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We analyze the bootstrap percolation process on the stochastic block model (SBM), a natural extension of the
Erdős–Rényi random graph that incorporates the community structure observed in many real systems. In the SBM,
nodes are partitioned into two subsets, which represent different communities, and pairs of nodes are independently
connected with a probability that depends on the communities they belong to. Under mild assumptions on the
system parameters, we prove the existence of a sharp phase transition for the final number of active nodes and
characterize the sub-critical and the super-critical regimes in terms of the number of initially active nodes, which
are selected uniformly at random in each community.
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1. Introduction

Bootstrap percolation on a graph is a simple activation process that starts with a given number of
initially active nodes (called seeds) and evolves as follows. Every inactive node that has at least r ≥ 2
active neighbors is activated, and remains so forever. The process stops when no more nodes can be
activated. There are two main cases of interest: one in which the seeds are selected uniformly at random
among the nodes, and one in which the seeds are arbitrarily chosen. In both cases, the main question
concerns the final size of the set of active nodes. Bootstrap percolation was introduced in [16] on a
Bethe lattice, and successively investigated on regular grids and trees [9, 10]. More recently, bootstrap
percolation has been studied on random graphs and random trees [3, 5, 6, 7, 8, 11, 12, 14, 20, 24,
25, 34], motivated by the increasing interest in large-scale complex systems such as technological,
biological and social networks. For example, in the case of social networks, bootstrap percolation may
serve as a primitive model for the spread of ideas, rumors and trends among individuals. Indeed, in this
context one can assume that a person will adopt an idea after receiving sufficient influence by friends
who have already adopted it [27, 31, 35].

In more detail, bootstrap percolation has been studied on random regular graphs [11], on random
graphs with given vertex degrees [5], on Galton–Watson random trees [12], on random geometric
graphs [14], on Chung–Lu random graphs [6, 7, 20] (which notably permit considering the case of
power-law node degree distribution), on small-world random graphs [25, 34] and on Barabasi–Albert
random graphs [3]. Particularly relevant to our work is the paper by Janson et al. [24], where the
authors have provided a detailed analysis of the bootstrap percolation process on the Erdős–Rényi
random graph. We emphasize that in [24] the seeds are chosen uniformly at random among the nodes,
however, as proved in [18], the critical number of seeds triggering percolation can be significantly
reduced if the selection of seeds is optimized.

Over the years, several variants of the bootstrap percolation have been considered. In majority boot-
strap percolation, a node becomes active if at least half of its neighbors are active. In jigsaw percolation,
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introduced in [15], there are two types of edges, one representing “social links" and one representing
“compatibility of ideas". Two clusters of nodes merge together if there exists at least one edge of each
type between them. Majority and jigsaw bootstrap percolation have been analyzed on the Erdős–Rényi
random graph in [23] and [13], respectively.

Community structure is an important characteristic of many real-world graphs. This feature, how-
ever, is not present in any of the graphs on which bootstrap percolation (or its variants) have been
studied so far. Informally, one says that a graph has a community structure if nodes are partitioned into
clusters in such a way that many edges join nodes of the same cluster and comparatively fewer edges
join nodes of different clusters [21]. Many methods have been proposed for community detection in
real networks (see the review article [19]).

Through the development of the theoretical foundations of community detection, the so-called
stochastic block model (SBM) has arisen naturally, and attracted considerable attention. The SBM
is essentially the superposition of Erdős–Rényi graphs, and is perhaps the simplest interesting case of
a random graph with community structure. In particular, detection of two symmetric communities has
been studied in [28], while partial or exact recovery of the community membership has been investi-
gated in [1, 2].

In this paper we study classical bootstrap percolation on the SBM with two (in general asymmetric)
communities, assuming that seeds are selected uniformly at random within each community and al-
lowing a different number of seeds for different communities. We prove the existence of a sharp phase
transition for the number of eventually active nodes, identifying a sub-critical regime, in which the
evolution of the bootstrap percolation process is very limited (in the sense that the final size of active
nodes is of the same order as the number of seeds), and a super-critical regime, in which the activation
process percolates almost completely (in the sense that the vast majority of nodes will be activated).
Although our results generalize some of the main achievements in [24], we emphasize that our tech-
niques significantly differ from those employed in [24]. In particular, we devise a suitable extension of
the classical binomial chain construction originally proposed in [30] (and also used in [24]), adapting
it to the SBM. Furthermore, as opposed to [24], where Doob’s martingale inequality is employed, we
use deviation inequalities for the binomial distribution to prove that bootstrap percolation on the SBM
concentrates around its average. Our approach provides exponential bounds on the related tail proba-
bilities, which allow us to strengthen the convergence in probability for the final size of active nodes
(as obtained in [24]) to the level of almost sure convergence.

To better understand the main difficulties in the analysis of the bootstrap percolation process on the
SBM, we recall that in the classical binomial chain construction a (virtual) discrete time is introduced:
at each time step a single active node is explored by revealing its neighbors. Nodes become active as
soon as the number of their explored neighbors reaches the percolation threshold r. In the SBM the
stochastic properties of the set of active nodes at time step t heavily depend on the number of nodes
that have been explored in each community up to time t, and this makes the analysis of the bootstrap
percolation process on the SBM significantly more complex. In particular, it requires the identification
of an appropriate strategy to select the community in which a new node is explored at every time step.

Although considerably flexible and mathematically tractable, the SBM does not accurately describe
most real-world networks. For instance, it does not allow for heterogeneity of nodes within communi-
ties. Different variants of the SBM have been proposed to better fit real network data, such as letting
nodes follow a given degree sequence [17, 26] or considering overlapping communities and mixed
membership models [4, 22]. We acknowledge that analyzing bootstrap percolation on the SBM is only
a first step towards a better understanding of this process on more sophisticated community-based
models.

The paper is organized as follows. In Section 2 we introduce the model and our assumptions on
its parameters. The main results of the paper are stated in Section 3, together with some numerical
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illustrations. In Section 4 we provide an overview of our analysis, by first introducing the extension to
the SBM of the classical binomial chain representation of the bootstrap percolation process, and then
by giving a high-level description of our proofs. The detailed proofs are reported in Section 5. Lastly,
in the Supplementary Material (SM), we report the proof of some ancillary results.

2. The stochastic block model

2.1. Model description

The SBM G = G(n1, n2, p1, p2, q), with number of nodes n = n1 + n2 and parameters p1, p2, q ∈
[0,1), is a random graph formed by the union of two disjoint Erdős–Rényi random graphs Gi =
G(ni, pi), i = 1,2, called hereafter communities, where edges joining nodes in different communi-
ties G1 and G2 are independently added with probability q. In the following we will refer to edges
between nodes in the same community as “intra-community" edges and to edges joining nodes in
different communities as “inter-community" edges.

Bootstrap percolation on the SBM is an activation process that obeys to the following rules:

• At the beginning, an arbitrary number ai (ai ≤ ni) of nodes, called seeds, are chosen uniformly
at random among the nodes of Gi. Seeds are declared to be active, while nodes not belonging to
the set of seeds are initially inactive.

• An inactive node becomes active as soon as at least r ≥ 2 of its neighbors are active, and then
remain active forever, so that the set of active nodes grows monotonically.

• The process stops when no more nodes can be activated.

The bootstrap percolation process naturally evolves through generations of nodes that are sequen-
tially activated. The initial generation G0 is the set of seeds; the first generation G1 is composed by
all those nodes that are neighbors of at least r seeds; the second generation G2 is composed by all the
nodes that are neighbors of at least r nodes in G0 ∪ G1, and so on. The bootstrap percolation process
stops when either an empty generation is obtained or all the nodes are active. The final set of active
nodes is clearly given by

G≡
⋃

k≥0
Gk.

We conclude this subsection introducing some notation and terminology. Given two functions f1
and f2 we write f1(m)� f2(m) (or equivalently f1(m) = o(f2(m))), f1(m)∼ f2(m), and f1(m) =
O(f2(m)) if, asm→∞, f1(m)/f2(m)→ 0, f1(m)/f2(m)→ 1 and lim supm→∞ |f1(m)/f2(m)|<
∞. Letting |X| denote the cardinality of a set X, we say that the bootstrap percolation process percolates
whenever |G|= n− o(n), that is, whenever almost all the nodes are activated.

2.2. Model assumptions

In the following we consider a sequence of SBMs with a growing number of nodes n. We warn the
reader that, unless explicitly written, all the limits in this paper are taken as n→∞.

We assume that the communities G1 and G2 have sizes that are asymptotically of the same order,
i.e.,

n1 ∼ νn2, for some ν ∈R+ := (0,∞), (1)
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and that the inter-community and the intra-community edge probabilities are asymptotically of the
same order too, i.e.,

q ∼ γp1, for some γ ∈R+, p1 ∼ µp2, for some µ ∈R+. (2)

Note that since γ > 0 the communities are never isolated. Similarly to [24], we assume

1/ni� pi� 1/(n
1/r
i ), i= 1,2 (3)

and we define the critical number of seeds, in correspondence of which the bootstrap percolation pro-
cess exhibits a phase transition in the Erdős–Rényi random graph G(ni, pi), by

gi :=

(
1− 1

r

)(
(r− 1)!

nip
r
i

) 1
r−1

, i= 1,2.

