-year R&D activity [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23]. It is based on a hybrid MPGD combination (Fig. 1), consisting
in two layers of THick GEMs (THGEM) [24, 25, 26, 27] followed by a resistive MicroMegas
(MM) [28] on a pad segmented anode. The first THGEM also acts as a reflective photocathode:
its top face is coated with a CsI film. The feedback of photons generated in the multiplication
process is suppressed by the presence of two THGEM layers, while the large majority of the ions
from multiplication are trapped in the MM stage. MPGD properties ensure signal development
in about 100 ns.

Each of the four large (600×600 mm2) single photon detectors is formed by two identical
modules 600×300 mm2, arranged side by side. The THGEM geometrical parameters are: 470 µm
thickness, 400 µm hole diameter and 800 µm pitch. Holes are rim-less, namely there is no
uncoated area around the hole edge. They are arranged in a regular pattern with equilateral
triangles as elementary cell. In order to mitigate the effect of occasional discharges, the top
and bottom electrodes of each THGEM are segmented in 12 parallel areas separated by 0.7 mm
clearance, each biased via an individual protection 500 MΩ resistor. Therefore, discharges only
affect a single sector and the operating conditions are restored in about 10 s. The two layers are
staggered, namely there is complete misalignment between the two set of holes: it is so possible
to enlarge the electron cloud reaching the MM stage, therefore favoring larger gain in the last
amplification stage.
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Figure 1. Sketch of the hybrid single photon detector: two staggered THGEM layers are
coupled to a resistive bulk MM. Image not to scale.

The MMs have a gap of 128 µm; they are built by the MM bulk technology [29] using 300 µm
diameter pillars with 2 mm pitch. The MM anode is segmented in 7.5×7.5 mm2 pads. The MM
resistivity is realized through an original implementation, where no resistive layer is applied
to the pads: the resistivity is obtained by 470 MΩ resistors in series with each individual pad
(Fig. 2). The 0.5 mm clearance between pads prevents the occasional discharges to propagate
towards the surrounding pads: the voltage drop of the anodic pads surrounding a tripping one
is about 2 V over the typical 600 V operation voltage, causing a local gain drop lower than 4%.
The nominal voltage condition of the pad where the discharge occurred is restored in about 1 s.
The detector is operated with Ar:CH4 = 50:50 gas mixture, which ensures effective extraction of
photoelectrons from the photocathode. The typical voltage applied are 1270 V across THGEM1,
1250 V across THGEM2, and 620 V to bias the MM. The drift field above the first THGEM
is 500 V/cm, the transfer field between the two THGEMs is 1000 V/cm and the field between
the second THGEM and the MM micromesh is 1000 V/cm. The effective gain-values for the
three multiplication layers are around 12, 10 and 120; these values include the electron transfer
efficiency.

The novel detectors are read out by the read-out system already used for the MWPCs with
CsI photocathode. This read-out system is based on the APV front-end chip [30] read out by a
dedicated ADC [31].

3. Construction, quality control of the components, assembly and installation
The electrical stability of large-size THGEMs is a critical issue. A dedicated protocol has been
elaborated for finishing the industrial produced THGEMs [32]. It includes polishing with fine
grain pumice powder, cleaning with water at high pressure, ultrasonic bath with Sonica PCB
solution (PH11), rinsing with distilled water and backing in oven at 160oC. The procedure moves
THGEM breakdown voltage to at least 90% of the phenomenological Paschen limit [33]. The
quality control of the detector components includes:

• the preselection of the raw material for the PCB that will form the THGEMs in order to
use only foils with homogeneous thickness to guarantee the homogeneity of the gain;

• the THGEM control by optical inspection, by collecting and analyzing microscope images,
scanning by samples the large multiplier surface;
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Figure 2. a) Sketch of the capacitive coupled readout pad. The biasing voltage is distributed
via independent 470 MΩ resistors to the pad facing the micromesh structure (yellow pad in
the sketch). The buried pad (red pad in the sketch) is isolated via 70 µm thick fiberglass and
connected to the front end chip. b) Schematic of the capacitive coupled pad principle illustrated
via discrete element blocks. c) Metallography section of the PCB: detail of the through-via
connecting the external pad through the hole of the buried pad. The reduced diameter of the
through-via reaching the external pad contributes preserving the pad planarity.

