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Abstract

Background: Alcohol is an established risk factor for several cancers, but modest alcohol-cancer associations may be
missed because of measurement error in self-reported assessments. Biomarkers of habitual alcohol intake may provide
novel insight into the relationship between alcohol and cancer risk. Methods: Untargeted metabolomics was used to
identify metabolites correlated with self-reported habitual alcohol intake in a discovery dataset from the European
Prospective Investigation into Cancer and Nutrition (EPIC; n¼454). Statistically significant correlations were tested in inde-
pendent datasets of controls from case-control studies nested within EPIC (n¼280) and the Alpha-Tocopherol, Beta-Carotene
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Cancer Prevention (ATBC; n¼438) study. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confi-
dence intervals (CIs) for associations of alcohol-associated metabolites and self-reported alcohol intake with risk of pancre-
atic cancer, hepatocellular carcinoma (HCC), liver cancer, and liver disease mortality in the contributing studies. Results: Two
metabolites displayed a dose-response association with self-reported alcohol intake: 2-hydroxy-3-methylbutyric acid and an
unidentified compound. A 1-SD (log2) increase in levels of 2-hydroxy-3-methylbutyric acid was associated with risk of HCC
(OR¼2.54, 95% CI ¼ 1.51 to 4.27) and pancreatic cancer (OR¼1.43, 95% CI ¼ 1.03 to 1.99) in EPIC and liver cancer (OR¼2.00,
95% CI ¼ 1.44 to 2.77) and liver disease mortality (OR¼2.16, 95% CI ¼ 1.63 to 2.86) in ATBC. Conversely, a 1-SD (log2) increase
in questionnaire-derived alcohol intake was not associated with HCC or pancreatic cancer in EPIC or liver cancer in ATBC but
was associated with liver disease mortality (OR¼2.19, 95% CI ¼ 1.60 to 2.98) in ATBC. Conclusions: 2-hydroxy-3-
methylbutyric acid is a candidate biomarker of habitual alcohol intake that may advance the study of alcohol and cancer risk
in population-based studies.

In 2016, an estimated 2.8 million deaths, corresponding to 6.8%
and 2.2% of age-standardized deaths in men and women, re-
spectively, were attributed to alcohol use worldwide (1).
Excessive alcohol consumption is an established risk factor for
many acute and chronic health conditions (2), including cancers
of the upper aerodigestive tract, female breast, liver, colon, and
rectum (3). However, the relationship of alcohol, particularly
light-to-moderate alcohol consumption, with other cancer sites
remains controversial (4).

Self-reported alcohol intake is, like other dietary factors,
prone to underreporting (5). Validation studies have shown
larger correlations for alcohol intake measured via dietary ques-
tionnaire and 24-hour dietary recall than those many other die-
tary constituents; however, this information may not reflect the
level of accuracy because alcohol is a sensitive exposure, mak-
ing it susceptible to underreporting across self-reported assess-
ments. Consequently, the extent and distribution of exposure
misclassification are unknown (6), and it is likely that observed
associations between alcohol use and disease risk in prospec-
tive studies are attenuated and that estimates of alcohol-
attributable death and disease are underestimated. Biomarkers
of liver function and oxidative stress are used to study alcohol-
related liver injury and alcoholic liver disease (7,8), but most al-
cohol consumers, particularly light-to-moderate consumers,
will never manifest alcoholic liver disease. There are also bio-
markers of recent (eg, ethyl glucuronide) and heavy alcohol use
(eg, carbohydrate deficient transferrin and phosphatidyletha-
nol) (9-11). However, biomarkers of habitual alcohol use, includ-
ing light-to-moderate drinking, are needed to better assess
alcohol exposure in epidemiological studies and to improve risk
estimates for diseases including cancer where modest associa-
tions may exist.

Metabolomics is a powerful tool for discovering dietary bio-
markers. When used in an untargeted mode, it can detect a
wide range of compounds in biological samples including
metabolites formed during digestion, metabolism, and micro-
bial fermentation (12,13), making it well suited for discovering
novel biomarkers of exposure or response to habitual alcohol
consumption. Herein, we applied a multistage design, using
untargeted metabolomics and independent discovery and test
datasets, to identify serum metabolites associated with habitual
alcohol consumption among free-living individuals with a wide
range of intake. We then estimated the associations of these
candidate alcohol biomarkers with risk of pancreatic cancer,
liver cancers, and liver disease mortality in the European
Prospective Investigation into Cancer and Nutrition (EPIC) study
and the Alpha-Tocopherol, Beta-Carotene Cancer Prevention
Study (ATBC).