As proved in [24], under (3), we have

gi→∞, gi/ni→ 0, pigi→ 0, i= 1,2. (4)

Note that by (1) and (2) it follows that g1 and g2 are asymptotically comparable. Furthermore, similarly
to [24], we assume

ai/gi→ αi ≥ 0, i= 1,2, with max{α1, α2}> 0. (5)

Without loss of generality, we suppose

α1 ≥ α2 with α1 > 0. (6)

Inspired by some literature on the subject (see e.g. [29]) we say that the SBM is assortative if the
intra-community edge probabilities exceed the inter-community edge probability. Specifically, a SBM
is said assortative if q2 < p1p2. Since q2/(p1p2)→ γ2µ (see (2)), by setting

χii = 1, i= 1,2, χ12 := γ(νµr)
1
r−1 , χ21 := γ(νµ)−1/(r−1) and χ= (χij)i,j=1,2,

the assortative condition can be reformulated as detχ > 0. Therefore, in the following we will refer
to assortative SBM when detχ > 0, dis-assortative SBM when detχ < 0 and neutral SBM when
detχ= 0. Although these notions do not play any role in our main results (i.e., Theorems 3.2 and 3.3),
they do have an impact on the definition of the critical curve for the system (see Proposition 3.5).

Finally, we remark once again that, within each community, the seeds must be selected uniformly at
random and in such a way that the number of seeds satisfies the constraint (5).

2.3. Bootstrap percolation on the Erdős–Rényi random graph: a quick review

To better position our results with respect to the existing literature, we briefly recall the main achieve-
ments in [24]. Note that the Erdős–Rényi random graph corresponds to a SBM with a single commu-
nity, (i.e., i= 1). It has been proved in [24] (see Theorem 3.1(ii)). that:
(i) If (3) and (5) hold (with i= 1) and α1 < 1, then

|G|/g1→
rϕ(α1)

(r− 1)α1
, in probability
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where ϕ(α1) is the unique solution in [0,1] of equation rx− xr = (r − 1)α1 with unknown x (see
Theorem 3.1(i) in [24]).
(ii) If (3) and (5) hold (with i= 1) and α1 > 1, then

|G|/n→ 1, in probability.

3. Main results

The bootstrap percolation process on the Erdős–Rényi random graph exhibits a sharp phase transi-
tion, see [24]. The reader may be wondering whether more complex phenomena, such as selective
percolation of communities, can be observed on the SBM. We will show that this is not the case. In-
deed, under the assumptions described in Subsection 2.2, the bootstrap percolation process either stops
with high probability when O(g1) vertices have been activated (sub-critical case) or percolates (super-
critical case). A selective percolation of the communities may be instead observed when γ = 0 (i.e.,
q = o(p1)), where the bootstrap percolation process may behave in each community as if they were
isolated.

To state our main results we need some additional notation. For x = (x1, x2) ∈ [0,∞)2, we define
the following functions:

ρi(x) := αi − xi + r−1(1− r−1)r−1(xi + χijxj)
r, i 6= j ∈ {1,2}

and the following sets:

D :=

{
x ∈ [0, r/(r− 1)]2 : x1 + χ12x2 ≤

r

r− 1
, x2 + χ21x1 ≤

r

r− 1

}
,

E1 := {x ∈D : ρ1(x)≤ 0}, E2 := {x ∈D : ρ2(x)≤ 0},

Ẽ1 := {x ∈D : ρ1(x) = 0}, Ẽ2 := {x ∈D : ρ2(x) = 0}.

For a set H⊂D, we denote by
◦
H its interior (with respect to the Euclidean topology on R2 restricted

to D). Throughout this paper, we consider the following three disjoint and exhaustive conditions:

(Sub):
◦
E1 ∩

◦
E2 6= ∅, (Crit):

◦
E1 ∩

◦
E2 = ∅, Ẽ1 ∩ Ẽ2 6= ∅, (Sup): E1 ∩ E2 = ∅.

Hereafter, we refer to such conditions as sub-critical, critical and super-critical regimes, respectively. A
graphical representation of these regimes is given in Figures 1, 2 and 3, where the blue curves represent
Ẽ1 and Ẽ2 (additional notation appearing on the plots will be introduced later on).

Remark 3.1. Let i ∈ {1,2} be fixed. A straightforward computation shows that if αi > 1, then
minx∈D ρi(x)> 0, therefore Ei = ∅ and so (Sup) holds. Consequently, conditions (Sub) and (Crit)
imply αi ≤ 1 for any i= 1,2.

3.1. Phase transition on the SBM model

Next theorems provide the main results of the paper. Hereon, for ease of notation, we denote by (C)
the set of conditions: (1), (2), (3), (5) and (6).
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Figure 1. Sub-critical regime,
r = 2, χ12 = χ21 = 0.6,
α1 = 0.56, α2 = 0.1.
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Figure 2. Critical regime, r = 2,
χ12 = χ21 = 0.6, α1 = 0.6, α2 =
0.175.
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Figure 3. Super-critical regime,
r = 2, χ12 = χ21 = 0.6,
α1 = 0.6, α2 = 0.4.

Theorem 3.2. Assume (C) and (Sub). Then, for any ε > 0 there exists c(ε) ∈R+ such that

P

(∣∣∣ |G|
g1
− x∗

∣∣∣> ε

)
=O(e−c(ε)g1), (7)

where the explicit expression of the positive constant x∗ > 0 is given in (25).

Theorem 3.3. Assume (C) and (Sup). Then, for any ε > 0 there exists c(ε) ∈R+ such that

P

(∣∣∣ |G|
n
− 1
∣∣∣> ε

)
=O(e−c(ε)g1). (8)

Roughly speaking, the above results can be rephrased as follows:
(i) under (C) and (Sub), the bootstrap percolation process on the SBM reaches, as n→∞, a final
size of active nodes which is of the same order as a1 + a2 (indeed, by (2), the definition of gi, (5) and
(6), it easily follows that a1 + a2 ∼ (α1 + α2(νµr)1/(r−1))g1),
(ii) under (C) and (Sup), the bootstrap percolation process on the SBM percolates, as n→∞.

Remark 3.4. Replacing the assumption (3) with the (slightly) stronger condition:

For any i= 1,2, 1/ni� pi and either pi� 1/(ni)
1
r′ or pi ∼ c/(ni)

1
r′ , for some c > 0 and r′ ∈ (r,∞),

by a standard application of the Borel-Cantelli lemma, the claims (7) and (8) can be strengthened,
respectively, as |G|g1 → x∗ and |G|n → 1 almost surely.

3.2. The critical curve and the sub-critical and super-critical regions

To complement the results of Theorems 3.2 and 3.3, in this subsection we determine the sub-critical
and the super-critical regions of the system, i.e., the set ofα= (α1, α2) for which either the sub-critical
or the super-critical behavior is observed. We restrict our investigation to α ∈ [0,1]2 since, as already

noticed in Remark 3.1, necessarily (Sup) holds whenever α1 > 1 and/or α2 > 1. We write
◦
Ei(αi),
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Ẽi(αi) and Ei(αi) in place of
◦
Ei, Ẽi and Ei, respectively, to make the dependence on αi explicit. We

define the regions

RSub :=

{
α ∈ [0,1]2 :

◦
E1(α1)∩

◦
E2(α2) 6= ∅

}
, RSup :=

{
α ∈ [0,1]2 : E1(α1)∩ E2(α2) = ∅

}
,

(9)
and the curve

RCrit :=

{
α ∈ [0,1]2 :

◦
E1(α1)∩

◦
E2(α2) = ∅, Ẽ1(α1)∩ Ẽ2(α2) 6= ∅

}
, (10)

to which we refer as the sub-critical and the super-critical regions, and the critical curve, respectively.
By exploiting the convexity of the functions ρi(·) and by imposing the tangency condition between

the curves Ẽ1(α1) and Ẽ2(α2), one can show the following Proposition 3.5, whose proof is elementary,
and therefore omitted. From here on, we denote by Mt the transpose of the matrix M.

Proposition 3.5. The following claims hold:
(i) Under (C) and detχ 6= 0, we have

RCrit =

{
(y1, y2)(χ−1)t − r−1(1− r−1)r−1(yr1, y

r
2) ∈ [0,1]2 : 0≤ y1 ≤ r/(r− 1),

y2 = (1− r−1)

(
1− (1− r−1)r−1yr−11

1− (1− r−1)r−1yr−11 detχ

)1/(r−1)}
.

