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The radiative hyperon decay A — ny is studied using (10087 4 44) x 10° J/y events collected with the
BESIII detector operating at BEPCII. The absolute branching fraction of the decay A — ny is determined
to be (0.832 4 0.038, £ 0.054) x 1073, which is a factor of 2.1 lower and 5.6 standard deviations
different than the previous measurement. By analyzing the joint angular distribution of the decay products,
the first determination of the decay asymmetry a, is reported with a value of —0.16 = 0.104, &= 0.054y.
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Weak radiative transitions of hadrons are governed by
the interplay of the electromagnetic, weak, and strong
interactions [1] and involve parity violating (p.v.) and parity
conserving (p.c.) amplitudes. According to Hara’s theorem
[2], the p.v. amplitude of radiative hyperon decays,
B; — Byy, vanishes in the limit of SU(3) flavor symmetry.
Taking into account the breaking of this symmetry in the
quark model, the decay asymmetry a,, given by the
interference between p.v. and p.c. amplitudes, is expected
to be positive for decays such as Xt — py, where the s
quark in the initial state baryon decays to a d quark. It was,
therefore, a surprise when several experiments reported a
large negative value of the decay asymmetry for this
process [3—7]. For other radiative hyperon decays, mea-
surements have found nonvanishing positive decay asym-
metries [8,9]. The disagreement between theoretical
expectation and experimental results provoked wide inter-
est in these processes, and various solutions to the puzzle
were proposed [10-22]. It was suggested that the validity of
Hara’s theorem could be confirmed by determining the sign
of the A — ny decay asymmetry [23], a positive value
indicating the theorem’s violation.

In the three previous measurements of decay A — ny
performed by two fixed target experiments [24-26], the
branching fraction (BF) was obtained from the ratio
Bny/ B ng0- Only the result from Ref. [26] is considered
by the Particle Data Group (PDG) [27]. Using the electron-
positron collider data, BESIII is in an excellent position to
perform an absolute branching fraction measurement.
Benefitting from the excellent kinematic fit technique
exploiting the known energy of the initial state, the
dominant background A — nz° decay can be better sep-
arated than in the previous measurements. The decay
asymmetry of A — ny, however, which is essential for
the test of Hara’s theorem, has not been measured so far.

At BESIII, a measurement of the A — ny decay utilizing
the large yield of AA pairs from J/y — AA [28] is
accomplished using a double-tag (DT) technique [29].
The J/w — AA events are identified by reconstructing
the pionic decay A — pz* (A — pz~), denoted as single
tag (ST). Then a DT event consisting of an ST A (A)
candidate accompanied with a A — ny (A — fiy) candidate
is selected. The absolute BF of the decay A — ny is given by

Npr/épr
Bpapy = ——, 1
Azt Ngr/est <)

where Ny (Npt) and egr (ept) are the ST (DT) yield and the
corresponding detection efficiency. Here and throughout
this Letter, charge-conjugate channels are implied unless
explicitly specified.

A previous BESIII study [30] showed that the A from
J/w — AA is transversely polarized with a magnitude
reaching 25%. This polarization can be used to determine

the decay asymmetry a, in the A — ny decay from the

angular distribution of the daughter baryons from the
J/w — AA process [31]. Generally, the joint angular
distribution W of J/w — A(— pa*)A(— ny) can be
expressed as

W(& a,, AD, a,,a,)
=1+ a,co8’0, + a,a, [sin?0, (nfn} — a,n\n3)

+ (cos?0p + a, )nin3]
+ a,a; /1 — ag, cos(AD) sin @, cos O, (n}ni + nin3)

+ /1 — oy, sin(A®) sin O, cos O (a,n] + a;n}),
(2)

where fi; (1fi,) is the unit vector in the direction of the neutron
(antiproton) in the A (A) rest frame. The components of fi
and R, are (n,n),nj) and (n3,n3, nj), in a coordinate
system where the z axis of the A rest frame is oriented along
the momentum p, at an angle 6, with respect to the e~ beam
direction. The y axis is perpendicular to the production plane
and oriented along the vector p, x k_, where k_ is the e~
beam momentum in the J/y rest frame. More details of the
J/y rest frame can be found in Sec. I of the Supplemental
Material [32]. For each event, the full set of kinematic
variables (6,5, fi;, i, ) is denoted by & Furthermore, a,, and
A® denote the absolute ratio of the two helicity amplitudes
of J/yw — AA and their relative phase, respectively, and a,
(o) is the decay asymmetry of A — ny (A — pz™). For the
charge-conjugate channel, the amplitude form is identical,
where the decay asymmetry of A — iiy (A — pza~) is
denoted as @, (a_).