Methods

Study Design

EPIC recruitment and study procedures, including dietary as-
sessment methods and blood collection, are described exten-
sively elsewhere (14). Briefly, EPIC is a large cohort study of
more than half a million men and women recruited between
1992 and 2000 in 23 European centers. Diet, including average
daily alcohol intake, over the 12 months before enrollment was
assessed by validated country-specific food frequency question-
naires designed to capture local dietary habits with high com-
pliance. Country-specific self-reported alcohol intake was
calculated based on the estimated average glass volume and
ethanol content for wine, beer, cider, sweet liquor, distilled spi-
rits, or fortified wines, using information collected in standard-
ized 24-hour dietary recalls from a subset of the cohort (15). The
correlation between alcohol intake estimated by food frequency
questionnaires and 24-hour dietary recall was 0.79 (16). Blood
samples were collected and stored at -196�C under liquid nitro-
gen at the International Agency for Research on Cancer (IARC)
for all countries except Sweden (-80�C freezers) and Denmark (-
150�C, nitrogen vapor).

Our study included a discovery and 2 independent test data-
sets (see Figure 1). The discovery set (n¼ 454) was nested in the
EPIC cross-sectional study (17,18). The first test set included
control subjects from 2 EPIC nested case-control studies of he-
patocellular carcinoma (HCC; n¼ 128) and pancreatic cancer
(n¼ 152) with untargeted metabolomics data (19–21). The sec-
ond test set included 2 nested case-control studies in the ATBC
cohort of male Finnish smokers (22). In ATBC, participants
reported on demographics, lifestyle, and medical history via
questionnaires and donated a fasting serum sample at baseline,
which was stored at -70�C. For this study, we excluded controls
(as well as cases) with missing self-reported alcohol intake
(n¼ 72) and those with samples that failed laboratory analysis
(n¼ 18); of the remaining 864 observations, 438 were controls.

In EPIC, nonmetastatic incident HCC (n¼ 128) and pancreatic
cancer (n¼ 152) cases were matched 1:1 with cancer-free con-
trols on study center, sex, age at blood collection (6 1 year), date
(6 6 months), and time of the day (6 2 h) of blood collection, fast-
ing status, and, for women, exogenous hormone use. Follow-up
was based on a combination of methods, including health insur-
ance records, registries, and active follow-up (14). Approval for
the EPIC study was obtained from the IARC ethics review board
(Lyon, France) and local review bodies of participating institu-
tions. In ATBC, participants were passively followed during the
postintervention period via linkage with the Finnish Cancer
Registry and death registry. Liver cancer (n¼ 229) and liver dis-
ease mortality (n¼ 248) cases were individually matched 1:1
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with controls, selected by incidence density sampling, on base-
line age (6 5 years) and serum draw date (6 30 days) (23). After
excluding ATBC cases and controls with missing data, 192 and
199 complete liver cancer and liver disease mortality case-
control sets remained. Approval for the ATBC study was
obtained from the institutional review boards of the National
Cancer Institute (Bethesda, MD) and the National Public Health
Institute of Finland. EPIC and ATBC studies were conducted
according to the guidelines of the Declaration of Helsinki; all par-
ticipants provided written informed consent.

Metabolomics Analyses

Sample analysis, data preprocessing, matching of features
across datasets, and compound identification are described in
detail in the Supplementary Methods (available online). Briefly,
all samples were analyzed by the same laboratory at IARC with
a UHPLC-QTOF-MS system (1290 Binary Liquid chromatography
(LC) system, 6550 quadrupole time-of-flight (QTOF) mass spec-
trometer; Agilent Technologies, Santa Clara, CA) using reversed
phase chromatography and electrospray ionization. Raw data
were processed using Agilent MassHunter Qualitative analysis
B.06.00, ProFinder B.08.00, and Mass Profiler Professional B.12.1
software with Agilent’s recursive feature finding procedure. The
m/z (mass to charge ratio) values of the features of interest were
searched against the Human Metabolome Database (HMDB) (24)
and METLIN (25). Compound identity was confirmed by compar-
ison of chemical standards and representative samples.

Statistical Analyses

We used an integrated workflow for metabolomics data analy-
sis (26). Features detected in less than 50% of the discovery set
samples and background features, (ie, feature intensities pre-
sent in all blanks with ratio of geometric mean intensities of

nonblank: blank samples <5) were excluded. Feature intensities
were log2-transformed. Study participants with more than 50%
missing features and those identified as outliers by a principal
component analysis (PCA)-based approach were excluded (27).
Missing values were imputed within each plate by a K-nearest
neighbors method, with K¼ 10 (28). Last, feature intensities
measured across plates within any single batch were normal-
ized by applying a random forest-based approach to correct for
unwanted variation (29). In the EPIC discovery set and test sets,
these steps were applied on feature matrices acquired in posi-
tive and negative modes separately. In ATBC, these steps were
applied on each batch.

