
Achieving predictable and low end-to-end latency for a network of smart services

Victor Millnert∗, Johan Eker∗†, Enrico Bini‡

∗Lund University, Sweden
†Ericsson Research, Sweden
‡University of Turin, Italy

Abstract—To remain competitive in the field of manufacturing

today, companies must constantly improve the automation

loops within their production plants. This can be done by

augmenting the automation applications with “smart services”

such as supervisory-control applications or machine-learning

inference algorithms. The downside is that these smart services

are often hosted in a cloud infrastructure and the automation

applications require a low and predictable end-to-end latency.

However, with the 5G technology it will become possible to

establish a low-latency connection to the cloud infrastructure

and with proper control of the capacity of the smart services,

it will become possible to achieve a low and predictable end-

to-end latency for the augmented automation applications.

In this work we address the challenge of controlling the

capacity of the smart services in a way that achieves a low

and predictable end-to-end latency. We do this by deriving

a mathematical framework that models a network of smart

services that is hosting several automation applications. We pro-

pose a generalized AutoSAC (automatic service- and admission

controller) that builds on previous work by the authors [1], [2].

In the previous work the system was only capable of handling

a single set of smart services, with a single application hosted

on top of it. With the contributions of this paper it becomes

possible to host multiple applications on top of a larger, more

general network of smart services.

1. Introduction

To remain competitive in the field of manufacturing
today, companies must continuously improve the automa-
tion loops within their production plants. This is typi-
cally done by augmenting the feedback-control loops with
“smart services”. Examples of such smart services could
be supervisory-control applications or machine-learning in-
ference algorithms. The downside is that these automation
loops require a low and predictable end-to-end latency, mak-
ing it very difficult to use smart services that reside in a
cloud infrastructure, remote or local.

With the new and promising technology that 5G brings,
it will become possible to establish a low-latency connec-
tion between the automation applications and the cloud-
infrastructure hosting the smart services. This concept is il-
lustrated in Figure 1, where a manufacturing plant is running
an augmented feedback-loop that uses the network of smart
services residing in the cloud. Every smart service consists

1

3

4

7

8

5

6 9

2

10

Figure 1: A simple illustration of how automation applications
within a factory can make use of a network of smart services
executing in the cloud. The automation applications that use
these smart services require that the end-to-end deadline is
very low and predictable. Since the smart services is built by a
set of virtual resources, i.e., virtual machines, it is possible to
scale the capacity of them, allowing us to control the latency
required for passing through the network of smart services, and
in turn the end-to-end latency of the automation applications.

of a set of virtual resources, such as virtual machines (VMs)
or containers, making it possible to automatically scale the
capacity. In the end, this enables us to control the end-to-
end latency of the network of smart services and in turn the
end-to-end latency of the entire control-feedback loop.

In this work we address the challenge of controlling
a network of smart services in a way that achieves a
predictable and low end-to-end latency. This paper is a
short version of the technical report [3], where we propose
a generalized AutoSAC (automatic service- and admission
control), that builds on previous work [1], [2]. In the early
works the system was only capable of handling a single
chain of cloud functions or smart services, a single packet-
flow, and a single end-to-end deadline. The work presented
in this paper is a generalization necessary to handle the new
network structure and can be summed up by the following
four parts:

a) Input prediction: A feedforward scheme between the
smart services to improve the prediction of traffic flow.

b) Service control: A small theorem simplifying the strategy
used when allocating resources to the smart services.

c) Selection of node deadlines: A new optimization problem
that assigns intermediary deadlines to the nodes.

d) Admission control: An admission controller that enforce
deadlines while having the highest possible throughput.