In this Letter, we report the absolute BF and the decay
asymmetry of A — ny from (10087 4 44) x 10° J/y
events [35] collected at the BESIII detector [36,37] operat-
ing at the BEPCII collider [38]. Different selection tech-
niques are used for the charge-conjugate channels with
different detection efficiencies, but leading to compatible
results. Simulated data samples produced with GEANT4-
based [39] Monte Carlo (MC) software, including a detailed
geometric description of the BESIII detector and the
detector response, are used to determine the detection
efficiencies and estimate background contributions. A
sample of simulated J/yw decay events (the inclusive MC
sample), corresponding to the luminosity of data, is used to
study background events. Signal MC samples, including a
sample of 5.6 x 107 J/y — A(— pr*)A(— anything)
and a sample of 4 x 103 J/y — A(— paT)A(— ny), are
generated to estimate the ST and DT signal efficiencies,
respectively. The joint angular distributions are generated
according to Eq. (2), where a, is adopted from this analysis
and a, =0.461 +0.006 +£0.007, A® =424+0.6 +
0.5° and a; = —0.758 £ 0.010 £ 0.007 from Ref. [30].
Moreover, a sample of 2 x 107 J/y — A(— prt)A(—
nn') events is generated to study the dominant background.
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The ST A candidate is reconstructed through the dom-
inant decay mode A — pz+. Charged tracks are detected in
the main drift chamber (MDC) as in Ref. [30]. The
momentum ranges of pions and anti-protons from the A
decays are well separated, thus the tracks with momenta less
than 0.5 GeV/c are assigned to be pions, otherwise
antiprotons. In addition, measurements of the specific
ionization energy loss in the MDC and the flight time by
the time-of-flight system are combined to perform particle
identification for the (anti-)proton candidate. They are
required to have the largest likelihood for the particle type
selected among the pion, kaon, and proton hypotheses.
Events with at least one anti-proton and one positively
charged pion are selected. A vertex fit is performed to each
prt pair, and the combination with the minimum y?2,, of the
vertex fit is regarded as the A candidate for further analysis.
The A candidate is required to have y2, less than 20, an
invariant mass within 8 MeV/ ¢ of the nominal A mass [27]
and a decay length relative to the interaction point larger
than twice its resolution.

To identify events with J/w — AA and reduce the
background contributions from J/y — A + anything
which are not due to J/y — AA, a recoil mass MTe =

\/ (Ecm. — E;)* — P% is defined, where E, ,, is the center-

of-mass (c.m.) energy, Ej is the energy and Pj is the
momentum of the ST A candidate. P; is determined
through the vertex fit of p and z*. The recoil mass is
required to be within 1.03 < M7 < 1.18 GeV/c?. A
maximum likelihood fit of the distribution of MT° is
performed to determine the signal yield, which details of
can be found in Sec. II of the Supplemental Material [32].
The yields of ST A and A candidates from the fits are
summarized in Table I. The background contribution is less
than 1%, which is validated by the inclusive MC sample.

On the signal side, we search for A — ny decay from the
residual neutral particles in the ST events. Good neutral
showers in the electromagnetic calorimeter (EMC) are
primarily selected as in Ref. [30]. To reject secondary
showers originating from charged tracks, the shower

TABLEL The results of fits for the decays A — ny and A — iy
decays. The BF and a, values are given both for individual and
simultaneous fits. The first (second) uncertainties are statistical
(systematic).