In the discovery and test sets, self-reported alcohol intake (g/
day) was adjusted for age, sex, country (in EPIC only), body mass
index (kg/m2), smoking status and intensity, and coffee con-
sumption (g/day, log-transformed) via the residual method in
linear regression models (30). Coffee drinking and coffee-
associated metabolites have been strongly associated with
lower risk of liver cancer and liver disease mortality in ATBC
(23,31); for consistency, coffee drinking was considered a poten-
tial confounder across discovery and test sets. Residuals for fea-
ture intensities were also adjusted for well-plate number within
the analytical batch, position within the plate (row and column
indexes), and the study (EPIC HCC or pancreatic cancer) or batch
indicator (ATBC) as random effects. We used the principal com-
ponent partial-R2 method (32) to quantify the contribution of al-
cohol and potential confounders to the variability of the 67
feature intensities that were statistically significantly associ-
ated with self-reported alcohol intake in the discovery set (33).

We calculated Pearson correlation coefficients using the
residuals for self-reported alcohol intake and for feature inten-
sities; correlations with a false discovery rate–corrected P value-
of less than .05 were considered statistically significant, and
each feature in this set (f1) was carried forward for testing in our
multistage design. After the discovery stage, f1 residual-
adjusted correlation coefficients were computed and corrected

Disease risk associations:

EPIC:
HCC study (128 case sets)

Pancreatic cancer (152 case sets)

ATBC:
Liver cancer study (192 case sets)

Liver disease mortality (199 case sets)

Two metabolites identified:
• Unknown compound (m/z(+): 231.0839)

• 2-hydroxy-3-methylbutyric acid

EPIC Discovery Set (n=454) EPIC Test Set (n=280) ATBC Test Set (n=438)

All features: 9,748 

205 (163 RP+ and  42 RP-) 

significant features (q<0.05 

after FDR correction) 

f1=67 (51 RP+ and 16 

RP-) matched features

f2=10 (7 RP+ and 3 RP-) 

significant features 

(p<0.001 after 

Bonferroni correction) 

f3=7 matched features, 

all significant (p<0.007

after Bonferroni 

correction)

6167 (2566 + 3601)

features excluded

based on comparisons 

with blank samples 

and missing values, 

respectively

3,581 (2,085 reverse phase

(RP)+ and 1,496 RP-)

Figure 1. Flowchart of the multistage study. The figure shows the features and samples size of the EPIC cross-sectional study that was used as a discovery set (stage 1)

and the independent sets of cancer-free controls from EPIC (stage 2) and ATBC (stage 3), as well as of the etiological analyses in nested-case-control studies. ATBC ¼
Alpha-Tocopherol, Beta-Carotene Cancer Prevention; EPIC ¼ European Prospective Investigation into Cancer and Nutrition; FDR ¼ false discovery rate; HCC ¼ hepato-

cellular carcinoma; m/z ¼monoisotopic mass divided by the charge state values; RP ¼ reverse phase.
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by the more conservative Bonferroni method. The correlations
between f1 features and self-reported alcohol with a P value of
less than .05/f1 were considered statistically significant com-
prised a second set of features (f2) that were carried forward to
the next stage in ATBC. Again, correlations between the resid-
uals of self-reported alcohol intake and of feature intensities
were calculated. The linearity of the association between stan-
dardized residuals of 2-hydroxy-3-methylbutyric acid and self-
reported alcohol intake was evaluated with cubic regression
splines with 5 knots (34), by comparing the log-likelihood of
models with and without the nonlinear terms to a v distribution
with 2 degrees of freedom.

We estimated odds ratios (OR) and 95% confidence intervals
(CI) for candidate features and HCC and pancreatic cancer in
EPIC and liver cancer and fatal liver disease in ATBC using con-
ditional logistic regression models. In crude models (condi-
tioned on the matching criteria only), multivariable models, and
multivariable models additionally adjusting for self-reported al-
cohol intake, log2-transformed feature intensities were centered
and scaled (ie, mean¼ 0 [ 1]) to ensure comparability of odds ra-
tio across different endpoints.

All statistical analyses were performed using the Statistical
Analysis Software, release 9.4 (SAS Institute Inc, Cary, NC) and R
version 3.6.0 (35), and statisical tests were 2-sided.

Results

Population Characteristics

Baseline participant characteristics are presented in Table 1. In
the EPIC discovery set, most participants were women (57.5%)
and never (52.2%) or former (26.4%) smokers. In the set of EPIC
HCC and pancreatic cancer controls, there was a higher percent-
age of men (52.7%) and a lower percentage of never smokers
(46.2%) than in the discovery set. In the set of ATBC liver cancer
and liver disease death controls, all participants were Finnish
men and current smokers. Median self-reported alcohol intake
was 10.0 g/day, 6.6 g/day, and 11.5 g/day in the EPIC discovery,
EPIC, and ATBC test sets, respectively.