Related works

There has been a number of works written on the topic
of controlling resources in the cloud and the area of net-
work function virtualization. The majority of them focus on
orchestration, i.e. the problem of deciding where in the phys-
ical world the virtual resources should be allocated. A few
works differ, however, in the way that they instead consider
the problem of controlling the graphs of virtualized network
functions (VNFs) with respect to some end-to-end goals. For
instance Lin et al. [4] do a static one-time orchestration
with the right amount of resources to satisfy some end-to-
end requests. Shen et al. [5] develop a management frame-
work, vConductor, for realizing end-to-end virtual network
services. However, they are not considering timing-sensitive
applications with deadlines for the packets moving through
the chain, which is done by Li et al. [6] where they present a
design and implementation VNF-RT that aims at controlling
VNFs with soft Real-Time guarantees, allowing packets to
have deadlines

Despite the dynamic nature of the traffic that the VNF
graphs will encounter there is only a few works that con-
sider it and aim at designing an elastic, dynamic resource
controller to counter the problem. In [7] Mao et al. develop
a mechanism for auto-scaling VNF resources to meet a user-
specified performance goal. Another work that addresses the
problem of meeting performance goals despite the dynamic
traffic is [8]. They achieve it by doing load-balancing with
a software-defined networking (SDN) controller between
the VNFs. Another work also combining flow scheduling
and resource allocation is [9] where they develop a neat
mathematical model used as foundation for their synthesis.
Other works focusing on developing a model of a VNF is
[10], and [11].

The classic method to guarantee end-to-end deadlines of
transaction is by holistic analysis [12], in which schedulabil-
ity analysis at each node is iterated until the convergence of
the response times of each transaction is reached. Pellizzoni
and Lipari [13] improved the holistic analysis by using offset
rather than jitter of tasks. Lorente et al. [14] extended the
holistic analysis to the case with nodes running at a fraction
of computing capacity (abstracted by a bounded-delay time
partition with bandwidth and delay). Similarly, Ashjaei et

al. [15] proposed resource reservation over each node along
the path.

2. Model and problem formulation

The goal of this section is to derive a mathematical
framework for modeling the network of smart services,
cloud functions, or virtual network functions, as described
in Section 1.

Network and packet flows. To model the network
of cloud functions we start by describing the connectivity
among them as a directed graph G = {V , E}, where

• V is the set of n = |V| virtualized network function
(VNF) nodes. For convenience, we label the nodes
with the integers from 1 to n, that is V = {1, . . . , n};

Infrastructure

dd

ss

ss

dd
2

1 3111

22

33

p2p2

p1p1

ss

p3p3

dd

Figure 2: A simple network with three sources, three desti-
nations, three cloud functions, and three packet flows p1 =
{1, 2, 1, 3} (in red), p2 = {1, 3, 2} (in blue), and p3 = {1, 2, 3}
(in green). Each cloud function consists of a number of vir-
tual resources, e.g., virtual machines or containers, that are
deployed on some commodity hardware infrastructure.

• E ⊆ V × V is the set of edges between these nodes.
If (i, i′) ∈ E then an edge from node i ∈ V to node
i′ ∈ V exists.

The network graph G will see a set of f different
flows traversing the network. Each flow has an end-to-end

deadline associated with it, which for the j-th flow is given
by Dj . Moreover, the packets belonging to the j-th flow will
traverse the network and visit a specific set of nodes (where
they will be processed) in a specific order. This is modeled
by the sequence pj : {1, . . . , ℓj} → V , with ℓj ≥ 1 being
the length of the path, such that

∀k = 1, . . . , ℓj − 1, (pj(k), pj(k + 1)) ∈ E . (1)

The function pj is therefore a mapping from the integers
1, . . . , ℓj to the set of nodes given by V . Hence, pj(k)
is the k-th node of the j-th path. Naturally, equation (1)
enforce the existence of an edge between two consecutive
nodes in the path of a flow. One should note that this
model is general and allow for flows to traverse a node
more than once, thus allowing us to model the typical
scenario of automation applications and feedback-control
loops mentioned in Section 1. It is therefore useful to define
δj,i as the number of times that flow j pass through node i.

An example of a network that we can model now is
illustrated in Figure 2. Using our framework, it can be
modeled by a graph G = {V , E} with V = {1, 2, 3} and
E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 2)}. The paths of three
flows are modeled by p1 = {1, 2, 1, 3}, p2 = {1, 3, 2}, and
p3 = {1, 2, 3}, with end-to-end deadlines given by D1, D2,
and D3 respectively. It should be noted that δ1,1 = 2.

