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Abstract

Leader election, is a fundamental coordination problem in distributed systems. It has been addressed in many ways for different
systems. Among these approaches, resilient leader election algorithms are of particular interest due to the ongoing emergence of
open, complex distributed systems such as smart cities and the Internet of Things. However, previous algorithms attaining the
optimal scaling of O(diameter) stabilization time complexity either assume some prior knowledge of the network or else that
very large messages can be sent. In this paper, we present a resilient leader election algorithm with O(diameter) stabilization
time, small messages, and no prior knowledge of the network. This algorithm is based on aggregate computing, which provides a
layered approach to algorithm development based on composition of resilient algorithmic “building blocks.” With our algorithm,
a key design function g(·) defines important performance attributes: a fast-growing g(·) will delay discarding of obsolete data,
while a slow-growing g(·) will slow down convergence to a single leader. We prove that the best asymptotic behavior for g(x) is
(1 +

√
2)x + o(x), guaranteeing a near-optimal time complexity of (2 + 2

√
2) diameter + o(diameter) rounds for stabilization.

Key words: leader election; multiagent system; resilience; aggregate computing; nonlinear feedback control; global stability.

1 Introduction
There has been much interest in the control and stability
of multiagent systems involving consensus, (Olfati-Saber
et al. 2007), gossip, (Yu et al. 2017), distributed agree-
ment, (Cao et al. 2008) and formation control, (Baillieul
& Suri 2003), (Dasgupta et al. 2011), (Summers et al.
2009), (Fidan et al. 2013) and (Summers et al. 2011). A
common feature is that all are distributed graph algo-
rithms with local control action using only information
flow between neighbors. Most are also nonlinear systems.
This paper considers another such, presenting and an-
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alyzing a leader election algorithm involving feedback
composition of two nonlinear systems, each itself a dis-
tributed graph algorithm.

Leader election is a fundamental problem in distributed
systems, in which a network of nodes collectively select
a single leader in a distributed and (in our case) resilient
fashion. Resilience ensures election of a single leader and
recovery from transient perturbations such as the disap-
pearance of leaders, temporary emergence of false lead-
ers, and link failures that do not disconnect the graph.

Leader election studies have considered time, space, and
message complexity of deterministic leader election in
general networks with identifiers, in probabilistic election
in anonymous networks, and in networks like ring, com-
plete, and asynchronous graphs. We consider the prob-
lem in the context of open, complex distributed systems
such as smart cities and the Internet of Things, which
can have large numbers of devices and intermittent per-
turbation of both network membership and topology.
We require the knowledge of neither N , the number of
nodes, nor the diameterD of the network. All we assume
is that each node carries a unique identifier, a require-
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ment common to many networking algorithms 1 , and
exchanges messages with its neighbors in synchronous
rounds. Simulations show that performance remains the
same even under fair asynchronous execution.

In general synchronous networks, the global lower bound
on the time required for a leader election algorithm is
Ω(D) rounds 2 (Kutten et al. 2015). An algorithm meet-
ing this bound is (Peleg 1990), with time and message
complexities of O(D) and O(DE) respectively, E being
the number of edges. Closely competitive is (Casteigts et
al. 2016), which proposes a solution that elects a leader in
O(D+logN). Both terminate on completion, as do most
leader election algorithms, thus do not permit perturba-
tions and are unsuitable for use in large open distributed
systems, since nodes (including leaders) are continually
joining and departing such networks.

Some solutions in optimal O(D) time consider pertur-
bations but assume prior knowledge of N or D. One
in (Awerbuch et al. 1993) uses IDs and a known up-
per bound on D as does (Burman & Kutten 2007).
Such knowledge is inconsistent with node loss or net-
work growth common in open networks. Algorithms ac-
commodating perturbations without network knowledge
include (Aggarwal & Kutten 1993), where false leaders
are eliminated with messages that may increase to un-
bounded length; and (Kravchik & Kutten 2013), which
utilizes a synchronizer requiring knowledge of an upper
bound onN ; (Datta et al. 2011a, Datta et al. 2011b) and
(Altisen et al. 2017) assume a distributed unfair daemon
(Dubois & Guerraoui 2013) but stabilize in a far from
optimal O(N) as opposed to O(D) rounds.