Biomarker Discovery Analysis

After excluding participant samples identified as outliers or as
having too many missing values, the final discovery set (stage 1)
comprised 451 and 452 study participants in positive and nega-
tive ionization mode datasets, respectively. The final EPIC test
set (stage 2) comprised 271 and 277 study participants in posi-
tive and negative ionization datasets, respectively. Residuals of
205 features in the discovery set were statistically significantly
correlated with residuals of self-reported alcohol intake (163
features in positive and 42 features in negative ionization mode;
Figure 1), with correlation coefficients ranging from -0.29 to 0.50
in log-log plots (Supplementary Table 1, available online).

Of the 205 features in the discovery set, 51 features in posi-
tive and 16 features in negative ionization mode (f1 ¼ 67)
matched by mass and retention time with equivalent features
in the EPIC test set and principal component partial-R2 analyses
showed that self-reported alcohol intake explained more than
7% of variability in the feature intensities (f1 ¼ 67; Figure 2).
Residuals of f2 ¼ 10 features were statistically significantly cor-
related with residuals of self-reported alcohol intake (Table 2).
The first 2 features corresponded to a compound that could not
be unequivocally identified but had an identical mass, isotope

pattern, ion formation (mostly [MþNa]þ and [MþHCOOH-H]-)
and retention time to ethyl glucoside (HMDB0029968) (37).
However, chromatograms (Supplementary Methods, available
online) indicated a lack of specificity, and although fragmenta-
tion of the [MþNa]þ ion could not be induced, our results sug-
gest the unknown is a combination of ethyl-a-D-glucoside,
ethyl-b-D-glucoside, and an additional structural isomer. The
remaining 8 features corresponded to a single compound,
which was confirmed by comparison with an authentic stan-
dard as 2-hydroxy-3-methylbutyric acid (HMDB0000407).
Residuals of all 7 positive ionization mode features selected in
the EPIC test set were positively correlated with residuals of
self-reported alcohol in the ATBC test set (stage 3; Table 2).

For subsequent analyses, the feature with the greatest chro-
matographic intensity (ie, main feature) for each metabolite
was used (Table 2). In each of the 3 datasets, the residuals of the
main features for the 2 candidate metabolites were statistically
significantly correlated, with correlation coefficients ranging
from 0.23 in the EPIC discovery set to 0.54 in the ATBC test set.
The test for nonlinearity with cubic regression splines using re-
stricted regression spline was marginally statistically signifi-
cant for residuals of 2-hydroxy-3-methylbutyric acid and self-
reported alcohol intake (P¼ .06; Supplementary Figure 1, avail-
able online).

Disease Risk Associations

In multivariable models (Table 3), 2-hydroxy-3-methylbutyric
acid was associated with increased odds of HCC (OR1-SD ¼ 2.54,
95% CI ¼ 1.51 to 4.27) and pancreatic cancer (OR1-SD ¼ 1.43, 95%
CI ¼ 1.03 to 1.99) in EPIC, as well as liver cancer (OR1-SD ¼ 2.00,
95% CI ¼ 1.44 to 2.77) and fatal liver disease (OR1-SD ¼ 2.16, 95% CI
¼ 1.63 to 2.86) in ATBC; associations remained following adjust-
ment for self-reported alcohol intake. The unknown candidate
biomarker was associated with increased odds of liver cancer
(OR1-SD ¼ 1.70, 95% CI ¼ 1.29 to 2.25) and liver disease mortality
(OR¼ 1.98, 95% CI ¼ 1.51 to 2.60) in ATBC, and these associations
were also independent of self-reported alcohol intake. However,
the unknown was not associated with HCC or pancreatic cancer
in EPIC. Self-reported alcohol intake was not associated with
HCC (OR1-SD ¼ 0.78, 95% CI ¼ 0.56 to 1.09) or pancreatic cancer
risk (OR1-SD ¼ 1.03, 95% CI ¼ 0.77 to 1.39) in EPIC but was strongly
associated with liver disease mortality (OR1-SD ¼ 2.19, 95% CI ¼
1.60 to 2.98) in ATBC. The alcohol findings are in line with previ-
ously published EPIC and ATBC analyses (37–39).