Traffic flow. At time t, the i-th node of the network
will see traffic arriving at a rate of ri(t) ∈ R

+ packets per
second (pps). The arriving packets are either discarded, or
admitted into the queue of the node at an admission rate

of ai(t) ∈ [0, ri(t)] pps. At time t the node will have a
queue size of qi(t) packets. In order to process the packets
in the queue, a number of mi(t) ∈ N virtual machines will
provide the node with a maximum processing capacity of
scap
i (t) packets per second. Naturally, the node might not

always be able to process at this maximum capacity. For
instance, the queue might be empty. The actual rate by which
the node is processing packets with is therefore given by the

service rate si(t):

si(t) =

{

scap
i (t) if qi(t) > 0,

min(scap
i (t), ai(t)) else.

(2)

Machine model. In order to adapt the maximum
processing capacity of the node to changes of the traffic rate,
it is possible to control the number of virtual machines that
are running in the node. This is done with the control signal

mref
i (t) ∈ N. To model the time necessary to start/stop a

virtual machine, the number of VMs that are running is a
delayed version of this control signal:

mi(t) = mref
i (t−∆i), (3)

where ∆i ∈ R
+ is the time-delay needed to start/stop a

virtual machine.
Every machine instance running in the i-th node has an

expected service capacity of s̄i packets per second. However,
the actual performance will often deviate from the expected
performance and can depend on where it is deployed as
well as on what other processes are running on the physical
server that the VM is hosted on, as shown in [16]. To model
this, the maximum processing capacity of is given by:

s
cap
i (t) = mi(t) · (s̄i + ξ̂i(t)), (4)

where ξ̂i(t) is the average machine uncertainty. For in-
creased readability we will neglect this uncertainty for the
remainder of this section and Section 3. If interested, this
uncertainty is treated thoroughly in the technical report [3].
It should be noted however, that when evaluating the perfor-
mance in Section 4, the uncertainty will indeed be treated.

Node latency. It is useful to measure the time it
takes a packet to pass through the i-th node. We denote this
as the node latency Li(t):

Li(t) = inf{τ ≥ 0 : Ai(t− τ) ≤ Si(t)}, (5)

where Ai(t) =
∫ t

0 ai(x)dx and Si(t) =
∫ t

0 si(x)dx.
Node deadline. For the scenario of augmented au-

tomation loops outlined in Section 1 it is assumed that
there are many different packet flows going through the
different smart services of the network. In order to reduce
the complexity that this brings with it, we find it useful to
introduce an intermediary node deadline Di. This means that
a packet that arrives at the i-th node will only be admitted
into the node if it is possible to guarantee that the packet
will be processed and exit the function within Di seconds.
This must hold, regardless of which flow the packet belongs
to. In other words, every packet arriving at the i-th node will
have the same node deadline Di, even though they might
belong to different flows with different end-to-end deadlines.
Mathematically speaking, this means that when assigning
node deadline one will be constrained by

∑

∀i∈pj

δj,i ·Di ≤ Dj j = 1, . . . , f, (6)

which states that the sum of all the node deadlines over a
path j must be less than its end-to-end deadline.

Problem formulation.
As mentioned in the introduction of this paper, the goal

is to derive ways of controlling the resources allocated to
the smart services, or the cloud functions, in order to have

predictable and low end-to-end latencies for the augmented
automation-applications using the network of smart services
Informally, this goal can be described as trying to ensure
that the end-to-end deadlines of the different packet-flows

are met, while using as little resources and discarding as

few packets as possible. As an aid when evaluating this goal
we propose three formal metrics, defined in (7):

a) availability U a(t) – is there a high throughput, or are
many packets being discarded?

b) efficiency U e(t) – are the nodes efficient, or are they
wasting resources?

c) utility U(t) – a combination of the availability and the
efficiency.

The intuition behind the choice of these metrics is that it
is typically easy to have either a high efficiency or a high
availability but not both at the same time. One can for in-
stance choose to overallocate resources in a node, something
typically seen today, resulting in a high availability but a
poor efficiency, or one can instead choose to have a high
efficiency, forcing the node to discard many packets.

