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Abstract: Hazelnuts (Corylus avellana L.) are among the most consumed dry fruits all over the world.
Their commercial quality is defined, above all, by origin and dimension, as well as by lipid content.
Evaluation of this parameter is currently performed with chemical methods, which are expensive,
time consuming, and complex. In the present work, the near-infrared (NIR) spectroscopy, using both
a benchtop research spectrometer and a retail handheld instrument, was evaluated in comparison
with the traditional chemical approach. The lipid content of hazelnuts from different growing regions
of origin (Italy, Chile, Turkey, Georgia, and Azerbaijan) was determined with two NIR instruments:
a benchtop FT-NIR spectrometer (Multi Purpose Analyser—MPA, by Bruker), equipped with an
integrating sphere and an optic fibre probe, and the pocket-sized, battery-powered SCiO molecular
sensor (by Consumer Physics). The Randall/Soxtec method was used as the reference measurement
of total lipid content. The collected NIR spectra were inspected through multivariate data analysis.
First, a Principal Component Analysis (PCA) model was built to explore the information contained
in the spectral datasets. Then, a Partial Least Square (PLS) regression model was developed to
predict the percentage of lipid content. PCA showed samples distributions that could be linked
to their total crude fat content determined with the Randall/Soxtec method, confirming that a
trend related to the lipid content could be detected in the spectral data, based on their chemical
profiles. PLS models performed better with the MPA instrument than SCiO, with the highest R2 of
prediction (R2

PRED = 0.897) achieved by MPA probe, while this parameter for SCiO was much lower
(R2

PRED = 0.550). Further analyses are necessary to evaluate if more acquisitions may lead to better
performances when using the SCiO portable spectrometer.

Keywords: food; hazelnuts; chemometrics; NIR calibration

1. Introduction

Hazelnuts (Corylus avellana L.) are largely farmed and exported worldwide, with a
production volume of over one billion tons in 2020 [1]. Concerning the world production,
Turkey is the main producer, covering approximately 70% of the total production. Italy
is the following, with a share close to 20% of the total production. Other major producer
countries are Azerbaijan, Georgia, and USA [2]. Among tree nuts, hazelnuts show high
nutritional and nutraceutical properties, mainly due to their fat content (approximately
60% in weight), characterized by a beneficial fatty acids composition, most of which are
unsaturated fatty acids (mainly oleic but also linoleic and linolenic acids) [3]. Other benefi-
cial macronutrients contributing to the healthy properties of hazelnut are proteins, which
provide near 25% of energy [4], as well as carbohydrates and dietary fibres. Significant
amounts of essential micronutrients and non-nutritive components are present among
the constituents of hazelnuts, including vitamins (e.g., tocopherols, valuable antioxidant
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vitamins), healthy minerals (such as calcium, magnesium, and potassium), phytosterols,
and polyphenols [5]. The latter, synthesized by the plant to preserve the reproductive
potential of the seed, protecting the germ from oxidative stress, can play a key role in
human health if regularly consumed, as they are considered as potential opponents to
cancer and diabetes, due to their ability to deactivate free radicals [6].

The lipid fraction is quantitatively the most abundant constituent of hazelnuts, and
therefore, the most significant in terms of energy intake, organoleptic quality, and stora-
bility [4]. While, in some cases, the high hazelnut lipid content could be a positive and
desired factor (e.g., for hazelnut oil production), others, such as the excessive calorie intake,
the increased in susceptibility to lipid oxidation, or, from a technological point of view, the
problem of oil migration in hazelnut paste/chocolate, could require an opposite choice. For
these reasons, total fat content is one relevant trait, among quality attributes, considered
by hazelnuts processors and manufacturers [7]. Many works have investigated the factors
affecting the content and composition of hazelnut fats, and it is well documented that
variety, geographical origin [1,8,9], harvest technique, and harvest year are key factors in
the synthesis and accumulation of lipids in hazelnut kernels [7,10–12]. Recent studies also
demonstrated the possibility of discerning, among different geographical production areas,
using metabolomic approaches [13,14], and a study by Tüfekci and Karataş [2], based on
gas chromatography analysis, has shown that the differences in fatty acid composition can
be used for discriminating the geographical origin. However, the most used analytical
techniques to determine and quantify the fatty acid composition, at laboratory scale, are
generally time-consuming and involve expensive instrumentation, which also requires
high scientific expertise.