Discussion

Using untargeted metabolomics data from a discovery and 2 in-
dependent sets of cancer-free controls to validate correlations
between candidate metabolite feature and self-reported alcohol,
we found 2 serum metabolites that were highly correlated with
self-reported habitual alcohol intake. One compound was iden-
tified as 2-hydroxy-3-methylbutyric acid; the other remains un-
known but is likely a combination of isomers of ethyl glucoside.
Of note, ethyl-a-D-glucoside is a known constituent of some al-
coholic beverages (40). Notably, 2-hydroxy-3-methylbutyric acid
was strongly associated with HCC and pancreatic cancer risks
in EPIC and with liver cancer and fatal liver disease in ATBC,
and these associations remained after adjustment for self-
reported alcohol intake. This suggests that 2-hydroxy-3-methyl-
butyric acid, which is not a constituent or a by-product of alco-
hol intake, may reflect a relevant biological response to alcohol

A
R

T
IC

LE

E. Loftfield et al. | 1545



intake that potentially plays a role in the etiology of multiple
chronic diseases. In contrast, self-reported alcohol intake was
only consistently associated with liver disease mortality risk in
ATBC. Further research is needed to elucidate the potential met-
abolic cascade from alcohol drinking to 2-hydroxy-3-

methylbutyric acid to disease and to replicate and extend the
observed associations. Additionally, targeted metabolomics
panels that can simultaneously measure multiple alcohol-
related metabolites using authentic standards, including 2-hy-
droxy-3-methylbutyric acid and related compounds, should be
developed to measure absolute concentrations, which will en-
able comparisons and pooling of data across studies, supporting
replication and improving risk estimation; this is especially im-
portant for diseases such as pancreatic cancer, for which the lit-
erature is suggestive (41) yet inconsistent (42).

Prior population-based studies have used a targeted or semi-
targeted metabolomics approach to identify alcohol-specific
metabolomic profiles of self-reported alcohol intake. Three
studies, including 1 in EPIC, used targeted metabolomics, mea-
suring 123 to 163 metabolites, to gain insight into metabolic
pathways linking alcohol drinking to human health (43–45); 10
alcohol-metabolite associations were common to all 3 studies
and included phosphatidylcholines (PCs), LysoPCs, acylcarni-
tines, and sphingomyelins. Of note, PCs contribute to the forma-
tion of phosphatidylethanol in human tissues (46), which is a
known biomarker of recent and heavy alcohol consumption
used to diagnose alcohol abuse (47,48). A fourth targeted study
used nuclear magnetic resonance to evaluate cross-sectional
associations of 76 lipids, fatty acids, amino acids, ketone bodies,
and gluconeogenesis-related metabolites with alcohol con-
sumption (49). The endogenous metabolites identified by these
targeted platforms did not overlap with the compounds most
highly correlated with self-reported alcohol intake in our untar-
geted study, underscoring the breadth of the metabolome and
discovery potential of untargeted metabolomics methods.

Table 1. Descriptive statistics of the EPIC and ATBC samples used to identify and confirm associations of metabolite features with self-reported
alcohol intake

Variable EPIC discovery, stage 1a EPIC controls, stage 2b ATBC controls, stage 3c

Total No. 454 280 438
Men, % 42.5 52.7 100
BMI, median (10th%-90th%), kg/m2 25.8 (20.9-31.6) 26.6 (20.7-34.1) 26.2 (22.5-31.3)
Age, median (10th%-90th%), y 55.2 (42.5-63.9) 59.4 (49.0-68.6) 56.0 (51.0-63.0)
Smoking status, %

Current 18.5 19.2 100
Former 26.4 33.5 —
Never 52.2 46.2
Unknown 2.9 1.1

Smoking intensity, median (10th%-90th%), cig/day 11.5 (2-26) 15 (4-30) 20 (10-30)
Country, %
France 14.5 0.4 —
Italy 34.8 18.5 —
Spain — 10.0 —
United Kingdom — 17.1 —
The Netherlands — 10.3 —
Greece 12.3 10.7 —
Germany 38.3 24.9 —
Denmark — 8.2 —
Finland — — 100

Alcohol nondrinkers, %d 8 14 9
Alcohol intake, median (10th%-90th%), g/day

Men 21.4 (1.3-50.4) 14.9 (1.0-51.7) 11.5 (0.2-42.1)
Women 5.2 (0.02-24.9) 2.0 (0.01-23.3) —

Coffee intake, median (10th%-90th%), g/day 146.3 (21.4-580.2) 190 (3-857) 550 (220-1100)

aEPIC cross-sectional sample. ATBC ¼ Alpha-Tocopherol, Beta-Carotene Cancer Prevention; EPIC ¼ European Prospective Investigation into Cancer and Nutrition.
bControls from both liver and pancreatic cancer EPIC nested case-control studies.
cControls from liver cancer and liver disease mortality ATBC nested case-control studies excluding those with missing data on alcohol intake.
dAlcohol nondrinkers are considered as those with alcohol intake �0.1 g/day.
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Figure 2. Principal component partial R2 analysis to quantify the contribution of

potential confounder variables to the variability of the set of f1 ¼ 67 feature in-