U a(t) = 1
n

∑

i∈V

ua

i (t), U e(t) = 1
n

∑

i∈V

ue

i(t),

U(t) = 1
n

∑

i∈V

ua

i (t) · u
e

i(t),
(7)

with ua

i (t) and ue

i(t) given by

ua

i(t) =

{

si(t)/ri(t) if Li(t) ≤ Di

0 if Li(t) > Di

ue

i(t) =
si(t)

s
cap
i (t)

(8)

3. AutoSAC for a network of cloud functions
The general idea behind AutoSAC (automatic service-

and admission controller) is to create an abstraction of the
parts included in a controller that can achieve the goal intro-
duced in Section 1, which is to have a low and predictable
end-to-end latency for a network of smart services. From
our perspective these parts are illustrated in Figure 3 and
include: i) input prediction, ii) service control, iii) selection
of node deadlines, and iv) admission control.

In this section we will propose possible solutions for
each of the four parts, but ultimately the goal is to stimulate
research resulting in better versions, which in the end can
replace what is proposed here. We will present a brief
overview of the proposed solutions, followed with a slightly
more detailed description in Sections 3.1–3.3. For a com-
plete picture we refer the reader to the technical report [3].
Before diving into this however, it should be noted that
the underlying timing-assumptions for this work, shown in
Table 1, is the same as it has been for the previous work [1]
and [2], on top of which this work builds.

As a brief overview, the idea is that the input predictor

is meant to predict the future arrival rate to the different
nodes in the network. It should do this using only local
information from the node, i.e., in a decentralized way.
This information is then used by the service controller to
compute the amount of allocated resources necessary to
maximize the utility function (7). To do this, it is necessary

!"#"#
#5

STOP ++

$%&'"()*+(,-%.#/

0.1"'

2%,'4&

3%/,(&3#3*

1(,5#'/

(&&%6%.7*

'&(89%,
4"'74%.7*

'&(89%,

:#&6%,#*

;4.'&4))#&

<3=%//%4.

;4.'&4))#&

1%,'#3*%.1"'

=(,-%.#*

***".,#&'(%.'>

/#&6%,#

&('#

(3=%//%4.*&('#

(3=%//%4.

,4.'&4)

/%7.()

/#&6%,#

,4.'&4)

**/%7.()

Figure 3: An abstract overview of the parts included in the controller of the smart services. Together, the input predictor, service
controller, and admission controller can ensure that there is the right number of virtual machines running in the node, so that
the latency for passing through the node is as low as it has to be. The colored arrows in the figure illustrate how information
is passed between the controller-parts, i.e, from the input predictor to the service controller, and the black arrows indicate the
traffic flow.

to consider the variations of the performance, the machine
uncertainty, of the virtual machines. To ensure that the end-
to-end latency for the different flows in the network is
low and predictable, we set up an optimization problem in
selection of node deadlines. The goal is to split the end-
to-end deadlines for the different flows into intermediary
node deadline, thus reducing the complexity of the control
problem. Finally, admission controller use information from
the service controller when deciding how many packets that
should be admitted into the node. Its goal is to admit as
many packets as possible, while still ensuring that no packet
violates the node deadline.

3.1. Input prediction
The importance of having a good prediction of arriving

traffic comes form the fact that it takes ∆i seconds for the
i-th node to start/stop a VM. Recall that the number of
VMs running is controlled through mref

i (t) and also that
mi(t) = mref

i (t −∆i). Hence it takes ∆i seconds for any
changes of mref

i (t) to take effect. This means that at time t
the node has to make a decision about how many VMs will
be needed at time t +∆i. For this decision to be good, to
yield the highest possible utility, a good prediction of the
arrival rate at time t+∆i is necessary.

The traffic that pass through a node originates from many
different sources. Some traffic has passed through many
other nodes within the network, while other traffic comes
directly from an outside source. For this reason, we find it
useful to introduce a distinction between these two scenarios.
We therefore introduce the notion of internal traffic rIi(t) and
external traffic rEi (t). By internal traffic we mean traffic that

TABLE 1: Timing assumptions for the end-to-end deadline, the
rate-of-change of the input traffic, and the time-overhead for
starting/stopping instances. One should note that the difficulty
of controlling this system stems from the fact that they are all
on different orders of magnitude.