Fourier transform near-infrared (FT-NIR) spectroscopy represents a rapid and cost-
effective tool to inspect the properties of food [15]. This technique prevents the use of
chemicals and potentially dangerous solvents by reducing, if not by completely avoiding,
any sample pre-treatments, as well as by allowing preservation and recovery after the anal-
ysis of the analysed specimen, making it a non-destructive technique. NIR spectroscopy
is generally coupled with the tools of chemometrics, i.e., multivariate data analysis ap-
proaches, for efficiently extracting information from large and complex data [16], and it
uses them to explore the chemical composition of food products [17] or to prevent food
fraud [18]. NIR spectroscopy combined with chemometrics was used for the detection of
flawed kernels and to predict fat primary oxidation [7], but it was also used with the aim of
discriminating different hazelnut varieties [19,20].

The aim of this study was to evaluate the use of NIR spectroscopy to perform the
quantification of total lipids, thus potentially replacing the conventional Soxhlet extrac-
tion methods, which are expensive, time consuming, and involve dangerous and non-
ecofriendly solvents. The performances of three NIR techniques (a portable instrument and
a benchtop instrument operating in two acquisition modes) were assessed, proving that
NIR spectroscopy, coupled with multivariate data analysis tools (i.e., Chemometrics), al-
lows for rapid analyses performed in a non-destructive way directly on the ground samples,
resulting in regression models able to predict the content of lipids in the hazelnuts.

2. Materials and Methods
2.1. Hazelnut Samples

A total of 56 samples of raw hazelnuts from different countries (Italy, Turkey, Azer-
baijan, Georgia, and Chile) were analysed. Each sample was ground with a Retsch ZM200
grinder (Retsch Gmbh, Haan, Germany) and sieved using a vibratory sieve shaker BA 200N
(CISA Sieving Technologies, Lliçà de Vall, Barcelona, Spain). Then, the particles of sizes
in the range 250–500 µm were selected. All samples were stored in hermetically closed
polyethylene bags at –20 ◦C and allowed to warm up to room temperature (~20 ◦C) before
analysis.
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2.2. Lipid Extraction—Randall/Soxtec Extraction

To reduce the volume of organic solvent used and the time extraction [21], the crude fat
content of the samples was determined according to the Randall/Soxtec modification of the
standard Soxhlet extraction method (AOAC 948.22) [22]. The hot solvent extraction process
was carried out with a SER 148 Solvent Extractor (Velp Scientifica Srl, Usmate Velate (MB),
Italy) equipped with three Soxhlet posts. In each Soxhlet post, 5 ± 0.001 g of hazelnuts
powder was extracted with 99% n-hexane, analytical grade (Sigma-Aldrich, Milan, Italy), for
a total of 120 min. The extraction process involved three semi-automated steps. During the
first step, the thimbles containing the sample were immersed in the boiling solvent (60 mL,
130 ◦C, 60 min); then, the level of the solvent was lowered below the extraction thimbles.
The second step (washing step—60 min) allowed the continuous flow of condensed solvent
over the sample and through the thimble, completing the solvent extraction. During the
last step (30 min), as much solvent as possible was distilled and recovered from extraction
cups until apparent dryness. Finally, the extraction cups, including the extracts, were dried
at 105 ◦C for 1 h, cooled in a desiccator to room temperature, and weighed for the extract
percentage calculation.

The results were then reported as total grams of extracted lipids, with their respective
percentages related to the weight of ground hazelnuts. For each hazelnut sample, three
replicates were extracted simultaneously.