(ii) Under (C) and detχ= 0, we have

RCrit =

{
(y1, y2)− r−1(1− r−1)r−1((y1 + y2χ12)r, (y1χ21 + y2)r) ∈ [0,1]2 : 0≤ y1 ≤ r/(r− 1),

y2 = χ21


 r

r− 1

(
1

1 + χr−121

)1/(r−1)

− y1



}
.

(iii) Under (C), RSub is the convex set delimited by the curve RCrit and the coordinate axes.

Note that RCrit depends only on the asymptotic properties of the SBM, which are expressed in terms
of the parameters r, γ, µ and ν. In other words, two (sequences of) SBMs with the same parameters
r, γ, µ and ν lead to the same critical curve RCrit, and therefore to the same sub-critical and super-
critical regions. Hereafter, we illustrate numerically Proposition 3.5, taking (sequences of) SBMs with
parameters r = 2, γ = 0.25, and ν = µ= 1 as baseline case.

We start by investigating the impact of the various parameters on the sub-critical and the super-
critical regions. To this aim, we vary a parameter at a time, keeping fixed all the others, and determine
the critical curve.

In Figure 4 we vary the parameter γ, which characterizes the strength of the inter-community con-
nectivity with respect to the intra-community connectivity. When γ < 1 (r = 2, µ= ν = 1) SBMs are
assortative, whereas when γ > 1 SBMs are disassortative. Finally, in the special case when γ = 1 the
SBMs are neutral (i.e., detχ= 0) and exhibit the same RCrit of Erdős–Rényi random graphs. In this
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Figure 7. Critical curves RCrit for different
values of µ.

special case the critical curve corresponds to the segment where α1 + α2 = 0.5, indeed a straightfor-
ward computation gives g1 = 1

2n1p21
. We further note that, as γ ↓ 0, the sub-critical region approaches

the whole square (because, as γ→ 0, the fraction of edges connecting the two communities tends to
vanish, and therefore the activation process spreads in the two communities as if they were isolated).
Finally, since the sub-critical region is convex for any γ, in a SBM with µ = ν = 1 (i.e., symmet-
ric), we have that the critical number of seeds is minimized when all the seeds are placed in the same
community (i.e., either α1 = 0 or α2 = 0). Instead, the critical number of seeds is maximized when the
seeds are equally partitioned between the communities (which approximately occurs, notably, when the
seeds are chosen uniformly at random among the nodes). Interestingly, in the latter case (i.e., when the
seeds are equally partitioned between the communities), a simple computation shows that the critical
threshold in a SBM with µ= ν = 1 is asymptotically equal to the critical threshold in an Erdős–Rényi
random graph having the same average degree.

In Figure 5 we vary the threshold parameter r. Note that, as r ↑∞, the sub-critical region approaches
the domain

{(α1, α2) ∈ [0,1]2 : α1 + γ α2 < 1, α2 + γ α1 < 1}
(this property holds for any γ in the symmetric SBM with µ= ν = 1).
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Next, we explore what happens in SBMs with µ 6= ν (i.e., asymmetric) by changing either ν or µ.
In Figure 6 we fix r = 2, γ = 0.25, µ = 1 and increase the parameter ν, making the first community
increasingly larger than the second community. Interestingly, we observe a significant reduction in the
(normalized) critical value of α2 for increasing values of ν when we put all the seeds in the commu-
nity G2 (i.e., α1 = 0): this means that fewer and fewer seeds are needed in community G2 to trigger
percolation, as the community G1 becomes larger and larger. This because the epidemic transfers into
the community G1, where it propagates more easily thanks to the larger number of available nodes.
However, note that, to minimize the (un-normalized) critical number of seeds, all the seeds must be
placed in the larger community G1, as a consequence of the fact that gi, i= 1,2, are different.

Finally, in Figure 7 we fix r = 2, γ = 0.25, ν = 1 and increase the parameter µ, thus increasing the
intra-community probability in G1. For large values of µ, considerations similar to Figure 6 apply.

4. Overview of the methodology

4.1. The extension of the binomial chain construction

We introduce a discrete time t≥ 0 and we assign a marks counter Mv(t), Mv(0) := 0, to every node v
which is not a seed. Seeds are activated at time t= 0. We set Ui(0) := ∅ and denote by Ai(0) the set of
seeds in the community Gi. The process, then, evolves according to the following recursive procedure.
At time t ∈N := {1,2, . . .}:

• We arbitrarily select a community Gj provided that Aj(t− 1) \Uj(t− 1) 6= ∅.
• From the selected community Gj , we choose, uniformly at random, a node v ∈ Aj(t − 1) \
Uj(t− 1).

• We use the chosen node v, i.e., we explore the node v by revealing its neighbors and by adding
a mark to each of them.

• We set Uj(t) := Uj(t− 1)∪ {v} and Ui(t) := Ui(t− 1), for i 6= j. We also set Ai(t) := Ai(t−
1)∪∆Ai(t), where ∆Ai(t) is the set of nodes in the community Gi that become active exactly
at time t, i.e., the set of nodes in Gi that have received the r-th mark exactly at time t. Note that
∆Ai(t) = ∅ for t < r, since no other nodes are activated until at least r seeds are used.

• The process terminates as soon as there are no active and still unused nodes, i.e., at time step:

T := min{t ∈N : Ai(t) = Ui(t), ∀i= 1,2}. (11)

Note that, since only one node is used at each time step, for any t≤ T , |U(t)|= t, where U(t) :=
U1(t)∪U2(t). Let A(t) := A1(t)∪A2(t) denote the set of active nodes at time t≤ T . We clearly have

v ∈A(t) \A(t− 1) if and only if Mv(t) = r, 1≤ t≤ T (12)

where

Mv(t) =

2∑

i=1

Ui(t)∑

s=1

I
(i)
v (s), ∀ v 6∈A(t− 1) (13)

Ui(t) := |Ui(t)| and the random variables {I(i)v (s)}v/∈A(t),1≤i≤2,1≤s≤T are independent, with I(i)v (s)

distributed as Be(pi)
1 if v is a node of the community Gi, and distributed as Be(q) if v is a node of

the community Gj , j 6= i.

1Here Be(p) denotes a Bernoulli distributed random variable with mean p ∈ [0,1].
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The next proposition guarantees that the order in which active nodes are used does not have any
impact on the final set of active vertices G.

Proposition 4.1. We have G≡A(T ).

Although Proposition 4.1 may appear rather obvious, it plays a crucial role in our proofs. Therefore,
for completeness, we report its proof in the SM.

Remark 4.2. In the description of the binomial chain representation of the bootstrap percolation
process, we did not fully specify the rule according to which a community is selected at every time
step t ∈ N. Indeed, we limited ourselves just to mention a general guideline for the selection of the
community: at time t ∈ N, we choose a community Gi which has active and unused nodes. Clearly,
this choice can be made in many different ways. Throughout this paper, we refer to such different ways
as “strategies". Remarkably, Proposition 4.1 applies to any strategy. It will become clear later on that
the opportunity to “arbitrarily" define the strategy for the community selection, provides a fundamental
degree of flexibility that comes in handy when we analyze the bootstrap percolation process on the
SBM (see the proofs of Theorems 3.2 and 3.3).

Hereon, we put [n] := {1,2, · · · , n} and let i ∈ {1,2} be fixed. We have defined the random marks
I
(i)
v (s) for v /∈ A(t) and 1 ≤ s ≤ T , but, similarly to [24], see Section 2 therein, it is possible to

introduce additional, redundant random marks, which are independent and Bernoulli distributed with
mean pi if v is a node of the community Gi and with mean q if v is a node of the community Gj ,

j 6= i, in such a way that I(i)v (s) is defined for all v ∈ G and s ∈ [n]. Such additional random marks
are added, for any 1 ≤ s ≤ T , to already active nodes and so they have no effect on the underlying
bootstrap percolation process. This corresponds to artificially extending the chain construction beyond
T , by selecting and exploring at every time T ≤ t ≤ n a potentially non-active node. Clearly such
extension has no effect on the dynamics of the bootstrap percolation process up to time T , and it is
just instrumental. Throughout this paper, we denote by Bin(u,p), u ∈ N, p ∈ [0,1], a random variable
following the binomial distribution with parameters (u,p).

Note that, conditionally on U1(t) and U2(t), the random variable Mv(t) is the sum of independent
random variables with the binomial distribution, i.e., for fixed i ∈ {1,2} and t ∈ [n]∪ {0} we have

Mv(t) | {U(t) = u(t)} L
= Bin(ui(t), pi) + Bin(uj(t), q), v ∈Gi, j 6= i (14)

where U(t) := (U1(t),U2(t)), u(t) := (u1(t), u2(t)), the symbol L
= denotes the equality in law and

the random variables Bin(ui(t), pi) and Bin(uj(t), q) are independent. The number of active nodes in
the community Gi at time t ∈ [n]∪ {0} is given by

Ai(t) := |Ai(t)|= ai + Si(t), (15)

where

Si(t) :=
∑

v∈Gi\Ai(0)
1{Yv ≤ t}, Yv := min{s ∈N : Mv(s)≥ r}. (16)

Since the random variables {Mv(t) | {U(t) = u(t)}}v∈Gi are independent and identically distributed
with law specified by (14), we have

Si(t) | {U(t) = u(t)} L
= Bin(ni − ai, bi(u(t))), (17)
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where

bi(u(t)) := P
(
Bin(ui(t), pi) + Bin(uj(t), q)≥ r

)
, i ∈ {1,2}, j 6= i. (18)

Hereafter, we denote by A(t) := |A(t)|=∑2
i=1Ai(t), the number of active nodes in the SBM at time

t. Note that |G|=A(T ) = T − 1.