Parameter timing assumption

long-term trend change of the input 1min – 1h
time-overhead ∆i 1s – 1min

end-to-end deadline Dj 1ms – 100 ms

arrives to the node directly from another node within the
network, and by external we mean traffic that arrive directly
to the node without passing through another node in the
network, i.e., directly from an outside source. Together, they
form the total arrival rate for the node:

ri(t) = rIi(t) + rEi (t). (9)

The distinction between internal and external traffic is
useful because it allows us to use different methods when
predicting their future arrival rates. We can thus denote the
predicted arrival rate to the node as r̂i(t):

r̂i(t) = r̂Ii(t) + r̂Ei (t), (10)

where r̂Ii(t) and r̂Ei (t) are the predictions of the internal
and the external traffic respectively. Next, the strategies for
predicting these two will be described in more detail.

Predicting external traffic. When predicting the
traffic arriving to the node directly from an external source,
the timing assumptions of Table 1 imply that it is sufficient
to use a linearization-method. The reason is that the rate-of-
change of the external traffic is assumed to be on a different
time-scale than the time-delay ∆i. Using linearization, the
prediction of the external traffic can be computed as

r̂Ei (t+∆i) = ri(t) + ∆i ·
dri(t+∆i)

dt
. (11)

It should be noted that this method is the same as has been
proposed in the previous works [1] and [2].

Predicting internal traffic. Due to the network
structure of the nodes it is possible to achieve a very good
prediction of the internal traffic, i.e., the traffic flowing
between two nodes in the network. In fact, this can be
achieved by having every node that is sending traffic to the
i-th node to also send its future predictions. Let us denote
the prediction of traffic from node i′ to node i as r̂I(i′,i)(t).
The prediction of the total internal traffic arriving to node i
can then be written as

r̂Ii(t) =
∑

i′∈V

r̂I(i′,i)(t). (12)

The idea is therefore that it is the information about r̂I(i′,i)(t)
that the i′-th node will send to node i. Node i can then sim-
ply sum these predictions up to form a good prediction about

the internal traffic that will arrive in the future. Predicting
r̂I(i′,i)(t) should be done within the i′-th node, using only

local information, and can be decomposed into:

1) predict the future service-rate ŝi′(t), and
2) predict the fraction of traffic routed to node i.

For a complete derivation how the internal traffic is predicted
we refer to the technical report [3].

3.2. Service control

With good prediction of the arrival rate at time t +∆i,
it becomes possible to make a good decision about how
much resources will be needed at that time, which in the
end makes it possible to make a good decision about what
mref

i (t) should be at time t. The service controller we use
was derived in the earlier works [1] and [2]. However, we
will here present a simplification of the control-law when
a large number of virtual machines is used. The service
controller developed in the previous works is given by:

mref
i (t) =







⌊κi(t)⌋, if ⌊κi(t)⌋⌈κi(t)⌉ ≥ κ2
i (t)

⌈κi(t)⌉, else

(13)

where κi(t) = r̂i(t + ∆i)/s̄i. The intuition behind this
control-law comes from trying to maximize the utility func-
tion (7). Since the exact number of VMs required to match
the incoming traffic is given by κi(t) it becomes necessary to
either select mref

i (t) = ⌊κi(t)⌋ leading to slightly too little
processing capacity (implying that packets will be discarded)
or to instead select mref

i (t) = ⌈κi(t)⌉ leading to slightly
too much processing capacity (implying that resources will
be wasted). The statement deciding which case to chose is
meant to optimize the utility function, (7). For a complete
derivation of (13) we refer to the earlier works. It should
also be noted that hidden within this equation is a feedback-
control law compensating for the variations of the perfor-
mance of the virtual machines, i.e. the machine uncertainty.

As mentioned earlier, the addition made in this work is
a small theorem showing that if one should have a large
number of virtual machines, the control-law of (13) can be
simplified into mref

i (t) = ⌊κi(t)⌉ as shown in Theorem 3.1
below.

Theorem 3.1. When the node is having a large number

of virtual machines running, mref
i (t) can be computed as

mref
i (t) = ⌊κi(t)⌉.

Proof: A complete proof is shown in the technical
report [3], but the idea is that one can rewrite κi(t) as
κi(t) = ⌊κi(t)⌋ + ρ, with ρ ∈ [0, 1). This allows us to
rewrite the control-law as

mref
i (t) =

{

⌊κi(t)⌋ , if ρ ≤ 1
2 − ρ2

2⌊κi(t)⌋

⌈κi(t)⌉ else

which for a large κi(t), and thus a large ⌊κi(t)⌋, becomes

mref
i (t) = ⌊κi(t)⌉ ,

⌊x⌉ means that x is rounded to the nearest integer.