2.3. NIR Instrumentation and Spectra Acquisitions

All NIR analyses were performed using two spectrometers with different spectral
ranges and resolutions: a benchtop Fourier transform-NIR (FT-NIR) spectrometer (Multi-
Purpose Analyser—MPA, Bruker Optics, Ettlingen, Germany) equipped with an integrating
sphere and an optical fibre reflectance probe, as well as the SCiO Pocket molecular sensor
(v1.2, Consumer Physics Inc., Tel Aviv, Israel).

The instrumental settings for the MPA operated in sphere mode were: 800–2780 nm
(12,500–3600 cm–1) spectral range, 8 cm–1 optical resolution, and 10 kHz scanner velocity.
A sample holder of 9 cm of diameter, equipped with a quartz window on the bottom,
was used and carefully cleaned in between each sample acquisition. Regarding the MPA
operated in optical fibre probe mode the instrumental settings were: 800–2500 nm (12,500–
4000 cm–1) spectral range, 16 cm–1 optical resolution and 20 kHz (probe) scanner velocity.
MPA probe measurements were performed by gently inserting the probe in the ground
sample kept in its storage plastic bag, paying attention to not touch or place the NIR ray too
close to the plastic material. In both MPA acquisition modes, 64 scans for both sample and
background acquisition were collected, resulting in one individual averaged spectrum for
each sample. Background scans were performed using the instrument’s internal reference
standard. The Opus software (v6.5, Bruker Optics, Ettlingen, Germany) was used for
instrumental control and for spectra acquisition.

The instrumental settings for the SCiO device are non-customizable and are fixed as
follows: 740–1070 nm (13,510–9340 cm–1) spectral range, 10 cm–1 resolution, and time scan
of approximately 5 s. Spectral scans were managed through the SCiO smartphone app
(The Lab, version 2.5.3), which allows for controlling the sensor via Bluetooth connection
and also uploads all acquired data on the Consumer Physics Cloud database, which is
accessible via browser to inspect and download the raw data. The spectral measurements
were done by gently placing the SCiO instrument on top of the sample and subsequently
moving to other locations of the same sample mass to account for possible differences due
to the uneven surface of the ground sample.

All NIR analyses were performed in reflectance mode. For each specimen, three spectra
were collected as replicates with the benchtop MPA instrument, while six replicates were
acquired with the SCiO portable device. An average spectrum was then calculated from
the replicates after proper replicate quality evaluation. There was one average spectrum
that was therefore obtained for each individual sample, and all further data analysis steps
were done on the averaged spectra.
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2.4. Multivariate Data Analysis

The raw NIR spectra were analysed under MATLAB environment (R2020a, The Math-
works Inc., Natick, MA, USA). Firstly, the MPA spectra needed to be cut at the extremities,
to remove areas that were particularly noisy. The obtained range was 1117–2561 nm for the
MPA operating in sphere mode and 1121–2254 nm for the MPA operating in probe mode.
Such correction was not necessary for the SCiO spectra.

Furthermore, all datasets were pre-processed with Standard Normal Variate (SNV), [23]
with the purpose of eliminating artefacts and correcting nonlinear behaviours, due to po-
tential scattering effects originating from the granular nature of the samples. Mean-centring
was also applied prior to any multivariate data analysis.

2.4.1. Exploratory Data Analysis

Exploratory data analysis was performed using Principal Component Analysis (PCA, [24,25]),
with the aim of obtaining information about the data quality, the presence of possible
outliers and/or extreme samples, and, more importantly, to reveal the potential presence of
a trend related to the lipid content, prior to the construction of the regression model. The
first two PCs were considered the most informative, as the explained variance was equal or
above 90% for all three different acquisition methods.