tensities that were statistically significantly associated with alcohol intake in

the discovery set. BMI ¼ body mass index.
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Metabolomics analyses that limit biomarker discovery to
previously annotated compounds have also identified several
alcohol-related biomarkers. For example, using prediagnostic
serum samples from a nested breast cancer case-control study
within a US cohort, self-reported alcohol intake was associated
with 16 of the 617 annotated metabolites, including 2-hydroxy-
3-methylbutyric acid, 2,3-dihydroxyisovaleric acid (ie, 2,3-hy-
droxy-3-methylbutyric acid), ethyl glucuronide, and several en-
dogenous metabolites related to androgen metabolism (50).
Other cross-sectional analyses, measuring hundreds of metabo-
lites, also found associations of 2-hydroxy-3-methylbutyric
acid, 2,3-dihydroxyisovaleric acid (ie, 2,3-hydroxy-2-methylbu-
tyric acid), and ethyl glucuronide with self-reported alcohol in-
take using prediagnostic serum (51,52). However, these studies
did not test associations in multiple, independent datasets and
estimated correlations in cases and controls combined. One
study, which reported using discovery and replication sets,
evaluated associations between self-reported alcohol intake
and 356 known metabolites among 1500 African Americans and
carried statistically significant metabolites forward for testing
in a smaller set of 477 African Americans (53). This study found
that alcohol was associated with five 2-hydroxybutyrate-related
metabolites including 2-hydroxy-3-methylbutyric acid (53). Also
using a multistage design, a Japanese study of 107 metabolites
identified positive associations between 2-hydroxybutyric acid
and self-reported alcohol intake in a discovery set and indepen-
dent test set (54).

The production of 2-hydroxy-3-methylbutyric acid and other
hydroxybutyric acid–related metabolites is linked to the rate of
hepatic glutathione synthesis, which can increase considerably
in response to oxidative stress or detoxification of xenobiotics

in the liver (55). A targeted metabolomics investigation in EPIC
found evidence suggesting that glutathione metabolism is in-
volved in the development of HCC (20). Additionally, 2-hydroxy-
3-methylbutyric acid is a product of branched-chain amino acid
metabolism, which has been linked to alcohol drinking (54,56).
Finally, prior research on metabolite variability reported 1-year
intraclass correlation coefficients for 2-hydroxy-3-methylbuty-
ric acid (ie, alpha-hydroxyisovalerate) ranging from 0.76 to 0.49
in independent samples of 60 Chinese women and 30 US men
and women, respectively (57), suggesting low to moderate
within-subject variability (ie, good to moderate reliability) over 1
year.

To our knowledge, this study is unique in its untargeted
metabolomics approach without preselected metabolites and
its use of a multistage design to test the associations of thou-
sands of metabolite features with self-reported alcohol intake
in a large discovery dataset and then to retest candidate metab-
olite features in 2 independent sets of cancer-free controls. By
considering nearly 7000 features, many of which are correlated,
we greatly increased the number of potential candidates, but
we also incurred stronger penalization for multiple testing.
Consequently, our approach may have missed features that did
not meet stringent statistical significance thresholds. A
strength of our approach was the use of 3 large, independent
datasets although matching features across sets may have
resulted in the loss of relevant information. Other potential lim-
itations relate to generalizability, measurement error, and
changes in alcohol use over time. Circulating metabolite levels
reflect environmental exposures as well as host and microbial
metabolism (58–60), and identification of candidate biomarkers
that are sufficiently specific to ethanol and generalizable to

Table 2. Feature-specific intensity and reproducibility (coefficient of variation [CV]) in quality control (QC) samples and adjusted Pearson corre-
lation coefficients (r) with alcohol intake in the discovery and independent test sets

m/za

Retention
time,
minb Method Associated metabolite

QC samplesc (n¼ 38)
EPIC discovery

(stage 1; n¼ 454)d
EPIC controls

(stage 2; n¼ 280)e
ATBC controls

(stage 3; n¼ 438)

Mean
intensity

CV,
% r Pf Qg r Ph r Pi

231.0839j 0.89 RPþ Unknown 58 378 18.5 0.41 1.2 x 10 -19 4.4 x 10-16 0.38 7.0 x 10-11 0.40 6.3 x 10-18

253.0925 0.93 RP- Unknown 11 140 13.2 0.39 2.6 x 10-18 4.6 x 10-15 0.32 3.2 x 10-8 —k —
203.0227j 2.78 RPþ 2-hydroxy-3-methylbutyric acid 204 079 14.8 0.26 1.9 x 10-8 2.0 x 10-6 0.24 5.3 x 10-5 0.40 1.1 x 10-18

217.9895 2.78 RPþ 2-hydroxy-3-methylbutyric acid 36 539 11.7 0.30 9.0 x 10-11 2.1 x 10-8 0.25 2.3 x 10-5 0.38 2.4 x 10-16