• the THGEM validation by gain maps using the multipliers in single layer detectors; gain
uniformity at 7% r.m.s. is obtained;

• the collection of MM gain maps illuminating the detectors by an X-ray gun station; gain
uniformity at 5% r.m.s. is obtained;

• the measurement of the quantum efficiency of the CsI photocathodes, which is performed
immediately after the coating process; the uniformity within a photocathode is at the 3%
level r.m.s. and among the whole production at the 10% level r.m.s.;

• the gas leak checks and overall electrical stability checks of the final detectors.

CsI photocathodes must never be exposed to air to fully preserve their quantum efficiency:
in fact, CsI is highly hygroscopic and it reacts with water vapour that decomposes the
molecule. Therefore, the presence of CsI photocathodes imposes to perform detector assembly,
transportation and installation in glove boxes flushed with N2.

4. The high voltage system
An essential tool for the detector commissioning is the High Voltage (HV) control system,
which also allows for voltage and current monitoring and data logging. The power supplies
are commercial ones by CAEN inserted in a SY4527 mainframe. A1561HDN units power
the THGEMs, while A7030DP power supplies are used for the MMs. The four detectors are
organized, from the HV supply point of view, in four independent sectors each; nine different
electrode types, each one with its specific role, are present in the multilayer detectors. The total
number of HV channels is 136. Manual setting and control of all these HV channels would be both
unpractical and unsafe. The voltages and currents of all the channels are read-out and recorded
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Figure 3. Images of hit pattern in the novel photon detectors. The center of the expected ring
patterns is obtained from the reconstructed particle trajectories; the particle momentum and
the expected Cherenkov angle in the pion hypothesis are also reported. No image elaboration
or background subtraction is applied.

at 1 Hz frequency. If the current spark rate is above a given value the voltage is automatically
readjusted. The system also provides automatic voltage adjustment to compensate for the
variation of the environmental parameters, namely pressure and temperature, that can affect
the detector gain. Gain stability at the 5% level over months of operation has been obtained.

5. Preliminary performance results
The novel detectors have been used during COMPASS runs in year 2016 and 2017, for a total
running period of about 12 months at COMPASS nominal beam rates. No HV trip is observed
during detector operation: thanks to the resistors protecting the THGEM segments and the MM
pads, in case of occasional discharges, only current sparks are observed, which temporary affect
the local performance. The sparks in the two THGEM layers are fully correlated. The sparks
observed in the MM are induced by the THGEM sparks. The restoration after a current spark
is completed within 10 s and the current spark rate is typically 1/h/detector (600×600 mm2).
These figures result in totally negligible dead-time related to sparks.

The measured rate of ion backflow to the photocathode is at the 3% level. The electronics
noise, substantially uniform over the detector surface, is at the 900 electrons equivalent level
(r.m.s).

The images generated in the photon detectors are clean and affected by very limited
background (Fig. 3). The detector resolution in the measurement of the Cherenkov angle
from single photoelectrons is 1.7-1.8 mrad r.m.s., fully matching the expectation (Fig. 4). The
amplitude spectrum of the photoelectron signals is expected to be exponential. This is verified for
pure photoelectron samples, obtained selecting hits contributing to ring images: the exponential
behavior is present over more than two orders of magnitude (Fig. 5). The detector gain is
extracted from a fit of the spectrum and it ranges between 13k and 14k. An electronic threshold
of 3 times the noise level as measured pad by pad is applied to each read-out channel. The
efficiency for single photoelectron detection is obtained from the gain and the threshold and it
results higher than 80%. The noise contributing to the ring images can be estimated from the
spectrum deviation from a pure exponential function at small amplitude and it is at the 10%
level. A preliminary estimate of the number of detected photoelectrons per particle extrapolated
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Figure 4. Distribution of the difference between the Cherenkov angle calculated from
the reconstructed particle momentum and the Cherenkov angle provided by single detected
photoelectrons; a sample of identified pions is used.

