162. CLUSTER ANALYSIS TO EXPLORE CLINICAL SUBCLASSIFICATION OF EOSINOPHILIC GRANULOMATOSIS WITH POLYANGIITIS (CHURG-STRAUSS)

Emma Rubenstein¹, Carla Maldini¹, Augusto Vaglio², Paolo Bottero³, Phillip Bremer⁴, Giacomo Emmi⁵, Paolo Fraticelli⁶, Andrea Gioffredi², Gina Gregorini⁷, Julian Grosskreutz⁸, Giuseppe Guida⁹, Bernhard Hellmich¹⁰, Claus Kroegel⁸, Federica Maritati¹¹, Alberto Pesci¹², Matthieu Resche-Rigon¹, David Saadoun¹³, Renato Sinico¹¹, Barbara Sokolowska¹⁴, Wojciech Szczeklik¹⁴, Jochen Zwerina¹⁵, Frank Moosig¹⁶, Thomas Neumann¹⁷ and Alfred Mahr¹

¹Saint Louis Hospital Paris, France, ²University Hospital of Parma, Italy, ³Ospedale di Magenta Milano, Italy, ⁴Clinical Center Bad Bramstedt Bad Bramstedt, Germany, ⁵University of Firenze, Florence, Italy, ⁶Ospedali Riuniti Ancona, Italy, ⁷Spedali Civili Brescia Brescia, Italy, ⁶University Hospital of Jena Jena, Germany, ⁹Birago di Vische Hospital Torino, Italy, ¹⁰Vasculitis Center Tübingen-Kirchheim Kirchheim unter Teck, Germany, ¹¹University of Parma Parma, Italy, ¹²University of Milano Bicocca Milan, Italy, ¹³Pitié-Salpêtrière University Hospital Paris, France, ¹⁴Jagiellonian University Medical College Krakow, Poland, ¹⁵Hanusch Hospital Vienna, Austria, ¹⁶Rheumazentrum Schleswig- Holstein Mitte Neumünster, Germany, ¹⁷Kantonsspital St. Gallen St Gallen, Switzerland

Background: Previous studies of eosinophilic granulomatosis with polyangiitis (Churg–Strauss, EGPA) suggested that EGPA may involve clinically distinct phenotypes. In particular, clinical manifestations might be determined by the presence or absence of antineutrophil cytoplasmic antibodies (ANCAs) and reflect more prominent underlying vasculitic than eosinophilic disease processes. This study explored whether EGPA involves several subcategories by using hierarchical cluster analysis.

Methods: This study used clinical data for patients diagnosed with EGPA in 16 centers in Austria, France, Germany, Italy and Poland collected with a standardized case report form. The analyses pertained to patients reported to have asthma and who fulfilled the Lanham and American College of Rheumatology criteria, with ANCA positivity (by immunofluorescence or ELISA test) as an additional item. We used a multiple correspondence analysis followed by hierarchical cluster analysis with the Ward method. The cluster model included 10 clinical variables assessed at diagnosis (arthromuscular, mucocutaneous, ophthalmological, ENT, cardiovascular, pulmonary, gastrointestinal, renal, central or peripheral neurological involvement); a second model added ANCA positivity as an

input variable. Clinical relevance of the generated clusters was assessed

input variable. Clinical relevance of the generated clusters was assessed by describing each cluster's clinical characteristics. **Results:** We had data for 482 patients (46.3% males; mean age at diagnosis: 51 years [SD 14.9]) with a diagnosis mostly from 1990 to 2015. The cluster analysis generated 4 clusters of 34, 371, 39 and 38 patients. No distinctive cluster characteristic could be identified and we found no mutually exclusive subgroups, even after adding ANCA positivity to the model. ANCAs were detected in 37.1% of patients and were mostly P-ANCA (85.2%) or anti-myeloperoxidase (87.5%) were mostly P-ANCA (85.2%) or anti-myeloperoxidase (87.5%) according to the technique used. As compared with ANCA-negative EGPA patients, those with ANCA-positive EGPA were more often male $(P=0.01),\,\,$ significantly younger $(P=0.002),\,\,$ with more renal (P<0.0001) and peripheral neurological involvement (P<0.0001) and tissue findings of vasculitis (P = 0.01), and fewer cardiovascular signs (P < 0.0001) and tissue findings of eosinophilic infiltration (P < 0.0001). Conclusion: Although reinforcing the known associations of ANCA status with clinical manifestations, our data do not provide evidence for clearly distinct subclasses within EGPA. EGPA may be a phenotypic continuum rather than a phenotypic dichotomy, with entangled rather than distinct mechanistic pathways. Disclosures: None