Remark 4.3. The analysis of the bootstrap percolation process is significantly more complex on the
SBM than on the Erdős–Rényi random graph. Indeed, on the SBM, for any t < T , the random variables
{Ai(t)}1≤i≤2 depend on the quantities {Ui(t)}1≤i≤2, and so on the chosen strategy. In turn, the choice
of a strategy is constrained by the availability of active and unused nodes in the different communities.
As a result, Si(t) is binomial only given the event {U(t) = u(t)}. In contrast, on the Erdős–Rényi
random graph the number of used nodes at time t is equal to t, and therefore the law of the number of
active and unused nodes at time t is (unconditionally) binomial.

4.2. High level description of the proofs

In broad terms, the proofs of Theorems 3.2 and 3.3 adopt the following approach. First, note that since
T − 1 = |G|, we can reduce the computation of the tail probabilities of |G| to the computation of the
tail probabilities of T . Then, exploiting the definition of T given in (11), we aim to upper-bound the
tail probabilities of T with a combination of probabilities associated to the events {Ai(t)− Ui(t) <
0}, i ∈ {1,2}, for different time instant t. However, in doing so, the following difficulty arises. A(t)
depends on U(t), which itself depends on the selected strategy and on the past trajectory A(τ)−U(τ)
for τ < t. This because, as already mentioned in Remark 4.3, whatever strategy is considered, we can
choose a node in the community Gi at time τ only if Ai(τ − 1) − Ui(τ − 1) > 0. We refer to this
constraint as feasibility constraint.

By (4.1), we can choose whatever strategy is convenient (among those that are feasible, i.e., satisfy
the feasibility constraint), indeed the choice of a strategy has no impact on the final number of active
nodes. A first crucial step in our proofs consists in identifying such a strategy. In the attempt to balance
the number of active and unused nodes in the two communities, a possible candidate is the max-
strategy, according to which, at time step 1≤ t≤ T , one chooses the community with the maximum
number of active and unused nodes Ai(t− 1)−Ui(t− 1). The main drawback of this strategy is that
the analysis of the corresponding processes A(t), U(t), t≤ T , appears prohibitive due to its complex
correlation structure. To circumvent this difficulty, we introduce a hybrid variant of the max-strategy
defined above, according to which, at time t, the community G1 is selected if and only if

lim
n→∞

E[A1(t)−U1(t) |U(t) = u(t)]

g1
≥ lim
n→∞

E[A2(t)−U2(t) |U(t) = u(t)]

g2
,

i.e., at time t we select the community with the largest asymptotic normalized expected number of
active and unused nodes.

We go on selecting communities according to this rule up to a random time T ′, T ′ ≤ T , defined
as the first time at which the feasibility constraint prevents us from further using our deterministic
policy. For every time t ∈ (T ′, T ], instead, we select communities according to an arbitrary feasible
strategy, such as the max-strategy. The reason why the hybrid max-strategy simplifies the analysis of
the bootstrap percolation process is that up to time t≤ T ′, the process U(t) is deterministic, with the
mapping t 7→ (U1(t)/g1,U2(t)/g2) describing a particular well determined curve in D. As a result,
the characterization of P (Ai(t)−Ui(t)< 0) becomes extremely simple, since it can be reduced to the
tail probability of binomial random variables. Then we can easily bound from above the probability
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P (Ai(t)−Ui(t)< 0) by using the concentration inequalities reported in the SM, provided that we are
able to characterize the average asymptotic dynamics of E[Ai(t)− Ui(t)]. We emphasize that, by so
doing, we obtain exponential bounds. Moreover we wish to point out that the asymptotic analysis of
the average dynamics of the hybrid max-strategy permits us to identify three regimes, which are shown
to be equivalent to (Sub), (Sup) and (Crit).

At last we recall that the interested reader can find the extension to the case of SBMs with k > 2
communities in [33]. While the stochastic analysis can be carried out following the same lines as for
the case k = 2, the identification of a suitable deterministic strategy is not straightforward. We report
in the SM a brief discussion of the main issues arising in the case of k > 2 communities.

5. Proofs

5.1. Preliminaries

We start by introducing the asymptotic normalized mean number of active and unused nodes. For
t ∈ [n]∪ {0} and i ∈ {1,2}, we set

Ri(u(t)) :=E[Ai(t)−Ui(t) |U(t) = u(t)] = ai + (ni − ai)bi(u(t))− ui(t). (19)

Hereon, for x := (x1, x2) ∈ [0,∞)2, we set

bxgc := (bx1g1c, bx2g2c),

where bxc denotes the greatest integer less than or equal to x ∈R. The following lemmas hold.

Lemma 5.1. Assume (1), (2), (3), (5) and let i ∈ {1,2} be fixed. Then

lim
n→∞

Ri(bxgc)
gi

= ρi(x), ∀ x ∈ [0,∞)2 (20)

Lemma 5.2. Assume (1), (2), (3), (5), and let W be a compact subset of (0,∞)2. Then

sup
x∈W

∣∣∣Ri(bxgc)
gi

− ρi(x)
∣∣∣→ 0, ∀ i= 1,2.

Lemma 5.3. Assume (1), (2) and (3). Then, for any x ∈ [0,∞)2, i ∈ {1,2} and j ∈ {1,2} \ {i},

bi(bxgc) =
(

1 +O
(
1{xi > 0}(bxigicpi + (bxigic)−1) + 1{xj > 0}(bxjgjcq+ (bxjgjc)−1)

))

×
(
bxigicpi + bxjgjcq

)r
/r!.

We postpone the proofs of Lemmas 5.1, 5.2 and 5.3, which are technical, but conceptually rather
straightforward, to the SM.
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5.2. Equivalent formulations of (Sub), (Crit) and (Sup)

Throughout this subsection we assume (C) and (6) with α1 ≤ 1. We consider the curve

Dρ := {x ∈D : ρ1(x) = ρ2(x)} (21)

and the conditions:
(Sub): minx∈Dρ ρ1(x)< 0, (Crit): minx∈Dρ ρ1(x) = 0, (Sup): minx∈Dρ ρ1(x)> 0.

Note that Dρ is graphically represented by the purple curve in Figures 1, 2 and 3. The following
proposition holds.

Proposition 5.4. Under the assumption (C) with α1 ≤ 1, we have that the conditions (Sub), (Crit)
and (Sup) are equivalent to (Sub), (Crit) and (Sup), respectively.

The proof of this proposition exploits the following lemma.

Lemma 5.5. Assume (C) with α1 ≤ 1. Then:

(i) Dρ is the graph of a strictly increasing function of class C1, say ζ(·), with domain [x
(0)
1 , x

(1)
1 ],

where x(0)1 is the unique solution of the equation

ρ1(x1,0)− ρ2(x1,0) = 0, x1 ∈ (0, r/(r− 1))

and x(1)1 is the unique point in (0, r/(r− 1)) such that

{(x(1)1 , ζ(x
(1)
1 ))}= D̃∩Dρ,

where

D̃ :=

{
x ∈D : max{x1 + χ12x2, x2 + χ21x1}=

r

r− 1

}
.

(ii) ρ1(x(0)) = ρ2(x(0))> 0, where x(0) := (x
(0)
1 ,0).

(iii) Ẽ1 is the graph of a strictly increasing and strictly concave function of class C2, say ζ1(·),

with domain [y
(0)
1 , y

(1)
1 ] and ζ1(y

(0)
1 ) = 0. Here y(0)1 is the smallest positive solution of the equation

α1 − x1 + r−1(1− r−1)r−1xr1 = 0, and y(1)1 is the unique point on (0, r/(r− 1)) such that

{(y(1)1 , ζ1(y
(1)
1 ))}= D̃∩ Ẽ1.

(iv) Ẽ2 is the graph of a strictly increasing and strictly convex function of class C2, say ζ2(·), with

domain [0, y
(2)
1 ] and ζ2(0) = y

(0)
2 . Here y(0)2 is the smallest positive solution of the equation α2−x2 +

r−1(1− r−1)r−1xr2 = 0, and y(2)1 is the unique point on (0, r/(r− 1)) such that

{(y(2)1 , ζ2(y
(2)
1 )}= D̃∩ Ẽ2.