We adopt an aggregate computing (Beal et al. 2015) ap-
proach that offers a layered abstraction to simplifying
the design, creation and maintenance of complex open
distributed systems. Key for this paper is the middle
layer, comprising three general “building-block” opera-
tors whose compositions have been shown in (Beal &
Viroli 2014) and (Viroli et al. 2018) to realize a broad
class of dispersed services. The two relevant here are: G-
blocks that spread information through a network of de-
vices and C-blocks that summarize salient information
about the network to be used by interacting units.

We enunciate a globally uniformly asymptotically stable
(GUAS) algorithm that uses a feedback interconnection
ofG andC blocks. In the remainder of this paper, we call
it GCF abbreviating “G and C blocks with Feedback”.
This algorithm is time optimal with a stabilization time
of O(D) with a message complexity of O(DE). It uses

1 Note that while this implies identifiers must contain at
least log2 N bits, this requirement is trivially satisfied by the
lower levels of the network stack in any modern real-world
network.
2 X is Ω(D) if there exist k1 > 0 and D0 > 0 such that
X ≥ k1D for D ≥ D0.

the Adaptive Bellman-Ford (ABF) algorithm (Mo et al.
2019) to estimate each node’s distance estimate from its
current leader and uses these in turn to estimate what
we call a pseudo-diameter (which is like a diameter).
This pseudo-diameter estimate is used to circumvent the
need for any prior network knowledge like the diameter
in GCF’s execution.

The algorithm is resilient in the sense that it recov-
ers from intermittent loss of nodes and leaders without
knowledge of the network size. To achieve such recov-
ery using network flooding would require strategies like
time-to-live which in turn require diameter estimates.
Too large a diameter estimate, will severely slow con-
vergence. As experimentally demonstrated in (Pianini et
al. 2016), too small an estimate will cause the behavior
to collapse. On the other hand, the use of packet track-
ing, causes the required storage to grow without bound
over time.

In contrast, the mechanism of resilience in this paper is
as follows. Using the pseudo-diameter estimate Di(t) it
carries, a leader i, computes a radius of influence,Ri(t) =
g(Di(t)), where g(·), is a free design function. The leader
i then broadcasts this Ri(t) to its followers. Each node j
scouts its neighbors to see if any has a leader with priority
higher than j’s priority and carries a radius of influence
greater than this neighbor’s distance estimate. If none
such can be found, then j appoints itself a leader. If such
neighbors are found, then j looks at their leaders and
chooses the leader with the highest priority as its own.
As explained in Section 3, it is this device that permits
the network to recover from the loss of a leader.

Like most feedback systems, the function g(·) determines
important performance attributes. A high g(·) speeds
convergence but impairs resilience by delaying recov-
ery from the loss of a leader, while a low g(·) improves
resilience but slows convergence. This trade-off is op-
timized for the best asymptotic behavior with g(x) =
(1 +

√
2)x and a recovery time of 2(1 +

√
2)D.

Section 2 gives preliminaries, Section 3 the algorithm,
and Section 4 the analytical framework. Section 5
proves resilience by upper bounding the time to recov-
ery from transient perturbations, and proves GUAS
and K-competitive performance with the optimal
(Definition 6). Section 6 gives simulations with asyn-
chronous rounds, singular and persistent perturbations;
and shows that GCF compares favorably to the most
directly comparable prior algorithm, from (Datta et
al. 2011b), improving the transient behavior and being
able to better withstand persistent perturbations. Sec-
tion 7 summarizes and concludes. A preliminary version
without proofs and the optimization of g(·) appears in
(Mo et al. 2020).