Figure 5. Amplitude distribution for a sample of hits contributing to ring Cherenkov images.

to the saturation angle indicates 11 photoelectrons.
The high effective gain, the gain stability and the number of detected photoelectrons per

ring satisfy all the prerequisite requirements to ensure effective hadron identification and stable
performance with the novel RICH-1 photon detectors.

6. Future perspective
The future Electron-Ion Collider (EIC) [34] requires hadron identification at high momenta, a
mission that can only be accomplished by RICH counters with an extended gas radiator. The
use of RICHes in the setup of collider experiments implies specific challenges. The radiator
cannot be too extended to limit the overall apparatus size, imposing the need to detect more
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photoelectrons per radiator unit length. The photon detectors have to operate in presence of
magnetic field. A recent test-beam exercise has demonstrated the possibility to increase the
number of detected photoelectrons by selecting the far UV range around 120 nm [35]. For this
purpose, the RICH prototype has been operated window-less and CF4 has been used at the
same time as radiator gas and detector gas. Therefore, we have started an R&D program to
match these specific requirements. It includes the exploratory study of a new option for the
photoconverter: coating by hydrogenized nanodiamond powder [36].

7. Conclusion
The preliminary results obtained in the characterization of novel MPGD-based photon detectors,
in particular high effective gain, gain stability and number of photons per ring, indicate that
they will fully accomplish the mission of increasing the stability and efficiency of the photon
detector system of COMPASS RICH-1. They also represent a technological achievement. In
fact, for the first time in a running experiment, THGEMs are successfully used, single photon
detection is accomplished by MPGDs, MPGDs are operated at gains larger than 10k.

We have offered indications that MPGD-based photon detectors have a mission to accomplish
also in the future, in particular in the hadron physics sector.

Acknowledgments
The authors are grateful to the colleagues of the COMPASS Collaboration for continuous support
and encouragement.

The use of the read-out system, originally designed and built for the MWPC with CsI
photocathodes by the Munich and Saclay COMPASS groups, is a crucial ingredient for the
successful performance of the MPGD-based photon detectors in COMPASS RICH.

This work is partially supported by the H2020 project AIDA-2020, GA no. 654168. J.
Agarwala and Triloki are supported by ICTP TRIL fellowships.

References
[1] Albrecht E, et al., ”Status and characterisation of COMPASS RICH-1”, Nucl. Instrum. Meth. A 553 (2005)

215
[2] Abbon P, et al., ”Read-out electronics for fast photon detection with COMPASS RICH-1”, Nucl. Instrum.

Meth. A 587 (2008) 371
[3] Abbon P, et al., ”Design and construction of the fast photon detection system for COMPASS RICH-1”, Nucl.

Instrum. Meth. A 616 (2010) 21
[4] Abbon P, et al., ”Particle identification with COMPASS RICH-1”, Nucl. Instrum. Meth. A 631 (2011) 26
[5] The COMPASS Collaboration, Abbon P, et al., ”The COMPASS experiment at CERN”, Nucl. Instrum.

Meth. A 577 (2007) 455.
[6] The COMPASS Collaboration, Abbon P, et al., ”The COMPASS setup for physics with hadron beams”,

Nucl. Instrum. Meth. A 779 (2015) 69
[7] Alexeev M, et al., ”The quest for a third generation of gaseous photon detectors for Cherenkov imaging

counters”, Nucl. Instrum. Meth. A 610 (2009) 174
[8] Alexeev M, et al., ”THGEM based photon detector for Cherenkov imaging applications”, Nucl. Instrum.