Having established the above lemma, we define

Z := Ẽ1 ∩ Ẽ2,
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i.e., Z is the set of the zeros of both ρ1(·, ·) and ρ2(·, ·), which necessarily lie in Dρ. Under the
assumption (C), by Lemma 5.5 (parts (iii) and (iv)) we have that:

Z = Ẽ1 ∩ Ẽ2 = ∅⇔ ζ1(x)< ζ2(x), ∀x ∈ [y
(0)
1 , y

(1)
1 ]∩ [0, y

(1)
2 ]⇒ E1 ∩ E2 = ∅⇔ (Sup). (22)

Hence

(Sub)⇔
◦
E1 ∩

◦
E2 6= ∅⇒ E1 ∩ E2 6= ∅⇒ Z = Ẽ1 ∩ Ẽ2 6= ∅. (23)

Let

z∗ = (z∗, ζ(z∗)) ∈ Ẽ1 ∩ Ẽ2 (24)

denote the zero of ρ1(·, ·) and ρ2(·, ·) in Dρ with the smallest first coordinate (which is obviously
strictly positive), and set

x∗ := z∗ + ζ(z∗)(νµ
r)1/(r−1) > 0. (25)

Here, ζ(·) is the function whose graph is Dρ (see Lemma 5.5(i)).
For later purposes, it is important to note that, as immediate consequence of Lemma 5.5 (parts (iii)

and (iv)) we have that, under the assumptions (C) and (Sub), there exists a right neighborhood of
z∗ > 0, say I+z∗ , such that ζ2(x1)> ζ1(x1) for any x1 ∈ I+z∗ , i.e.,

ρ1(x1, ζ(x1)) = ρ2(x1, ζ(x1))< 0, ∀ x1 ∈ I+z∗ . (26)

The proofs of Lemma 5.5 and Proposition 5.4 are reported in the SM.

5.3. Proof of Theorem 3.2

By Remark 3.1 we necessarily have α1 ≤ 1. Let x(0)1 , x
(1)
1 be the extreme points of the domain of ζ(·)

(see Lemma 5.5(i)), consider the segment

S := {(x1,0) : x1 ∈ [0, x
(0)
1 ]}

and denote by ζ(·) the function whose graph is given by C := S∪Dρ, i.e.,

ζ(x1) := 1
[x

(0)
1 ,x

(1)
1 ]

(x1)ζ(x1), x1 ∈ [0, x
(1)
1 ].

We recall that, in our terminology, a strategy is a rule according to which at every time step t ∈ [n] a
community is selected, see Remark 4.2.

We proceed by dividing the proof in four steps. Usually, throughout the proof, for ease of notation,
we denote by c > 0 a generic positive constant, by c(ε) if it depends on ε > 0.

Step 1: Identification of a suitable strategy

In this section we are going to formally define the hybrid variant of the max-strategy, which has been
introduced informally in Sect.ion 4.2. We start from its initial deterministic component, in correspon-
dence of which the trajectory of the normalized number of used nodes in each community follows
the curve (x1, ζ(x1)), as it can be observed by combining (19), Lemma 5.1, (21) and Lemma 5.5 (i).
Therefore, our first goal is to define the corresponding un-normalized ‘trajectory’ (w1(t),w2(t)) of the
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actual number of nodes to be used by time t in the community Gi. With this in mind, we first establish
a map between the discrete parameter t and the quantity x1 that parametrizes the curve (x1, ζ(x1)). In
particular, we set

v(x1) := bx1g1c+ bζ(x1)g2c, x1 ∈ [0, x
(1)
1 ]. (27)

Note that v([0, x
(1)
1 ]) is a subset of [n] ∪ {0}, say v([0, x

(1)
1 ]) = {t0, t1, . . . , tm+1}. Without loss of

generality, we assume t0 := v(0) = 0 < t1 < . . . < tm < tm+1 := v(x
(1)
1 ). We consider the right-

continuous generalized inverse function of v:

v−1(ts) := inf{x1 ∈ [0, x
(1)
1 ] : v(x1)≥ ts}, s= 0, . . . ,m+ 1. (28)

Finally, we set

w1(ts) := bv−1(ts)g1c, w2(ts) := bζ(v−1(ts))g2c, s= 0, . . . ,m+ 1., (29)

Now, to conclude our construction, we extend the definition of wi(·), i= 1,2, to the set (0, v(x
(1)
1 ))∩

(N∪ {0}), by interpolating their values in v([0, x
(1)
1 ]) as follows. We note that by construction

wi(ts+1)−wi(ts) ∈ {0,1}, i= 1,2, s= 0, . . . ,m

and
2∑

i=1

wi(ts) = ts, s= 0, . . . ,m+ 1.

So, for any s = 0, . . . ,m + 1, ts+1 − ts ∈ {1,2}. Consequently, for any t ∈ ((0, v(x
(1)
1 )) ∩ N) \

v([0, x
(1)
1 ]), there exists ts ∈ v([0, x

(1)
1 ]), for some s ∈ {0, . . . ,m}, such that t = ts + 1 and t+ 1 =

ts+1. For such a t, we define

w1(t) := bv−1(ts)g1c+ 1 and w2(t) := bζ(v−1(ts))g2c. (30)

Note that, by construction,

2∑

i=1

wi(t) = t, ∀ t ∈ {0, . . . , v(x
(1)
1 )}.

Finally, we need to determine the conditions under which the deterministic strategy we are defining
can be successfully employed. To this purpose we define the stopping time

T ′ := min{1≤ t≤ v(x
(1)
1 ) : Ai(t− 1)<wi(t), for some 1≤ i≤ 2}. (31)

At time step t≥ 0, we choose the community Gi, i= 1,2, if and only if Ci(t) = 1, where

Ci(0) := 0, Ci(t) :=wi(t)−wi(t− 1), 1≤ t < T ′ (32)

and

C1(t) = 1{A1(t−1)−U1(t−1)≥A2(t−1)−U2(t−1)}, C2(t) = 1−C1(t), T ′ ≤ t≤ T (33)
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In words, the chosen strategy is deterministic and equal to (32) as long as possible. Indeed, T ′ is the
first time at which the deterministic strategy (32) can not be employed because of the lack of usable
and active nodes. Note that setting w(t) := (w1(t),w2(t)), we have

U(t) =w(t), ∀ t < T ′ (34)

The above strategy is well-defined, indeed, by construction, at each time step t≤ T ′, there exists only
one index i ∈ {1,2} such that Ci(t) = 1 (Cj(t) = 0 for j 6= i), and by (34) we have T ≥ T ′ with
T − 1 = |G|. As already mentioned, we extend the process for T ≤ t ≤ n by adopting an arbitrary
“unfeasible" strategy. The choice of the strategy employed for t≥ T ′ has no impact on T ′.

Step 2: outline of the proof.

It can be easily seen that

lim
δ→0

lim
n→∞

v(z∗ ± δ)/v(z∗) = 1.

Therefore, for any ε > 0, there exist δε > 0 and nε ∈N such that for any n≥ nε, it holds v(z∗+ δε)<
(1 + ε)v(z∗) and v(z∗ − δε)> (1− ε)v(z∗). So, for an arbitrarily fixed ε > 0 and any n≥ nε

{|G|/v(z∗)− 1|> ε}= {|G|> (1 + ε)v(z∗))} ∪ {|G|< (1− ε)v(z∗)}
⊆ {|G|> v(z∗ + δε)} ∪ {|G|< v(z∗ − δε)⊆ {|G| ≥ v(z∗ + δε)} ∪ {T ′ ≤ v(z∗ − δε)}.

Since v(z∗)/g1→ x∗, the claim then follows if we prove that, for any δ > 0 small enough there exists
a positive constant c(δ)> 0 such that

P (T ′≤v(z∗ − δ)) =O(e−c(δ)g1) (35)

P (|G| ≥ v(z∗ + δ)) =O(e−c(δ)g1). (36)

Step 3: proof of (35)

We divide the proof of (35) in three parts. In Step 3.1 we prove the inequality

P (T ′ ≤v(z∗ − δ))< T1 +T2, (37)

where

T1 :=

v(x
(0)
1 )−1∑

s=0

P (Bin(n1 − a1, b1((w1(s),0)))<w1(s+ 1)− a1) (38)

T2 :=

v(z∗−δ)∑

s=v(x
(0)
1 )

2∑

i=1

P (Bin(ni − ai, bi(w(s)))<wi(s+ 1)− ai). (39)

In Step 3.2 we prove

T1 =O(e−cg1) (40)
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by applying the concentration inequalities reported in the SM to every addend in (38). In Step 3.3 we
prove

T2 =O(e−c(δ)g1) (41)

again by applying the concentration inequalities reported in the SM to every addend in (39).
Step 3.1: proof of (37).