Decay mode A —ny A= ny

Ngr (x10%) 68532 £2.6 7036.2 £ 2.7

est (%) 51.13 +£0.01 52.53 £0.01

Npr 723 + 40 498 + 41

ept (%) 6.58 +£0.04 4.324+0.03

BF (x107%)  0.820 4 0.045 +0.066 0.862 4+ 0.071 + 0.084
0.832 + 0.038 + 0.054

a —0.13£0.13+0.03 0.21 £ 0.15 £ 0.06

7
—0.16 = 0.10 £ 0.05

candidates are required to be apart from antiproton tracks
with an opening angle of 20°. There are two neutral
particles in the final states of the signal process. The
radiative photon produces a shower in the EMC with
deposited energy less than 400 MeV. With a probability
of 0.65, the 7 annihilates in the EMC and produces several
secondary particles. The most energetic shower with an
energy deposition larger than 0.4 GeV is regarded as an 7
candidate. The n, meanwhile, which is difficult to identify
due to its low interaction efficiency and its small energy
deposition, is treated as a missing particle. Therefore, only
the y and 7 are selected in this analysis. At least one shower
is required as a y candidate in an event for A — ny decay,
and at least two showers as y and 7 in an event for A — 7y
decay. For the reconstruction of A — ny decay, a one-
constraint (1C) kinematic fit is applied by imposing energy-
momentum conservation of the candidate particles in the
hypothetical J/y — Any process, where the neutron is set
as a missing particle. On the other hand, for the
reconstruction of A — 7iy decay, the multiplicity of noise
showers generated from anti-neutron is higher than that in
A — ny decay, a 3C kinematic fit is imposed for the J /yy —
Any process, where the direction of the 7 is measured and
the energy is unmeasured. For events with multiple photon
candidates, the combination giving the minimum y (¢3¢)
is retained for the analysis. Furthermore, y3- (y3c) is
required to be less than 10 (15).

Detailed MC studies show that the dominant background
contribution comes from the A — nz° decay with its large
BF of 35.8% [27], while other background processes are
almost negligible. The background can be classified into
two categories: first, events with the detected photon from
the 7z° decay, denoted as BG A, and second, events with the
detected photon not from the z° decay, denoted as BG B. In
the latter case, the photons arise from noise or a shower
from secondary products of other particles. In order to
suppress BG A, a 1C (3C) kinematic fit under the
hypothesis J/yw — Anyy (J/w — Afyy) is performed,
and events surviving the kinematic fit and with a yy
invariant mass M,, within 20 MeV/c? of the z° nominal
mass [27] are rejected. To suppress BG B, the detected
photon is required to have an energy larger than 150 MeV
and an opening angle larger than 20° from the (anti-)
neutron candidate. Additionally, for BG A and BG B a
boosted decision tree (BDT) is applied on the detected
photon to discriminate signal photons from other showers,
based on the measured variables, i.e., deposited energy and
its second moment, number of hits, Zernike moment (A,,),
and deposition shape [40]. The response of the BDT output
is required to be larger than 0.3, after which 86.8% (92.8%)
of the BG A and 99.5% (99.7%) of the BG B events are
rejected with 44.6% (48.4%) loss of the signal efficiency
for the A — ny(A — iiy) decay.

The distribution of the photon energy in the A rest frame
E;\ after all selection criteria is shown in Fig. 1 for the
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FIG. 1. Distributions of E;‘ for (a) A = ny and (b) A — iy
decays in the A and A rest frame, respectively. The black dots
with error bars represent data. The red solid, blue dashed, orange
dotted, and green dash-dotted lines denote the fit result, signal,
BG A, and BG B contributions, respectively. The green histo-
grams indicate the BG B from MC simulation after normaliza-
tion. The insets show the details of the fit in the signal region.

decay A — ny (A — fiy), where the predominant peak
around 0.13 GeV is from BG A, and the second peak
around 0.15 GeV corresponds to the signal. To determine
the DT signal yields, an unbinned extended maximum
likelihood fit is performed to the EX distributions. The
signal and BG A are modeled by the MC simulated shape
convolved with a Gaussian function. Since BG B involves a
fake photon and is difficult to be modeled by the MC
simulation, its lineshape is obtained by a data-driven
approach with a control sample of A — nz’(— yy) decay,
and the photon candidates used in the kinematic fit are from
noise photons in the EMC rather than the two signal
photons from 7z° — yy decay. The DT yields obtained from
fits are summarized in Table I. The BFs determined
according to Eq. (1) are found to be consistent for the
two charge-conjugate modes. Therefore, a simultaneous fit,
assuming the same BF for the two modes, is performed, and
the results are given in bold font in Table I. The total
systematic uncertainty on the BF measurement is estimated
to be 6.5%, including uncertainties from the photon and
antineutron detection efficiency, kinematic fit, invariant
M, mass selection window, opening angle between photon
and (anti-)neutron, BDT output for the photon, MC model
due to the choice of ,, and fit procedure. It is worth noting
that the dominant systematic uncertainty is from the BG B
shape modeling in the fit, to be 4.8%, which is due to the
limited statistics of the control sample for shape extraction.
More details can be found in Sec. Il of the Supplemental
Material [32].