2.4.2. Regression Models

The first step in the construction of the Partial Least Squares (PLS, [26,27]) model was
splitting the spectral dataset into a training and a test set, with the test set consisting of 33%
of the total number of samples: the resulting datasets for the three techniques consisted of
38 samples in calibration and 18 samples in the test set. This was done using the Duplex
algorithm [28], which allows homogeneous sampling of the initial and complete dataset.
Then, PLS was used for building the regression models to predict the lipid content of
hazelnuts, expressed in percentage, as obtained with the Randall/Soxtec extraction method
(Section 2.2). The regression performances were evaluated in terms of the coefficient of
determination (R2), the root mean squared error (RMSE), and the Ratio of Prediction to
Deviation (RPD, [29,30]). Regarding the models practical applicability based on the RPD
values, we refer to the framework described by Williams [30]. All RPD interpretation efforts
reported in the present work are referred to the RPD values related to samples of forages,
feeds, and soils [30], which are described as “materials that are more complicated in terms
of their physical nature”, which the authors considered the most correct term of comparison
for the samples under examination."

3. Results and Discussion

To provide a clear description of the data analysis pipeline, a visual representation
of the data preprocessing steps, declined according to the three datasets, is depicted in
Figure 1. In the first row, the spectra with no pre-treatment (Figure 1a–c) are reported,
followed by the spectra, preprocessed with SNV (Figure 1d–f), in the central row, and by
the spectra with SNV + mean centre preprocessing (Figure 1g–i) in the bottom row. The
samples are coloured according to their lipid content: blue corresponds to lower lipid
content assessed by Randall/Soxtec extraction, while yellow corresponds to higher lipid
content.

As stated in Section 2.4, the selected preprocessing approach was SNV followed by
mean centre: no other preprocessing methods were tested due to the need of keeping the
description of the results, obtained from three datasets, as clear and simple as possible. We
would like to stress that this study is intended as a proof-of-concept with the aim of further
improving it at the industrial hazelnut processing plant.
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Figure 1. Visual representation of the data-preprocessing pipeline, declined, according to the three
datasets (from top to bottom along each column): raw NIR spectra of the hazelnut samples (a–c);
spectra preprocessed with Standard Normal Variate (SNV) (d–f); spectra preprocessed with SNV +
mean centering (MC) (g–i).

3.1. Exploratory Analysis Results

Exploratory data analysis was performed to obtain preliminary information concern-
ing the presence of a trend among the samples, due to the lipid content. Results are shown
in Figure 2: the most informative combinations of principal components are reported for
each dataset (Figure 2a–c) together with the respective loadings (Figure 2d–f). The samples
are coloured according to their lipid content, and a trend in the distribution of the samples
can be observed: the scores follow the directions described by the red arrows, from lower
to higher contents of lipids.
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Figure 2. PCA results for the three analytical techniques of the study. The score plots are shown in
the first row (a–c), with the samples coloured according to the lipid content and the content trends
highlighted by the red arrows (from low to high). In the second row (d–f) the corresponding loadings
plot are reported, showing the variables that are important for each PC reported in (a–c).

These exploratory analyses suggest that a trend related to the lipid content can be
detected in the spectral data, according to their chemical profile. Based on these consid-
erations, it was decided to proceed with a further modelling step aimed at predicting the
content in fatty acids, directly from the spectral information, by means of PLS regression.

3.2. PLS Regression Results

One PLS regression model was built for each properly preprocessed spectral dataset
(i.e., MPA sphere, MPA probe, SCiO), with model-specific training and test sets for model
building and validation. The regression parameters are summarised in Table 1, where the
models’ complexities (number of latent variables, LVs), the coefficients of determination
(R2), the root mean squared errors (RMSEs), and the RPD values are reported. Both
calibration and cross-validation (CV) values are reported in this table: the parameters
referring to CV are generally of major interest, as the CV procedure better elucidates the
robustness of the information contained in the data, and consequently, the evaluation
of the model performances is more reliable. Moreover, a visual representation of the
predicted lipid content values (expressed in percentage) plotted against the measured ones
is provided in Figure 3a–c: together, with the regression parameters of Table 1 and the
regression vectors of Figure 3d–f, a complete overview of the models is therefore given.