2



2 Preliminaries
Consider an undirected graph G = (V,E), with V =
{1, 2, ..., N} the set of nodes (devices) and E the edge
set. We assume that the index of a node represents its
ID and also reflects its priority. A node with a lower ID
has a higher priority, i.e. i has a higher priority than
i+ 1. The highest priority node, i = 1 (unless it is lost)
must be elected as the sole leader. An edge represents a
communication link between nodes, and i is a neighbor
of j if there is an edge between them; N (i) is the set
of neighbors of node i. Edge lengths are 1, i.e. distances
are hop counts. The shortest distance di of i from 1, the
desired leader, obeys the following recursion from (Mo
et al. 2019):

di =
{

0, i = 1
min
j∈N (i)

{dj}+ 1, i 6= 1 (1)

These can be estimated using ABF, (Mo et al. 2019)
which updates d̂i(t), estimate of di by replacing each dk
in (1) by d̂k(t):

d̂i(t+ 1) =
{

0, i = 1
min
j∈N (i)

{d̂j(t)}+ 1, i 6= 1 (2)

Based on (1), we introduce two related definitions:
Definition 1. A j minimizing the right hand side of (1)
is a true constraining node of i, 1 being its own.
Definition 2. The pseudo-diameter D is

D = max{di | i ∈ V }.

D may be smaller than the diameter of G. Each i has a
true constraining node: If i = 1, it is it’s own; else there
is a j that minimizes the second bullet in (1)

3 Algorithm
The block diagram of the leader election algorithm is
in Figure 1. It uses a feedback interconnection compris-
ing two aggregate computing building blocks, G and C,
(Viroli et al. 2018), each of which is itself a distributed
algorithm.Being a feedback composition of G and C it
is called GCF. We define a function g(·) that is a design
parameter.
Definition 3. The function g : N → N with N the set
of natural numbers is progressive, i.e., g(x) > x, and
monotonic, i.e., x ≤ y ⇒ g(x) ≤ g(y), design function.

As part of our convergence analysis we will determine
how one should select g(·). Observe x + 1 is a valid ex-
ample of g(x). As g(·) : N→ N, every g(x) obeys

g(x) ≥ x+ 1, ∀ x ∈ N. (3)

Figure 1 shows the structure of the algorithm, with z−1

a unit delay. We assume each node in V = {1, · · · , N}
has a unique ID. The goal is to elect the highest priority
node 1 as the single leader.

G

C

z−1
i

d̂i

Di

σi

Fig. 1. Block diagram of GCF. G elects leaders, broadcasts
radii of influence Ri(t) and computes distance estimate d̂i(t)
of i from its leader and feeds these to C. C produces pseu-
do-diameter estimates Di(t), fed back to G in the follow-
ing round to compute a leader’s radius of influence. Nodes
within Ri(t) of a leader become its followers.

3.1 Algorithm details
A pseudo-code is in Algorithm 1. Note every state is
updated at every time step with no stopping criteria.

The inputs: A connected undirected graph G and a
unique ID i for node i. Diameter is not needed.
The output: The leader of each node: σi(t) is i’s leader
i.e., i follows σi(t). If σi(t) = i, then i is a leader.
State variables: σi(t) and the following:
• d̂i(t): The distance (hop count) estimate of i from
its leader. It is computed similarly to (2), although
the j used to update has more constraints.

• Ri(t): The radius of influence. A leader computes
this using its pseudo-diameter estimate, Di(t) as
Ri(t) = g(Di(t)), broadcasts this to its followers.

• Di(t): A pseudo-diameter estimate collected by the
C-block and transmitted back to leaders:

Di(t+ 1) = max
{
d̂i(t+ 1), {Dj(t) | j ∈ N (i)∧

d̂j(t) > d̂i(t+ 1)}
}

(4)

The G-block updates the remaining variables using,
(σi(t+ 1), d̂i(t+ 1),−Ri(t+ 1)) = min

{
(i, 0,−g(Di(t))),

{(σj(t), d̂j(t) + 1,−Rj(t)) : j ∈ N (i) ∧ d̂j(t) < Rj(t)}
}

(5)

where ordering between triples is lexicographic. Thus in
min{(a1, b1, h1), (a2, b2, h2)} = (ai, bi, hi) where i is cho-
sen to minimize ai. In case of a tie the one among these
with the smallest bi is chosen. With a further tie, the
one with smallest hi is picked. The presence of −Ri(t)
rather than Ri(t) signifies the fact that we are maximiz-
ing Ri(t), i.e. minimizing −Ri(t). (See (C) below). The
compact algorithm is thus (4) and (5). The sequel ex-
plains its significance.