Hereon, we set A(t) := (A1(t),A2(t)) and, for two vectors y = (y1, y2) and y′ = (y′1, y
′
2), we write

y≥ y′ if yi ≥ y′i, i= 1,2. From (31) and (34) we get

{T ′ > t}= {A(s)≥w(s+ 1) ∀ 0≤ s≤ t− 1} ⊆ {U(s) =w(s) ∀ 0≤ s≤ t}, (42)

which yields

{T ′ = t}= {A(t− 1)<w(t), A(s)≥w(s+ 1) ∀ 0≤ s≤ t− 2} (43)

⊆ {A(t− 1)<w(t), U(s) =w(s) ∀ 0≤ s≤ t− 1}. (44)

Therefore

P (T ′ ≤ t) = P


 ⋃

1≤s≤t
{T ′ = s}


=

t∑

s=1

P (T ′ = s)

≤
t−1∑

s=0

P (A(s)<w(s+ 1),U(h) =w(h) ∀0≤ h≤ s) (45)

≤
t−1∑

s=0

P (A(s)<w(s+ 1),U(s) =w(s)) (46)

Consequently,

P (T ′ ≤v(z∗ − δ))≤
v(z∗−δ)∑

s=0

P (A(s)<w(s+ 1) | U(s) =w(s))

=

v(x
(0)
1 )−1∑

s=0

(
P (S1(s) + a1 −w1(s+ 1)< 0 | U(s) = (w1(s),0))

)

+

v(z∗−δ)−1∑

s=v(x
(0)
1 )

2∑

i=1

P (Si(s) + ai −wi(s+ 1)< 0 | U(s) =w(s)), (47)

where we used the fact that w2(s) = 0 for s= 1, . . . , v(x
(0)
1 ). The inequality (37) follows from (47),

noticing that (17) yields

v(x
(0)
1 )−1∑

s=0

P (S1(s) + a1 −w1(s+ 1)< 0 | U(s) = (w1(s),0)) = T1
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and

v(z∗−δ)−1∑

s=v(x
(0)
1 )

2∑

i=1

P (Si(s) + ai −wi(s+ 1)< 0 | U(s) =w(s)) = T2.

Step 3.2: proof of (40).
We first note that, since w2(s) = 0 and therefore w1(s) = s for s < v(x

(0)
1 ), we have

T1 =

min(a1,v(x
(0)
1 ))−1∑

s=0

P
(

Bin(n1 − a1, b1(s,0))< s+ 1− a1
)

+

v(x
(0)
1 )−1∑

s=min(a1,v(x
(0)
1 ))

P
(

Bin(n1 − a1, b1(s,0))< s+ 1− a1
)
,

with the convention that the second addend on the right hand side is null when min(a1, v(x
(0)
1 )) =

v(x
(0)
1 ). Now, note that by construction

min(a1,v(x
(0)
1 ))−1∑

s=1

P
(

Bin(n1 − a1, b1(s,0))< s+ 1− a1
)

= 0.

Therefore, T1 is not null only if a1 < v(x
(0)
1 ), and so

T1 ≤
v(x

(0)
1 )−1∑

s=a1

P
(

Bin(n1 − a1, b1(s,0))< s+ 1− a1
)
.

Now we are going to bound each addend of the sum in the right-hand side by using the inequality
(13) in the SM. For any s ∈ {a1, . . . , v(x

(0)
1 ) − 1}, we have v−1(s) = s/g1 = w1(s)/g1. Moreover

observe that, since a1/g1→ α1 < x
(0)
1 , for n sufficiently large a1/g1 ∈ [α1/2, x

(0)
1 ]. Similarly, since

v−1(v(x
(0)
1 ) − 1) = (v(x

(0)
1 ) − 1)/g1 = (bx(0)1 g1c − 1)/g1 ↑ x(0)1 , for sufficiently large n we have

v−1(v(x
(0)
1 )− 1) ∈ [α1/2, x

(0)
1 ]. Then, as an immediate consequence of the monotonicity of the in-

volved functions, for n sufficiently large, let us say n > n′, we have that v−1(s) ∈ [α1/2, x
(0)
1 ] for

any s ∈ {a1, . . . , v(x
(0)
1 )− 1}. Hence we can apply Lemma 5.2 and conclude that, for n > n′′ (n′′ not

depending on s and not smaller than n′):

R1((s,0)) =R1((w1(s),0)) =R1((bv−1(s)g1c,0)) =R1((v−1(s)g1,0))

>
1

2
(ρ1(v−1(s),0))g1 ≥ inf

x∈[α1/2,x
(0)
1 ]

1

2
(ρ1(x,0))g1 =

1

2
ρ1(x(0))g1,
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where for the latter equation we have used the property that ρ1(·,0) is strictly decreasing on
(0, r/(r− 1)). In conclusion, we have, for all n > n′′:

E[Bin(n1 − a1, b1(s,0)))] =R1((s,0))− a1 + s≥ 1

2
ρ1(x(0))g1 + s− a1 > s+ 1− a1.

Therefore, we can apply inequality (13) in the SM. Note that, since the mapping x 7→ x/(x+ y), for
fixed y > 0, is strictly increasing on (0,∞), and the function H defined by (11) is decreasing on (0,1),
for every n > n′′, we have

P

(
Bin(n1 − a1, b1((s,0))< s+ 1− a1

)
= P

(
Bin(n1 − a1, b1((s,0))≤ s− a1

)

≤ exp

(
−1

2
ρ1(x(0))g1H

(
s− a1

1
2ρ1(x(0))g1 + s− a1

))
≤ exp

(
−1

2
ρ1(x(0))g1H

(
x
(0)
1

1
2ρ1(x(0)) + x

(0)
1

))
.

In conclusion, defined c′ := 1
2ρ1(x(0))H

(
x
(0)
1

1
2
ρ1(x(0))+x

(0)
1

)
and c= 1

2c
′, for every n≥ n′′ we have

T1 < x
(0)
1 g1e−c

′g1 =O(e−cg1),

which yields (40).

Step 3.3: proof of (41).
To prove (41) we follow the same lines as in the proof of (40). As first step we show that for a suf-
ficiently large n (independently from s) (w1(s)/g1,w2(s)/g2) is contained in a properly compact set
Cz∗−δ,ε0 satisfying the following property:

Cz∗−δ,ε0 ⊂ {x ∈D : ρ1(x)> 0, ρ2(x)> 0}.

Then we bound T2 as follows:

T2 ≤
v(z∗−δ)−1∑

s=v(x
(0)
1 )

2∑

i=1

P (Bin(ni − ai, bi(w(s))/g1 < (wi(s)− ai + 1)/gi)

≤ v(z∗ − δ)(s1(ε) + s2(ε)), (48)

for any ε > 0, where

si(ε) := sup
x∈Cz∗−δ,ε0

P

(
Bin(ni − ai, bi(bxgc))/gi < xi − αi + ε

)
, i= 1,2. (49)

Then, exploiting Lemma 5.2 and the inequality (13) in the SM, we are going to show that there exists
ε= ε(δ) such that

si(ε(δ)) =O(e−c(δ)g1), i= 1,2. (50)

Then (41) immediately follows.
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Step 3.3.1: Definition of Cz∗−δ,ε0 .

Let Cx be the graph of the function ζ(·) restricted to [x
(0)
1 , x], for an arbitrary x ∈ (x

(0)
1 , x

(1)
1 ]. Clearly,

for any x, Cx is a compact set of R2. Using Lemma 5.5, it is easily seen that, for any δ,

Cz∗−δ ⊂ Cz∗ ∩ {x ∈D : ρ1(x)> 0, ρ2(x)> 0}.

For ε > 0, let Cz∗−δ,ε be the ε-thickening of Cz∗−δ , i.e.,

Cz∗−δ,ε := {x ∈R2 : dist(x,Cz∗−δ)≤ ε},

where, for B⊂R2,

dist(x,B) := inf{‖x− y‖ : y ∈B}
and ‖ · ‖ is the Euclidean norm. By the regularity properties of the functions ρi, i= 1,2, easily follows
that there exists ε0 > 0 small enough such that

Cz∗−δ,ε0 ⊂ {x ∈D : ρ1(x)> 0, ρ2(x)> 0}.