Meth. A 617 (2010) 396
[9] Alexeev M, et al., ”Micropattern gaseous photon detectors for Cherenkov imaging counters”, Nucl. Instrum.

Meth. A 623 (2010) 129
[10] Alexeev M, et al., ”Development of THGEM-based photon detectors for Cherenkov Imaging Counters”, 2010

JINST 5 P03009
[11] Alexeev M, et al., ”Progress towards a THGEM-based detector of single photons”, Nucl. Instrum. Meth. A

639 (2011) 130
[12] Alexeev M, et al., ”Detection of single photons with ThickGEM-based counters, 2012 JINST 7 C02014
[13] Alexeev M, et al., ”Detection of single photons with THickGEM-based counters”, Nucl. Instrum. Meth. A

695 (2012) 159



Micro-Pattern Gaseous Detectors Conference 2019

Journal of Physics: Conference Series 1498 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1498/1/012006

8

[14] Alexeev M, et al., ”Development of THGEM-based Photon Detectors for COMPASS RICH-1”, Physics
Procedia 37 (2012) 781

[15] Alexeev M, et al., ”THGEM-based photon detectors for the upgrade of COMPASS RICH-1”, Nucl. Instrum.
Meth. A 732 (2013) 264

[16] Alexeev M, et al., ”Ion backflow in thick GEM-based detectors of single photons”, 2013 JINST 8 P01021
[17] Alexeev M, et al., ”Status and progress of novel photon detectors based on THGEM and hybrid MPGD

architectures”, 2013 JINST 8 C12005
[18] Alexeev M, et al., ”Progresses in the production of large-size THGEM boards”, 2014 JINST 9 C03046
[19] Alexeev M, et al., ”MPGD-based counters of single photons developed for COMPASS RICH-1”, 2014 JINST

9 C09017
[20] Alexeev M, et al., ”Status and progress of the novel photon detectors based on THGEM and hybrid MPGD

architectures”, Nucl. Instrum. Meth. A 766 (2014) 133
[21] Alexeev M, et al., ”MPGD-based counters of single photons for Cherenkov imaging counters”, PoS

(TIPP2014) 075
[22] Alexeev M, et al., ”The gain in Thick GEM multipliers and its time-evolution”, 2015 JINST 10 P03026
[23] Alexeev M, et al., ”Status of the development of large area photon detectors based on THGEMs and hybrid

MPGD architectures for Cherenkov imaging applications”, Nucl. Instrum. Meth. A 824 (2016) 139
[24] Periale L, et al., ”Detection of the primary scintillation light from dense Ar, Kr and Xe with novel

photosensitive gaseous detectors”, Nucl. Instrum. Meth. A 478 (2002) 377
[25] Jeanneret P, ”Time Projection Chambers and detection of neutrinos”, PhD thesis, Neuchatel University,

2001
[26] Barbeau PS, et al., ”Toward coherent neutrino detection using low-background micropattern gas detectors”,

IEEE NS 50 (2003) 1285
[27] Chechik R, et al., ”Thick GEM-like hole multipliers: properties and possible applications”, Nucl. Instrum.

Meth. A 535 (2004) 303
[28] Giomataris Y, et al., ”MICROMEGAS: a high-granularity position-sensitive gaseous detector for high

particle-flux environments”, Nucl. Instrum. Meth. A 376 (1996) 29
[29] Giomataris I, et al., ”Micromegas in a bulk”, Nucl. Instrum. Meth. A 560 (2006) 405
[30] French MJ, et al., ”Design and results from the APV25, a deep sub-micron CMOS front-end chip for the

CMS tracker” Nucl. Instrum. Meth. A 466 (2001) 359
[31] Abbon P, et al., ”A new analogue sampling readout system for the COMPASS RICH-1 detector”, Nucl.

Instrum. Meth. A 589 (2008) 362
[32] Dasgupta SS, ”Particle identification with the Cherenkov imaging technique using MPGD based photon

detectors for physics at COMPASS Experiment at CERN”, PhD thesis, University of Trieste, 2017
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