According to these results, the MPA sphere showed the best results for both calibration
and validation of the regression model, with a value of R2

CV = 0.903, which was higher
than those obtained with MPA probe and SCiO. From the point of view of the model’s
error (the RMSEs), the MPA sphere in validation was also the lowest, with RMSECV = 0.645,
confirming that MPA sphere models seemed to be more robust than the others. Despite this,
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even better results were achieved with the MPA probe concerning the prediction step, with
R2

PRED = 0.897 and RMSEPRED = 0.712, suggesting that this technique could be performing
better in correctly predicting the lipid content of hazelnuts when compared to the other
NIR techniques used for this purpose.

Table 1. Regression parameters from PLS models for the three NIR techniques. The three models
have different complexities (number of latent variables, LVs), and the parameters used for describing
the performances are the coefficient of determination (R2) and the root mean squared errors (RMSEs).
The subscripts stand for CAL = calibration, CV = cross validation, and PRED = prediction (test set).

SCiO MPA Sphere MPA Probe

LVs 7 4 3

R2
CAL 0.717 0.925 0.846

R2
CV 0.461 0.903 0.793

R2
PRED 0.550 0.713 0.897

RMSECAL 0.966 0.566 0.870
RMSECV 1.332 0.645 1.008

RMSEPRED 1.217 1.109 0.712

RPDCAL 1.904 3.709 2.583
RPDCV 1.380 3.254 2.229

RPDPRED 1.909 1.773 2.167
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Figure 3. PLS results for the three analytical techniques of the study. The prediction plots are shown
in the first row (a–c), with the samples coloured according to the lipid content. The black-bordered
markers correspond to the test set (predicted samples). In the second row (d–f), the corresponding
regression vectors are reported, showing the variables that are important for each PLS model.

The SCiO results were globally worse than those obtained with the benchtop MPA
instrument, especially regarding the values of the coefficients of determination, with



Foods 2023, 12, 34 8 of 11

R2
CV = 0.461 and R2

PRED = 0.550, which resulted in much worse values than those obtained
with the MPA instrument. This could be due to the limited spectral range of acquisition
of this portable instrument, which can represent a limit if compared to a benchtop spec-
trometer. In fact, the SCiO spectral absorption range only contains the last overtones and
combination bands of the NIR interval, while the larger acquisition range of MPA can
detect more signals than SCiO. Moreover, the number of samples probably also represented
a limitation to the performances of this instrument. Despite this, the results obtained with
the SCiO were interesting in the perspective of in situ analyses: even if this technique is
less accurate, it could lead to reliable models if the number of samples employed to build
the calibration model is increased.

From the point of view of the RPD values, the best model, even if failing in prediction,
proved to be the MPA sphere acquisition mode, with values above 3 for the calibration and
CV models. These results put the MPA sphere model in the “screening/quality control”
RPD bracket according to Williams [30], even if the prediction RPD value of this model is
very poor according to the same RPD scheme. The MPA probe model can be placed into
the “rough screening” RPD bracket, and this is consistent with the interpretation of the
other regression parameters, as discussed before: the model shows lower performances
if compared to the MPA sphere acquisition mode; therefore, the suggested applicability
by Williams [30] is also less reliable (screening/quality control vs. rough screening). The
SCiO model once again proved to be less reliable, showing very poor performances from
the RPD point of view, especially when considering the CV figure, which places this model
into the Williams [30] bracket of “not recommended” to be used. It is important to consider
that the aim of the study was to assess the performances of the different instruments
and acquisition modes, and the rather limited number of samples already showed some
limitations on the models’ performances when inspected from the point of view of the
traditional chemometric regression figures (coefficient of determination and RMSE).

To identify and interpret the most influent NIR signals, the regression vectors of each
model were inspected (Figure 3d–f). Lipids in hazelnuts represent about 60% of the total
amount of components, so the signals of the regression coefficients can be interpreted,
mostly, related to the lipids signals. The information found in literature concerning the
determination of fatty acids in hazelnuts shows that the main fatty acids analysed in this
substrate are palmitic, stearic, oleic, and linoleic acids, with a percentage of unsaturated
acids above 90% [31].