Step 3.3.2: proof of the relation (w1(s)/g1,w2(s)/g2) ∈ Cz∗−δ,ε0 .
We are going to show that there exists a positive integer nε0 (not depending on s) such that
(w1(s)/g1,w2(s)/g2) ∈ Cz∗−δ,ε0 for any n > nε0 and v(x

(0)
1 ) ≤ s ≤ v(z∗ − δ) − 1. Indeed, given

an arbitrary n, for any v(x
(0)
1 )≤ s≤ v(z∗ − δ)− 1, we have

bv−1(s)g1c
g1

≤ w1(s)

g1
≤ bv

−1(s)g1c+ 1

g1

and

bζ(v−1(s))g2c
g2

≤ w2(s)

g2
≤ bζ(v−1(s))g2c+ 1

g2

These relations imply
∣∣∣w1(s)

g1
− v−1(s)

∣∣∣≤ 1/g1

and
∣∣∣w2(s)

g2
− ζ(v−1(s))

∣∣∣≤ 1/g2

for any v(x
(0)
1 )≤ s≤ v(z∗ − δ)− 1. Therefore we can select nε0 such that

‖(w1(s)/g1,w2(s)/g2)− (v−1(s), ζ(v−1(s)))‖ ≤ ε0,

and since (v−1(s), ζ(v−1(s)) ∈ Cz∗−δ for any v(x
(0)
1 )≤ s≤ v(z∗−δ), we deduce that (w1(s)/g1,w2(s)/g2) ∈

Cz∗−δ,ε0 , for any n > nε0 .
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Step 3.3.3: proof of (50).
We shall show (50) for i = 1, indeed the case i = 2 can be proved similarly. Setting ε(δ) :=
minx∈Cz∗−δ,ε0 ρ1(x)> 0 and ε(δ) := 1

4ε(δ), we have

(n1 − a1)b1(bxgc)
g1

> r−1(1− r−1)r−1(x1 + χ12x2)r − 1

4
ε(δ) = x1 − α1 + ρ1(x)− 1

4
ε(δ)

≥ x1 − α1 + ε(δ)− 1

4
ε(δ)> x1 − α1 +

3

4
ε(δ) for all x ∈ Cz∗−δ,ε0 . (51)

Therefore, by concentration inequality (13) in the SM for all n large enough, we have

sup
x∈Cz∗−δ,ε0

P

(
Bin(n1 − a1, b1(bxgc))≤

(
x1 − α1 +

1

4
ε(δ)

)
g1

)

≤ sup
x∈Cz∗−δ,ε0

exp

(
−(x1 − α1 +

3

4
ε(δ))g1H

(
x1 − α1 + 1

4ε(δ)

x1 − α1 + 3
4ε(δ)

))
(52)

=O(e−c(ε(δ))g1) =O(e−c(δ)g1),

where in (52) we used (51) and the fact that H decreases on (0,1).

Step 4: proof of (36).

For δ > 0, define the random time

Q(δ) := max{t : U1(t)≤ z1, U2(t)≤ z2}

where z1 := b(z∗ + δ)g1c and z2 := bζ(z∗ + δ)g2c. Note that by construction

either U1(Q(δ)) = z1 and U2(Q(δ))≤ z2,

or U1(Q(δ))< z1 and U2(Q(δ)) = z2 almost surely.

In other words, defining, for v ∈N2, the sets

Fv := F
(1)
v ∪F(2)

v ,

F
(1)
v := {(w1,w2) ∈N2 : w1 = v1, w2 ≤ v2}, F

(2)
v := {(w1,w2) ∈N2 : w2 = v2, w1 ≤ v1},

the random vector U(Q(δ)) (whose components are Ui(Q(δ)), i= 1,2) almost surely satisfies

U(Q(δ)) ∈ F(z1,z2) with |F(z1,z2)|= z1 + z2 + 1.

As immediate consequence, we have that almost surely

Q(δ) = U1(Q(δ)) +U2(Q(δ))≤ z1 + z2 = v(z∗ + δ).

Therefore

{|G| ≥ v(z∗ + δ)} ⊆
2⋂

i=1

⋂

t≤v(z∗+δ)
{Si(t) + ai −Ui(t)≥ 0}
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⊆
2⋂

i=1

{Si(Q(δ)) + ai −Ui(Q(δ))≥ 0}

=
⋃

u∈F(z1,z2)

2⋂

i=1

{Si(Q(δ)) + ai −Ui(Q(δ))≥ 0,U(Q(δ)) = u},

and so

P (|G| ≥ v(z∗ + δ))≤
∑

u∈F(z1,z2)

P

(
2⋂

i=1

{Si(Q(δ)) + ai −Ui(Q(δ))≥ 0}
∣∣∣U(Q(δ)) = u

)

≤ (z1 + z2 + 1) max
u∈F(z1,z2)

P

(
2⋂

i=1

{Si(u1 + u2) + ai − ui ≥ 0}
∣∣∣U(Q(δ)) = u

)
(53)

≤ (z1 + z2 + 1) max
1≤j≤2

max
u∈F(j)

(z1,z2)

P

(
2⋂

i=1

{Si(u1 + u2) + ai − ui ≥ 0}
∣∣∣U(Q(δ)) = u

)
. (54)

Note that, for fixed j ∈ {1,2} and u ∈ F(j)
(z1,z2)

,

P

(
2⋂

i=1

{Si(u1 + u2) + ai − ui ≥ 0}
∣∣∣U(Q(δ)) = u

)
≤ P

(
Sj(u1 + u2) + aj ≥ zj

∣∣∣U(Q(δ)) = u
)

= P (Bin(nj − aj , bj(u))≥ zj − aj)≤ P (Bin(nj − aj , bj((z1, z2))≥ zj − aj),

where the latter inequality follows from the stochastic ordering properties of the binomial distribution
with respect to its arguments. Note, indeed, that bj(u) (as defined in (18)) is increasing with respect to
the components of u. Combining this inequality with (54) we have

P (|G| ≥ v(z∗ + δ))≤ (z1 + z2 + 1) max
1≤j≤2

P (Bin(nj − aj , bj(z1, z2)≥ zj − aj).

Since

z1 + z2 + 1∼ v(z∗ + δ)

the claim then follows if we prove that, for an arbitrarily fixed i ∈ {1,2}, the quantity

P (Bin(ni − ai, bi(z1, z2))≥ zi − ai)

goes to zero exponentially fast with respect to g1. For this we employ again the concentration inequality
(12) in the SM. Since ideas and computations are similar to those in the proof of (35), we skip some
details. By Lemma 5.1 we have

(n1 − a1)b1(z1, z2)∼ ((z∗ + δ)− α1)g1 + ρ1(z∗ + δ, ζ(z∗ + δ))g1. (55)

and

(n2 − a2)b2(z1, z2)∼ (ζ(z∗ + δ)− α2)g2 + ρ2(z∗ + δ, ζ(z∗ + δ))g2. (56)
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Therefore

z1 − a1
(n1 − a1)b1(z1, z2)

→ (z∗ + δ)− α1
z∗ + δ− α1 + ρ1(z∗ + δ, ζ(z∗ + δ))

(57)

and

z2 − a2
(n2 − a2)b2(z1, z2)

→ ζ(z∗ + δ)− α2
ζ(z∗ + δ)− α2 + ρ2(z∗ + δ, ζ(z∗ + δ))

. (58)

By Lemma 5.5, we have that there exists δ0 > 0 such that

max
1≤i≤2

ρi((z∗ + δ), ζ(z∗ + δ)) = ε(δ)< 0, for any 0< δ ≤ δ0.

Therefore, by (12) in the SM, for all n large enough, we have

P

(
Bin(n1 − a1, b1(z1, z2))≥ z1 − a1

)
≤ exp

(
−(n1 − a1)b1(z1, z2)H

(
z1 − a1

(n1 − a1)b1(z1, z2)

))
,

where H(x) := 1− x+ x logx, x > 0, H(0) = 1. The exponential decay of

P (Bin(n1 − a1, b1(z1, z2))≥ z1 − a1)

easily follows combining this latter inequality with (55) and (57), and using thatH increases on (1,∞).
Reasoning in the same way, but using (56) and (58) in place of (55) and (57), respectively, one proves

the exponential decay of P

(
Bin(n2 − a2, b2(z1, z2))≥ z2 − a2

)
.

5.4. Proof of Theorem 3.3

We give the detailed proof in the case α1 ≤ 1. The case α1 > 1 follows along similar computations and
it is briefly outlined in in the SM.

We denote by ζext(·) the function whose graph is

Cext := C∪Rθ0 ,

where C is defined at the beginning of the proof of Theorem 3.2 and Rθ0 , θ0 > 0 arbitrarily fixed, is
the straight line

Rθ0 := {x ∈R2 \D : x = (x1, θ0(x1 − x(1)1 ) + ζ(x
(1)
1 )), x1 ≥ x(1)1 },

i.e.,

ζext(x1) := 1
[0,x

(1)
1 ]

(x1)ζ(x1) + 1
(x

(1)
1 ,∞)

(x1)(θ0(x1 − x(1)1 ) + ζ(x
(1)
1 )).

Similarly to the proof of Theorem 3.2 (see (27)), we set

v(x1) := bx1g1c+ bζext(x1)g2c, x1 ≥ 0
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and note that v([0,∞)) = {ts}s∈N∪{0}, for some t0 := 0 < t1 < . . . < tm < . . .. We define v−1(ts),

s ∈ N ∪ {0}, similarly to (28), with obvious changes (i.e., with [0,∞) in place of [0, x
(1)
1 ] and with

N ∪ {0} in place of {0, . . . ,m + 1}), wi(ts), i = 1,2, s ∈ N ∪ {0}, similarly to (29), and we ex-
tend the definition of wi(·) to any t ∈ N \ v([0,∞)) similarly to (30). We define T ′ as in (31) (with
{1, . . . , v(x

(1)
1 )} replaced by [n]) and, similarly to the proof of Theorem 3.2, for t < T ′, the strategy

{Ci(t)} defined by (32) is adopted. For T ′ ≤ t < T , we assume that the system switches to the strategy
defined by (33). However we wish to emphasize that the choice of the strategy employed when t≥ T ′
is completely irrelevant for the proof, as it will become clear in the next subsection.