The decay asymmetry a, is determined using Eq. (2)
with a maximum likelihood fit. A total of 1994 candidate
events from charge-conjugate modes within a range of
(0.145,0.17) GeV around E]’,\ are used in the fit, with an
estimated fraction of background events of 43.3%. In the fit
of a,, the likelihood function of the ith event is calculated
through the probability density function (PDF):

P(fi;(lv/’A(D’awa+) = Cw(fiﬂu/’Aq)’ay’aJr)e(é:i)’ (3)

where C™' = [W(& a,,. A®, a,, a )e(&)dE is the normali-
zation factor evaluated by a phase space (PHSP) MC
sample, and Ay AD, a, are fixed to the values in
Ref. [30]. The BG A and BG B contributions to the
likelihood value are estimated with MC samples and
subtracted in the calculation of the likelihood function.
We fit the A — ny and A — 71y decay modes individually,
and the results agree within statistical uncertainties as
summarized in Table I. A simultaneous fit, assuming the
same magnitude of a, but with opposite signs for the
charge-conjugate modes, is used to determine the decay
asymmetry, yielding a,(A — ny) = —0.16 £ 0.10, where
the uncertainty is statistical. The polarization is strongly
dependent on the A direction cosd, and indicates the
amplitude of the decay asymmetry. The n] (n3) moment

Z n (4)

is proportional to the product of the A polarization and its
decay asymmetry. It is calculated for m = 10 bins in
cos 6. Here, N is the total number of events in the data
sample, and N, is the number of events in the kth cos 8,
bin. Figure 2 shows the projection of the global fit together
with data and PHSP MC results. The fit result for A — pz+
decay clearly deviates from the PHSP curve, while the one
for A — ny decay is consistent with PHSP. The difference
in magnitude of the moments for A — pz+ and A — ny
decays implies different values of the decay asymmetries
since the polarization is the same for A and A. The systematic

u(cosfy,) =
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FIG. 2. Polarization moment pu(cos@z(,)) Vs cosOz, for
(@ A—prt, (b) A—ny decays in the process
J/w = A(= pat)A(— ny), and moment distribution
H(cos Oy (4)) Vs cos O,z for (¢) A — pz~ and (d) A — 7y decays
in the process J/y — A(—> pr~)A(= iiy). Dots with error bars
indicate data and red solid lines show the fit result. The blue
dashed and green dotted lines represent the moment for signal
and PHSP MC, respectively.
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FIG. 3. Two dimensional distribution of the BF and decay
asymmetry of A — ny decay. The black dot and diamond with
error bars denote the BESIII result and the PDG value, respec-
tively. Other symbols in blue stand for the results predicted in the
vector dominance model (VDM) [16], the pole models (PM 1 [17]
and PM II [18]), the nonrelativistic constituent quark model
(NRCQM) [19], the quark model (QM) [20], the broken SU(3)
[BSU(3)] [21], and the chiral perturbation theory (ChPT) [22].
The contours in orange represent 68.2%, 95.4%, and 99.7% con-
fidence level of the BF and a,.

uncertainty on a, is estimated to be 0.05, originating from
similar sources as in the BF measurement. The main
systematic uncertainty sources come from the kinematic
fit, M, mass window, opening angle between photon and
(anti-)neutron, to be 0.024 or 0.022 (for 1C or 3C), 0.016, and
0.028, respectively. Detailed studies are summarized in
Sec. III of the Supplemental Material [32].

In summary, we report the first absolute BF measurement
result of A — ny decay to be (0.832+0.038,, +
0.054Syst) x 1073 based on the double-tag method. As
shown in Fig. 3, the measured value of the BF with
improved precision, is a factor of two smaller, and 5.6
standard deviations different than the previous measure-
ment of (1.75 £ 0.15) x 1073 [26]. By analyzing the joint
angular distribution of the decay products, the decay
asymmetry a, is determined for the first time, at a value
of —0.16 & 0.104, £ 0.054. The BF and «, results of
charge-conjugate modes are consistent within uncertainties,
and there is no indication of any CP violation with the
current dataset.

This analysis is the first measurement of radiative
hyperon decays at an electron—positron collider experiment,
making use of the huge number of polarized hyperons
produced in J/y decays with clean background. The result
of the decay asymmetry indicates there is no evidence that
Hara’s theorem does not hold for hyperon radiative decays.
The decay asymmetry value does not agree well with
predictions such as the Pole model [17], the broken
SU(@3) pole model [21] or the nonrelativistic constituent

quark model [19], which point to a large negative value. Our
results are in good agreement with a recent prediction in
covariant baryon ChPT [41], which can describe simulta-
neously the 2= — X7y, 5° - X%, and Z° — Ay decays as
well. Our BF value is consistent with the lower unitary
bound obtained by considering contributions of A — pz~
and A — nz° weak hadronic decays together with pz~ —

ny and nz® — ny rescattering, respectively [42].
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