250.0134 2.78 RPþ 2-hydroxy-3-methylbutyric acid 122 838 12.5 0.28 9.0 x 10-10 1.6 x 10-7 0.27 8.2 x 10-6 0.40 3.5 x 10-18

221.0605 2.78 RPþ 2-hydroxy-3-methylbutyric acid 56 192 11.2 0.28 2.6 x 10-9 3.2 x 10-7 0.25 2.1 x 10-5 0.39 1.9 x 10-17

218.9958 2.78 RPþ 2-hydroxy-3-methylbutyric acid 115 590 11.7 0.28 1.3 x 10-9 2.1 x 10-7 0.26 1.8 x 10-5 0.40 1.7 x 10-18

235.0479 2.78 RPþ 2-hydroxy-3-methylbutyric acid 34 447 15.5 0.20 2.3 x 10-5 1.0 x 10-3 0.26 2.1 x 10-5 0.38 4.2 x 10-16

117.0559 2.78 RP- 2-hydroxy-3-methylbutyric acid 211 842 12.1 0.28 1.3 x 10-9 2.2 x 10-7 0.28 2.0 x 10-6 —k —
261.9788 2.78 RP- 2-hydroxy-3-methylbutyric acid 15 985 11.9 0.27 7.2 x 10-9 8.3 x 10-7 0.28 2.7 x 10-6 —k —

am/z ¼monoisotopic mass divided by the charge state values, as observed in the discovery set.
bRetention time.
cQuality control samples within the discovery set. ATBC ¼ Alpha-Tocopherol, Beta-Carotene Cancer Prevention; EPIC ¼ European Prospective Investigation into Cancer

and Nutrition; m/z ¼monoisotopic mass divided by the charge state values; RP ¼ reverse phase; QC ¼ Quality control.
dThe analyses of features acquired in positive and negative modes used data from 451 and 452 participants, respectively, after the exclusion of outliers and samples

with too many missing values.
eThe analyses of features acquired in positive and negative modes used data from 271 and 277 participants, respectively, after the exclusion of outliers and samples

with too many missing values.
fP values for correlations computed in 2-sided tests.
gQ values associated to false discovery rate (FDR) procedure to correct for multiple testing (36), alpha¼0.05.
hThreshold for statistical significance corrected in 2-sided tests with Bonferroni method for multiple testing, equal to 0.0007463 (0.05/f1, with f1 ¼ 67).
iThreshold for statistical significance corrected in 2-sided tests with Bonferroni method for multiple testing, equal to 0.007 (0.05/f3, with f3 ¼ 7).
jFeature chosen for analysis of disease, see Table 3.
kFeature not available in ATBC.
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diverse populations is challenging. Measurement error, both
systematic and random, is inherent to self-reported assess-
ments (61–63) and likely biases association estimates in etiologi-
cal studies as well as biomarker discovery studies. Additionally,
self-reported alcohol intake and blood measures were assessed
in each study at baseline only; therefore, we are unable to ac-
count for changes in alcohol intake or metabolites over time.
Despite our use of cutting-edge untargeted metabolomics meth-
ods, a robust study design, and an etiological component to
evaluate the associations of our candidate biomarkers with dis-
ease outcomes, we cannot dismiss the possibility that our find-
ings were impacted by measurement error in self-reported
alcohol intake.

In summary, we observed robust correlations between self-
reported habitual alcohol intake and 2-hydroxy-3-methylbutyric
acid and an unidentified compound in a discovery set and 2 inde-
pendent test sets of cancer-free participants. Associations for 2-hy-
droxy-3-methylbutyric acid with risk of HCC and pancreatic cancer
in the EPIC study and with liver cancer in ATBC were stronger than
those for either self-reported alcohol intake or the unidentified
compound. Both candidate biomarkers were associated with liver
endpoints independent of self-reported alcohol intake, indicating
value beyond being correlates of intake. In conclusion, 2-hydroxy-
3-methylbutyric acid is a promising candidate biomarker for study-
ing the relationship between habitual alcohol intake and health
(50–53), but further research, preferably in the context of a

randomized controlled trial, is needed to better characterize the re-
lationship between 2-hydroxy-3-methylbutyric acid and alcohol at
varying levels of intake.
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Table 3. Crude and adjusted odds ratios (OR, 95% confidence interval [CI]) of self-reported alcohol intake (12 g/day) and the main features of the
unknown compound and 2-hydroxy-3-methylbutyric acid (per 1-SD) with hepatocellular carcinoma (HCC; 129 case-control sets) and pancreatic
cancer (152 case-control sets) in EPIC, and with liver cancer (194 case-control sets) and liver disease mortality (201 case-control sets) in ATBC