The interpretation of the regression coefficients is resumed in Table 2. Aliphatic peaks
can be found in the region 1700–1900 nm, and they are related to the first overtone, C–
H, stretching [32,33]. These peaks fall within the MPA spectral range, as the SCiO only
covers the wavelengths between 740 and 1070 nm. In particular, the signals referred
to this chemical group are the two peaks in the range of 1730–1760 nm, which appear
well defined for the MPA sphere, while the MPA probe shows a partial overlap with the
band at ~1900 nm, which is ascribable to O–H deformation and stretching combination
bands. Another strong signal is a doublet at 2300–2340 nm, which could be related to C–H
stretching and deformation combinations of CH2 of lipids. As the largest part of fatty acids
in hazelnuts is composed by unsaturated fatty acids, a strong band at 2100 nm, related to
the C=C stretching, can be noticed. Other intense signals are the C–H second overtone at
1214 nm of CH2, and CH2 stretching at 1390 nm.

The SCiO spectral range showed the vibration associated with the third overtone
of the C–H stretch of lipids at ~920 nm [32]. Other strong signals detected by this in-
strument can be referred to with O–H stretching second overtones, in the range between
960–1050 nm [33]. This instrument can detect the signals related to the absorption of fatty
acids, in accordance with the aim of this study. This information was used in the construc-
tion of the model, even if the regression parameters underline that the obtained model
is not robust enough to be used for reliable predictions. This issue might be solved by
considering a larger number of samples to be included in the model.
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Table 2. Interpretation of spectroscopic signals related to the fatty acids, with literature references.

SCiO MPA (Sphere and Probe)

C–H [30–32] 920 nm, stretching third overtones

1214 nm, second overtone CH2
1390 nm, stretching CH2

1730–1760 nm, first overtone
2300–2340 nm, stretching and deformation combinations CH2

C=C [30–32] / 2100 nm, stretching

O–H [33] 960–1050 nm, stretching second
overtones 1900 nm, combination band

Unassigned 780 nm, 830–850 nm 1600 nm

4. Conclusions

The evaluation of the chemical composition, and particularly of the lipid content of
hazelnuts, is very important for their industrial use and economic evaluation. The determi-
nation of crude fat content is currently performed with Soxhlet extraction methods that are
expensive and time consuming. In this work, the use of NIR spectroscopy was evaluated
for the determination of total lipids in hazelnuts, similarly to what has been performed
for other products, such as milk and seeds. NIR spectroscopy has many advantages if
compared to the most known and traditionally used analytical techniques, as it allows
for saving time in both the pre-treatment and operative steps, while at the same time,
also being solvent-free. Moreover, with NIR spectroscopy the sample can be completely
recovered after the analysis, which means that this technique is fully non-destructive.

There were two different NIR instruments used in this study: the portable SCiO
sensor and the benchtop MPA, operating in sphere and probe modes. The obtained results
highlighted that the information contained in the spectra, extracted and analysed with
the tools of chemometrics, could be usefully exploited in the construction of rather robust
regression models that proved to be able to predict the lipid content of hazelnut. In
particular, the best results were obtained using the MPA probe, as the regression figures, in
prediction, were the best if compared to the other techniques. The MPA sphere showed
slightly worse performances in prediction, while the cross-validation step suggested that
this model could be the most robust, with R2

CV = 0.903, RMSECV = 0.645, and RPDCV = 3.254.
The regression parameters of the SCiO portable molecular sensor were, in general, lower
than MPA’s, suggesting that the model was not robust enough to obtain reliable results
when applied to the analyses of new samples.