3.3. Selection of node deadlines

To be able to ensure that the end-to-end latency for the
different flows of the network are low and predictable there
will be an end-to-end deadline associated with each flow.
The end-to-end deadline for the j-th flow is Dj . Due to the
variations of the performance of the virtual machines, as
well as variations in the traffic load, it becomes necessary to
sometimes discard packets. Doing this on a global scale, for
each flow, becomes very complex so the proposition in this
work is to instead split the end-to-end deadlines into smaller
intermediary node deadlines. This means one deadline for
every node in the network. In other words, every packet
entering a node i will have a node deadline of Di, regardless
of which flow it belongs to. It will then be the task of the
admission controller (presented in Section 3.4) to ensure
that these node deadlines are met.

The ratio of ∆i/Di. How should one go about to
split these end-to-end deadlines into smaller node deadlines
then? To be able to address this, one must know how
different choices of node deadlines affect the utility of the
system. To gain some understanding of this, a thorough
analysis was made in the technical report [3]. The intuition
gained from it was that the ratio of ∆i/Di is a good metric
to optimize for when selecting the node deadlines. This
ratio gives insight in how difficult it is to control a node.
A small ratio means that it is easy to quickly react to
changes of the arrival rate, or to performance changes of
the virtual machines. In fact, a ratio smaller than 1 implies
that there is always time to react to such changes. As the
ratio grows larger, it becomes impossible to react to such
changes. Instead, it becomes necessary to have a proactive
approach—to predict the future arrival rates. The larger the
ratio, the longer into the future one must predict, hence the
harder it becomes to control the node.

The optimization problem. We use the insights
about ∆i/Di to set up an optimization problem that assigns
node deadlines Di to every node in a way so that no end-
to-end deadline Dj is violated. The optimization problem is
given as:

minimize
∑

∀i∈V

∆i/Di

subject to
∑

∀i∈pj

δj,i ·Di ≤ Dj j = 1, . . . , f

Di ≥ 0 ∀i ∈ V

(14)

where δj,i indicates how many times path j goes through
node i and ∆i indicates the time-overhead necessary to
change the number of VMs in the i-th node. As shown
in [3], this optimization problem can either be solved using
disciplined cone programming or by standard methods such
as Lagrange multipliers.

3.4. Admission control

The goal of the admission controller is to allow as many
packets as possible to pass through the node, without any
of them missing the node deadline. This is achieved by con-
trolling the admission rate ai(t) according to the admission
policy presented in Theorem 3.2 below. In the theorem we

AutoSAC DAS DOA DAS
AC

DOA
AC

0.5

0.6

0.7

0.8

0.9

1

U
ti
li
ty

mean(U) mean(U e) mean(Ua)

AutoSAC DAS DOA DAS
AC

DOA
AC

0

5

10

15

20

25

p
er
ce
n
t
(%

)

discarded overallocation

Figure 4: Through a large number of simulations of the network depicted in Figure 2 the performance of the automatic service-
and admission controller (AutoSAC) developed in this paper was compared with what is currently being used in industry. The
methods AutoSAC was compared against was dynamic auto-scaling (DAS) and dynamic overallocation (DOA). Neither DAS nor
DOA has admission controller so they were augmented with the one developed in this paper. In the left figure one can see the
result of the average utility, efficiency, and availability for each of the five methods, and in the right figure the fraction of the
incoming packets that are discarded and the average amount of overallocation of resources.

show that the policy is optimal and that it is capable of
computing the admission rate in constant time. Furthermore,
an overview of the admission controller is shown in the form
of a block diagram in Figure 5. It highlights the fact that
the computation required for this admission policy can be
computed instantly and continuously. The admission policy
can therefore allow the node to dynamically change the node
deadline Di over time, if necessary. This is not something
that will be used in this paper, but investigated in future
work.

Theorem 3.2. The admission policy

ai(t)=

{

ri(t) if Ai(t) < Si(t+Di)

min(ri(t), si(t+Di)) else.

will admit as many packets as possible while still ensuring

that the admitted packets meet the node deadline of Di.