We proceed by giving an outline of the proof and then by dividing the proof itself in five steps.
Hereon, for ease of notation, we denote by c > 0 a generic positive constant, by c(ε) if it depends on
ε > 0.

Outline of the proof

Let ε ∈ (0,1) be small. Since |G| ≥ T ′, we have

P (n− |G|> εn)≤ 1− P (T ′≥d(1− ε)ne),

where dxe denotes the smallest integer greater than or equal to x ∈R, and therefore it suffices to show
that

P (T ′<d(1− ε)ne)≥O(e−c(ε)g1),

for some positive constant c(ε)> 0. We have

P (T ′ < d(1−ε)ne) = P (T ′ < kv(x
(1)
1 ))+P (kv(x

(1)
1 )≤ T ′ < bp−11 c)+P (bp−11 c ≤ T ′ < d(1−ε)ne)

for some constant k ∈N. Therefore the proof is completed if we show that every term on the right-hand
side vanishes exponentially fast for sufficiently large n. To this aim, as first step, we give a preliminary
bound on P (T ′ ∈ [ta, tb)) for some ta, tb ∈ [n] with ta < tb.

Step 1: A useful preliminary bound

Note that by (44) we have

{T ′ ∈ [ta, tb)}= ∪tb−1t=ta
{A(t− 1)<w(t), A(s)≥w(s+ 1) ∀ 0≤ s≤ t− 2}

⊆ ∪tb−1t=ta
{A(t− 1)<w(t), U(s) =w(s) ∀ 0≤ s≤ t− 1}.

Therefore

{T ′ ∈ [ta, tb)} ⊆ {U(ta − 1) =w(ta − 1)}. (59)

Since the paths Ai(·) and the functions wi(·) are non-decreasing, we have

{A(ta − 1)≥w(tb),U(ta − 1) =w(ta − 1)} ∩ {T ′ ∈ [ta, tb)}= ∅. (60)

Combining (59) and (60), we have

P (A(ta − 1)≥w(tb),U(ta − 1) =w(ta − 1)) + P (T ′ ∈ [ta, tb))

= P (A(ta − 1)≥w(b),U(ta − 1) =w(ta − 1)) + P (T ′ ∈ [ta, tb),U(ta − 1) =w(ta − 1))

≤ P (U(ta − 1) =w(ta − 1)),
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which yields

P (T ′ ∈ [ta, tb))≤ P (T ′ ∈ [ta, tb) |U(ta − 1) =w(ta − 1))

≤ 1− P (A(ta − 1)≥w(tb) |U(ta − 1) =w(ta − 1))≤
2∑

i=1

P (Ai(ta − 1)<wi(tb) |U(ta − 1) =w(ta − 1)).

(61)
Step 2: Bounding P (T ′ < kv(x

(1)
1 ))

By (46) we have

P (T ′ < kv(x
(1)
1 ))≤

kv(x
(1)
1 )−1∑

s=1

P (A(s)<w(s+ 1) | U(s) =w(s))

= T1 +T2 (62)

with

T1 :=

v(x
(0)
1 )−1∑

s=1

P (A(s)<w(s+ 1) | U(s) =w(s)), T2 :=

kv(x
(1)
1 )−1∑

s=v(x
(0)
1 )

P (A(s)<w(s+ 1) | U(s) =w(s)).

Now, following the same lines as in the proof of (40), we can easily show that

T1 =

v(x
(0)
1 )∑

s=min(a1,v(x
(0)
1 ))

P (S1(s)< s+ 1− a1 | U(s) = (s,0)) =O(e−cg1). (63)

with c := 1
4ρ1(x(0))H

(
x
(0)
1

1
2
ρ1(x(0))+x

(0)
1

)
.

Instead, to prove that

T2=O(e−cg1),

we can follow the same approach as in the proof of (41). Hereon, we skip many details and highlight
the main differences. Let Cx be the graph of the function ζext(·) restricted to (x

(0)
1 , x), x > x

(0)
1 , and,

for ε > 0, let Cx,ε be the ε-thickening of Cx. As in the proof of Theorem 3.2, one has that there exists
ε0 ∈ (0,1) small enough so that

C
kv(x

(1)
1 ),ε0

⊂ {x ∈D : ρ1(x)> 0, ρ2(x)> 0}

and it can be shown that there exists nε0 (not depending on s) such that (w1(s)/g1,w2(s)/g2) ∈
C
kv(x

(1)
1 ),ε0

for any n > nε0 and any v(x
(0)
1 )≤ s≤ kv(x

(1)
1 )− 1. By the assumption (Sup) it follows

that minx∈C
kv(x

(1)
1 ),ε0

ρ1(x) =: ε > 0. Then, proceeding exactly as in the proof of Theorem 3.2, we

can show that for n large enough T2 ≤ sc(ε)g1 , where s is defined as in (49), with C
kv(x

(1)
1 ),ε0

in place

of Cz∗−δ,ε0 .
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Step 3: Bounding P (kv(x
(1)
1 )≤ T ′ < bp−11 c)

For n so large that so that bp−11 c − 1> kv(x
(1)
1 ), define

l := min{`≥ k : p1m` ≥ 1}, where m` := k`/kv(x
(1)
1 )

Since ml ≥ bp−11 c, we have

[kv(x
(1)
1 ), bp−11 c]∩N⊆

l−1⋃

`=k

[m`,m`+1]∩N.

Now

P (k v(x
(1)
1 )≤ T ′ < bp−11 c)≤

l−1∑

`=k

P (m` ≤ T ′ <m`+1)

≤
2∑

i=1

l−1∑

`=k

P (Ai(m` − 1)<wi(m`+1) |U(m` − 1) =w(m` − 1))

where in the latter inequality we have employed (61). Moreover

P (Ai(m` − 1)<wi(m`+1) |U(m` − 1) =w(m` − 1)) = P (Bin(ni − ai, bi(w(m` − 1))<wi(m`+1)− ai)) .
(64)

Therefore, choosing k large enough and arguing as in the proof of relation (59) in [32], for any
i ∈ {1,2}, any ` ∈ {k, . . . , l− 1} and all n large enough, we get

P (Bin(ni − ai, bi(w(m` + 1)))<wi(m`+1 + 1)− ai)

≤ P (Bin(ni, bi(w(m` + 1)))<wi(m`+1 + 1))≤ e−c1g1e−(`−dce)c2g1 , (65)

for some positive constants c1, c2 > 0. Finally, by (64), for all n large enough, we have

P (k v(x
(1)
1 )≤ T ′ < bp−11 c)≤

2∑

i=1

l−1∑

`=dce
P (Bin(ni − ai, bi(w(m` − 1)))<wi(m`+1)− ai)≤ c3e−c1g1 ,

for some positive constant c3 > 0.

Step 4: Bounding P (bp−11 c ≤ T ′ < d(1− ε)ne)

Let c ∈ (0,1) be a small positive constant such that, for all n large enough P (Bin(bp−11 , p1)≥ r)≥ 2c
(see e.g. the proof of Lemma 8.2 Case 3 p. 26 in [24]). For all n large enough we have

P (bp−11 c ≤ T ′ < d(1− ε)ne) = P (bp−11 c< T ′ < dcne) + P (dcne ≤ T ′ < d(1− ε)ne). (66)

From (61), we have

P (bp−11 c< T ′ < dcne)≤ 1− P (A(bp−11 c − 1)≥w(dcne) |U(bp−11 c − 1) =w(bp−11 c − 1))
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≤
2∑

i=1

P (Bin(ni − ai, bi(w(bp−11 c − 1)))<wi(dcne)− ai). (67)

Similarly, we get

P (dcne ≤ T ′ < d(1− ε)ne)≤
2∑

i=1

P (Bin(ni − ai, bi(w(dcne − 1)))<wi(d(1− ε)ne)− ai). (68)

The following inequalities are proved in the Step 4 of the proof of Proposition 4.1 in [32] and hold for
any i ∈ {1,2} and all n large enough:

P (Bin
(
ni − ai, bi(w(bp−11 c − 1)))<wi(dcne)− ai

)
≤ c1e−c2n, for some constants c1, c2 > 0

P
(

Bin(ni − ai, bi(w(dcne − 1)))<wi(d(1− ε)ne)− ai
)
≤ e−c

′(ε)g1 , for some constant c′(ε)> 0.

Therefore P (bp−11 c ≤ T ′ < d(1− ε)ne)≤ e−c
′(ε)g1 + c1e−c2n.

Supplementary Material

Auxiliary results/discussion
SM contains: i) the proofs of Propositions 4.1, 5.4 and Lemmas 5.1, 5.2, 5.3, 5.5, ii) the description of
the generalization to the SBM with k communities, iii) concentration inequalities for the Bin(n,p).
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