Additional analyses on hazelnut samples would surely be very beneficial for trying
to improve the performances of the SCiO portable spectrometer, as well as to further
improve, test, and validate the performances of the MPA instrument in both acquisition
modes, hopefully leading to more robust models (especially regarding the obtained RPD
values). Such improvements could be very useful to move the present study to a higher
development stage of rapid and cost-effective in situ analyses, which should be aimed at
reaching, at least, a robust classification as “quality control”, according to the framework
described by Williams.
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development in hazelnuts (Corylus avellana L.) grown in Poland. Eur. J. Lipid Sci. Technol. 2015, 117, 710–717. [CrossRef]

12. Romero-Aroca, A.; Rovira, M.; Cristofori, V.; Silvestri, C. Hazelnut Kernel Size and Industrial Aptitude. Agriculture 2021, 11, 1115.
[CrossRef]

13. Bachmann, R.; Klockmann, S.; Haerdter, J.; Fischer, M.; Hackl, T. 1H NMR Spectroscopy for Determination of the Geographical
Origin of Hazelnuts. J. Agric. Food Chem. 2018, 66, 11873–11879. [CrossRef]

14. Klockmann, S.; Reiner, E.; Bachmann, R.; Hackl, T.; Fischer, M. Food Fingerprinting: Metabolomic Approaches for Geographical
Origin Discrimination of Hazelnuts (Corylus avellana) by UPLC-QTOF-MS. J. Agric. Food Chem. 2016, 64, 9253–9262. [CrossRef]

15. Shakiba, N.; Gerdes, A.; Holz, N.; Wenck, S.; Bachmann, R.; Schneider, T.; Seifert, S.; Fischer, M.; Hackl, T. Determination of the
geographical origin of hazelnuts (Corylus avellana L.) by Near-Infrared spectroscopy (NIR) and a Low-Level Fusion with nuclear
magnetic resonance (NMR). Microchem. J. 2022, 174, 107066. [CrossRef]

16. Kumaravelu, C.; Gopal, A. A review on the applications of Near-Infrared spectrometer and Chemometrics for the agro-food
processing industries. In Proceedings of the 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development
(TIAR), Chennai, India, 10–12 July 2015; pp. 8–12. [CrossRef]

17. Kandala, C.V.; Sundaram, J.; Puppala, N. Analysis of moisture content, total oil and fatty acid composition by NIR reflectance
spectroscopy: A review. Lect. Notes Electr. Eng. 2012, 146, 59–80. [CrossRef]

18. Nobari Moghaddam, H.; Tamiji, Z.; Akbari Lakeh, M.; Khoshayand, M.R.; Haji Mahmoodi, M. Multivariate analysis of food
fraud: A review of NIR based instruments in tandem with chemometrics. J. Food Compos. Anal. 2022, 107, 104343. [CrossRef]

19. Moscetti, R.; Radicetti, E.; Monarca, D.; Cecchini, M.; Massantini, R. Near infrared spectroscopy is suitable for the classification of
hazelnuts according to Protected Designation of Origin. J. Sci. Food Agric. 2015, 95, 2619–2625. [CrossRef]

20. Biancolillo, A.; De Luca, S.; Bassi, S.; Roudier, L.; Bucci, R.; Magrì, A.D.; Marini, F. Authentication of an Italian PDO hazelnut
(“Nocciola Romana”) by NIR spectroscopy. Environ. Sci. Pollut. Res. 2018, 25, 28780–28786. [CrossRef]

21. Srigley, C.T.; Mossoba, M.M. Current Analytical Techniques for Food Lipids. Food Saf. Innov. Anal. Tools Saf. Assess. 2016, 33–64.
[CrossRef]

22. AOAC. AOAC, Official Method 948.22. Fat (crude) in Nuts and Nut Products. Gravimetric Methods. In Official Methods of
Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012.

23. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse
Reflectance Spectra. Appl. Spectrosc. 2016, 43, 772–777. [CrossRef]

24. Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [CrossRef]

http://doi.org/10.1016/j.fct.2008.01.026
http://www.ncbi.nlm.nih.gov/pubmed/18316150
http://doi.org/10.1002/fsn3.595
http://www.ncbi.nlm.nih.gov/pubmed/29876106
http://doi.org/10.1016/j.foodchem.2005.08.013
http://doi.org/10.3390/nu2070652
http://www.ncbi.nlm.nih.gov/pubmed/22254047
http://doi.org/10.1007/s12010-012-9723-7
http://doi.org/10.1021/jf0212385
http://doi.org/10.1002/jsfa.8348
http://doi.org/10.1002/jsfa.3203
http://doi.org/10.3390/agronomy9110703
http://doi.org/10.1051/fruits/2015025
http://doi.org/10.1002/ejlt.201400345
http://doi.org/10.3390/agriculture11111115
http://doi.org/10.1021/acs.jafc.8b03724
http://doi.org/10.1021/acs.jafc.6b04433
http://doi.org/10.1016/j.microc.2021.107066
http://doi.org/10.1109/TIAR.2015.7358523
http://doi.org/10.1007/978-3-642-27638-5_4
http://doi.org/10.1016/j.jfca.2021.104343
http://doi.org/10.1002/jsfa.6992
http://doi.org/10.1007/s11356-018-1755-2
http://doi.org/10.1002/9781119160588.CH3
http://doi.org/10.1366/0003702894202201
http://doi.org/10.1039/C3AY41907J


Foods 2023, 12, 34 11 of 11

25. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
26. Savage, G.P.; McNeil, D.L.; Dutta, P.C. Lipid composition and oxidative stability of oils in hazelnuts (Corylus avellana L.) grown in

New Zealand. J. Am. Oil Chem. Soc. 1997, 74, 755–759. [CrossRef]
27. Cavallini, N.; Pennisi, F.; Giraudo, A.; Pezzolato, M.; Esposito, G.; Gavoci, G.; Magnani, L.; Pianezzola, A.; Geobaldo, F.; Savorani,

F.; et al. Chemometric Differentiation of Sole and Plaice Fish Fillets Using Three Near-Infrared Instruments. Foods 2022, 11, 1643.
[CrossRef]

28. Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [CrossRef]
29. Fearn, T. Assessing Calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–13. [CrossRef]
30. Williams, P. The RPD Statistic: A Tutorial Note. NIR News 2014, 25, 22–26. [CrossRef]
31. Davrieux, F.; Allal, F.-O.; Piombo, G.; Kelly, B.; Okulo, J.B.; Thiam, M.; Diallo, O.B.; Bouvet, J.-M. Near Infrared Spectroscopy

for High-Throughput Characterization of Shea Tree (Vitellaria paradoxa) Nut Fat Profiles. J. Agric. Food Chem. 2010, 58, 7811.
[CrossRef]

32. Mulvey, B.W. Determination of Fat Content in Foods Using a Near-Infrared Spectroscopy Sensor. In Proceedings of the 2020 IEEE
SENSORS, Rotterdam, The Netherlands, 25–28 October 2020. [CrossRef]

33. Wiedemair, V.; Langore, D.; Garsleitner, R.; Dillinger, K.; Huck, C. Investigations into the Performance of a Novel Pocket-Sized
Near-Infrared Spectrometer for Cheese Analysis. Molecules 2019, 24, 428. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/wics.101
http://doi.org/10.1007/s11746-997-0214-x
http://doi.org/10.3390/foods11111643
http://doi.org/10.1080/00401706.1977.10489581
http://doi.org/10.1255/nirn.689
http://doi.org/10.1255/nirn.1419
http://doi.org/10.1021/jf100409v
http://doi.org/10.1109/SENSORS47125.2020.9278647
http://doi.org/10.3390/molecules24030428

	Introduction 
	Materials and Methods 
	Hazelnut Samples 
	Lipid Extraction—Randall/Soxtec Extraction 
	NIR Instrumentation and Spectra Acquisitions 
	Multivariate Data Analysis 
	Exploratory Data Analysis 
	Regression Models 


	Results and Discussion 
	Exploratory Analysis Results 
	PLS Regression Results 

	Conclusions 
	References