Proof: For a complete proof, and one that includes
the machine uncertainty, please see the technical report [3].
The intuition is that incoming packets are guaranteed to meet
their deadlines as long as the node latency is less than the
node deadline Li(t) < Di(t). From (5) it follows that this
is equivalent to Si(t + Di) > Ai(t). Hence, as long as
this inequality holds, any incoming packet is guaranteed to
meet its deadline. Should instead Li(t) = Di(t), the largest
possible admission rate becomes ai(t) ≤ si(t+Di).

4. Evaluation

To evaluate the performance of the new AutoSAC (au-
tomatic service- and admission controller) presented in Sec-
tion 3, a large Monte Carlo simulation was performed.
A complete description of the simulation method can be
found in the technical report [3], but the basic idea was
to randomly generate a network of smart services, similar
to the one shown in Figure 2. For every simulation, the
properties of the network such as the time-delay ∆i for
the different nodes, nominal service-rates of the VMs s̄i(t),
end-to-end deadlines Dj of the flows, etc., were randomly
generated. To ensure that the traffic flowing through the
network was realistic we used a real traffic-trace from the

= 0

switch

upper: = 0
lower: > 0

min

ri(t)
ai(t)

∫

−1
Ai(t)∑

∫
Si(t+Di)

∆i −Di

time delay

×
si(t+∆i) si(t+Di)

mref
i (t)

s̄i

Figure 5: Block-diagram of the proposed admission controller.
It uses feedback from the queue-size (computed using feedback
from mref

i (t) and ai(t)) in order to compute whether the incom-
ing packets can be admitted or not. As shown in Theorem 3.2
the feedback-law (or admission policy) derived here is able to
admit as many packets as possible, while still guaranteeing
that all the admitted packets will meet the node deadline Di.
It should be noted that it is assumed that ∆i > Di.

Swedish university network (SUNET). In Figure 6 we show
an example of the traffic rate for three different flows in one
of the simulations. One can see that it fluctuates quite a bit.

With this set-up, the generalized AutoSAC was com-
pared against two common industry-methods: dynamic auto

scaling (DAS) and dynamic overallocation (DOA). Since
neither of these two methods use an admission controller,
we augment both of them with the the one developed in
this paper, resulting in two additional methods: (DAS+AC)
and (DOA+AC). Each of these five methods was evaluated
using a 1,000 Monte-Carlo (MC) simulations.

0 1 2 3 4 5
0

5 000 000

10 000 000

time (hours)

in
p
u
t
ra
te
(p
p
s)

p1 p2 p3

Figure 6: Input traffic for three packet flows, i.e., applications,
for one of the many simulations.

Dynamic auto-scaling (DAS). This is the auto-
scaling method offered to customers of Amazon Web Ser-
vices, [17]. It is a purely reactive method and is based on
having the users monitoring a specific metric (e.g., CPU
utilization) of their VMs using CloudWatch. The user then
specifies two thresholds on which the auto-scaling is based
upon. For this evaluation the efficiency metric ue

i(t) was
used as the auto-scaling metric with the following thresh-
olds:

{

add a VM if ue

i(t) > 0.9,

remove a VM if ue

i(t) < 0.8.

Dynamic overallocation (DOA). A downside with
DAS is that it only uses feedback to control the number
of instances it needs. With a large ratio between the time-
overhead and the local node deadline it becomes very dif-
ficult to control solely based on feedback. An alternative
approach commonly used in industry is to instead use dy-
namic overallocation where one measures the input to each
function and allocates virtual resources such that there is an
expected overallocation of 10%.

Results. The result of the Monte Carlo simulation
is shown in Figure 4. The left part show the comparison
of the average utility, efficiency, and availability. The right
part illustrate the same result, but by instead showing the
fraction of packets that are discarded as well as how much
overallocation each method cause.

One can see that AutoSAC is close to optimal in the
average utility, availability, and efficiency. As expected, DAS
has an efficiency in the range of 0.8–0.9, since those are the
thresholds by which it bases its auto-scaling on. It should
be noted that increasing this band of thresholds did not
improve the efficiency (the current range yielded the best
performance). DOA achieves an efficiency of around 0.85
which is also expected. The reason for the poor average
utility for these two methods, however, is due to the lack of
an admission controller. Without one a queue will build up
every time there is a lack of processing capacity. This in turn
increases the latency, causing packets to miss their deadlines
resulting in a low availability. By augmenting DAS and DOA
with the admission controller developed in Section 3.4 the
availability is significantly increased by allowing it to drop
some of the packets in a strategic way. By looking at the
right part of Figure 4 one realize that it is only a very small
fraction of the packets that are actually discarded, so it is a
sacrifice well worth making.