Exposure

Crude models Adjusted modelsa Alcohol-adjusted modelsb

OR (95% CI) P OR (95% CI) P OR (95% CI) P

HCC, EPIC (128 case-control sets)
Alcohol intake, 12 g/day 1.13 (1.00 to 1.27) .05 1.04 (0.89 to 1.20) .65 — —
Alcohol intake, 1-SD (log2) 0.93 (0.73 to 1.20) .59 0.78 (0.56 to 1.09) .14 — —
Unknown compound, 1-SD (log2)c 1.27 (0.92 to 1.76) .15 1.01 (0.66 to 1.52) .98 1.23 (0.75 to 2.01) .40
2-hydroxy-3-methylbutyric acid, 1-SD (log2)d 2.28 (1.52 to 3.43) 7.0 x 10-5 2.54 (1.51 to 4.27) 4.2 x 10-4 3.12 (1.74 to 5.56) 4.2 x 10-4

Pancreatic cancer, EPIC (152 case-control sets)
Alcohol intake, 12 g/day 1.07 (0.92 to 1.25) .36 1.04 (0.88 to 1.24) .65 — —
Alcohol intake, 1-SD (log2) 1.08 (0.83 to 1.40) .58 1.03 (0.77 to 1.39) .83 — —
Unknown compound, 1-SD (log2)c 1.15 (0.92 to 1.46) .22 1.10 (0.91 to 1.41) .48 1.10 (0.83 to 1.46) .50
2-hydroxy-3-methylbutyric acid, 1-SD (log2)d 1.43 (1.07 to 1.92) .02 1.43 (1.03 to 1.99) .03 1.46 (1.03 to 2.06) .03

Liver cancer, ATBC (192 case-control sets)
Alcohol intake, 12 g/day 1.25 (1.09 to 1.43) .001 1.17 (1.01 to 1.36) .03 — —
Alcohol intake, 1-SD (log2) 1.33 (1.05 to 1.67) .02 1.23 (0.94 to 1.60) .13 — —
Unknown compound, 1-SD (log2)c 1.34 (1.07 to 1.68) .01 1.70 (1.29 to 2.25) 2.0 x 10-4 1.76 (1.28 to 2.41) 5.0 x 10-4

2-hydroxy-3-methylbutyric acid, 1-SD (log2)d 2.08 (1.53 to 2.82) 2.7 x 10-6 2.00 (1.44 to 2.77) 3.4 x 10-5 2.07 (1.43 to 2.98) .01
Liver disease mortality, ATBC (199 case-control sets)

Alcohol intake, 12 g/day 1.38 (1.22 to 1.55) 1.1 x 10-7 1.32 (1.16 to 1.50) 1.6 x 10-5 — —
Alcohol intake, 1-SD (log2) 2.37 (1.78 to 3.14) 2.8 x 10-8 2.19 (1.60 to 2.98) 8.4 x 10-7 — —
Unknown compound, 1-SD (log2)c 2.11 (1.63 to 2.72) 1.0 x 10-8 1.98 (1.51 to 2.60) 8.6 x 10-7 1.65 (1.24 to 2.20) 7.0 x 10-4

2-hydroxy-3-methylbutyric acid, 1-SD (log2)d 2.26 (1.73 to 2.95) 2.1 x 10-9 2.16 (1.63 to 2.86) 9.6 x 10-8 1.85 (1.38 to 2.48) 3.9 x 10-5

aModels for hepatocellular carcinoma (HCC) were adjusted for body mass index (BMI; kg/m2), waist circumference (cm), recreational and household physical activity

(Met-hours/week), a composite variable for smoking status and intensity (never, current: 1-15 cig/day; current: 16-25 cig/day; current: �26 cig/day; former: quit

�10 years; former: quit 11-20 years; former: quit �20 years; current: occasional pipe/cigar/use; current/former: missing, unknown), level of educational attainment, and

coffee intake [(log2)grams/day]; models for pancreatic cancer were adjusted for BMI (kg/m2), sex-specific physical activity categories, and the composite variable for

smoking status and intensity; ATBC liver cancer and fatal liver disease models were adjusted for age (years), BMI (kg/m2), leisure time physical activity, smoking inten-

sity (cigarettes/day), level of educational attainment, and coffee intake [(log2)grams/day]. ATBC ¼ Alpha-Tocopherol, Beta-Carotene Cancer Prevention; EPIC ¼
European Prospective Investigation into Cancer and Nutrition; m/z ¼monoisotopic mass divided by the charge state values.
bModels were further adjusted for self-reported alcohol intake (log2)grams/day.
cUnknown compound (m/z¼231.0839).
d2-hydroxy-3-methylbutyric acid (m/z¼203.0227).
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