5. Summary

In this paper we derive a general mathematical model
for network of smart services that can be used by a set of
automation applications requiring a very low and predictable
end-to-end latency. The model is used to derive control-laws
for controlling the resources allocated of the smart services
in a way that achieves the required end-to-end latency.
The proposed control-strategies are evaluated and compared
against other methods, commonly used in the cloud industry
today. The evaluation, based on a large Monte Carlo sim-
ulation, shows that the automatic service- and admission

controller (AutoSAC) proposed in this work performs very
well. The evaluation also shows that the optimal admission
controller proposed in this work can significantly increase
the performance of existing industry methods.

References
[1] V. Millnert, J. Eker, and E. Bini, “AutoSAC: automatic scaling and

admission control of forwarding graphs,” Annals of Telecommunica-

tions, vol. 16, no. 3, pp. 15–12, Aug. 2017.

[2] ——, “Dynamic control of NFV forwarding graphs with end-to-
end deadline constraints,” in ICC 2017 - 2017 IEEE International

Conference on Communications. IEEE, 2017, pp. 1–7.

[3] ——, “Achieving predictable and low end-to-end latency for
a cloud-robotics network,” 4 2018. [Online]. Available: http:
//lup.lub.lu.se/record/fe4a3a04-ee6d-49e2-b634-7f9917340641

[4] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal Network
Function Virtualization Realizing End-to-End Requests,” in GLOBE-

COM 2015 - 2015 IEEE Global Communications Conference. IEEE,
2014, pp. 1–6.

[5] W. Shen, M. Yoshida, T. Kawabata, K. Minato, and W. Imajuku,
“vConductor: An NFV management solution for realizing end-to-
end virtual network services,” in 2014 16th Asia-Pacific Network

Operations and Management Symposium (APNOMS). IEEE, 2014,
pp. 1–6.

[6] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016 - IEEE

Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[7] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with dead-
line and budget constraints,” in 2010 11th IEEE/ACM International

Conference on Grid Computing (GRID). IEEE, 2010, pp. 41–48.

[8] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Resource
Management and Orchestration for a Dynamic Service Chain Steering
Model,” in GLOBECOM 2016 - 2016 IEEE Global Communications

Conference. IEEE, 2016, pp. 1–6.

[9] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Dynamic
network service optimization in distributed cloud networks,” in IEEE

INFOCOM 2016 - IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS). IEEE, 2016, pp. 300–305.

[10] G. Faraci, A. Lombardo, and G. Schembra, “A building block to
model an SDN/NFV network,” in ICC 2017 - 2017 IEEE Interna-

tional Conference on Communications. IEEE, 2017, pp. 1–7.

[11] Y. Ren, T. Phung-Duc, J.-C. Chen, and Z.-W. Yu, “Dynamic Auto
Scaling Algorithm (DASA) for 5G Mobile Networks,” in GLOBE-

COM 2016 - 2016 IEEE Global Communications Conference. IEEE,
2016, pp. 1–6.

[12] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-

ming, vol. 50, pp. 117–134, Apr. 1994.

[13] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Systems, vol. 30, no. 1–2, pp. 105–128,
2005.

[14] J. L. Lorente, G. Lipari, and E. Bini, “A hierarchical scheduling model
for component-based real-time systems,” in Proceedings of the 20-th

International Parallel and Distributed Processing Symposium, Rhodes
Island, Greece, Apr. 2006.

[15] M. Ashjaei, S. Mubeen, M. Behnam, L. Almeida, and T. Nolte, “End-
to-end resource reservations in distributed embedded systems,” in
22nd IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), Aug. 2016, pp. 1–11.

[16] P. Leitner and J. Cito, “Patterns in the Chaos—A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds,” ACM

Transactions on Internet Technology, vol. 16, no. 3, pp. 1–23, Aug.
2016.

[17] (2016, 10). [Online]. Available: https://aws.amazon.com/
documentation/autoscaling/