When does i elect itself a leader i.e. σi(t+ 1) = i?
(i) It scouts its neighbor’s states. (One hop informa-

tion)
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(ii) Checks if there is a neighbor j that is following a
leader having a higher priority than i, i.e. σj(t) < i.

(iii) Checks if such a neighbor’s distance estimate is less
than its radius of influence, i.e. d̂j(t) < Rj(t).

(iv) If (ii) is false then by virtue of the first variable
in the tuples in (5), the lexicographic minimization
ensures that the first tuple wins out. If (iii) is false
then the set over which the second tuple in (5) is
chosen is empty and the first wins by default. Thus
i becomes a leader, as it sets its state as:

σi(t+ 1) = i, d̂i(t+ 1) = 0, Ri(t+ 1) = g(Di(t)) (6)
A neighbor of i that satisfies both (ii) and (iii) is called an
eligible neighbor. The set of eligible neighbors is Ei(t+1)
(see line 5 of the pseudo-code in Algorithm 1). A node
j cannot be eligible if d̂j(t) ≥ Rj(t). A node becomes a
leader if it does not have an eligible neighbor.

What about nodes with eligible neighbors?
(a) In this case (iii) ensures that {N (i) ∧ d̂j(t) <

Rj(t)} 6= ∅. Further (ii) ensures that σj(t) < i for
some j ∈ {N (i) ∧ d̂j(t) < Rj(t)}. Thus, the lexi-
cographically smallest of the second tuples in (5)
wins. With j the index of this winning tuple,
σi(t+1) = σj(t), d̂i(t+1) = d̂j(t)+1, Ri(t+1) = Rj(t).

(7)
The j chosen above is called i’s constraining node.
It is chosen from the set of eligible neighbors
Ei(t+ 1) = {j ∈ N (i) | d̂j(t) < Rj(t) ∧ σj(t) < i}.

(8)
Specifically, a constraining node is any node in
ERi (t+1) = {arg min

j∈Ei(t+1)
{(σj(t), d̂j(t)+1,−Rj(t))}}

More explanation is in (A)-(D).
(b) Through (7), i thus inherits its constraining node’s

leader and radius of influence. (One hop away.)
(c) It sets its hop count estimate from its new leader

to one more than its constraining node’s estimate.
Thus, theRi chosen by leaders and broadcast to followers
moving from one constraining node to the next (see (7)).

How does node i select its constraining node j =
ci(t+ 1) whose leader it inherits?
Note that a leader is its own constraining node.For others
the it must be in ERi (t+ 1), i.e. must satisfy:
(A) It must be an eligible neighbor, that follows the

highest priority leader among all nodes in Ei(t+ 1)
(first variables in the second tuples in (5)).

(B) In case of ties it must have the smallest distance
estimate (second variable).

(C) In case of further ties it must have the largest radius
of influence (third variable).

(D) For further ties, ci(t+ 1) has the smallest ID.
Note (D) just helps settle on a unique number if ERi (t+1)
has multiple members. We reiterate that a j for which
d̂j(t) ≥ Rj(t) cannot be eligible and be a constraining

node. Even with resolution using (D) the state in (7) is
unique. While the C-block collects pseudo-diameter es-
timates by implementing (4), the G-block in (5), per-
forms the remaining operations. The set of leaders at t
is S(t) = {i | σi(t) = i}. Then with ERi (t+ 1) defined in
(a) the constraining node is:

ci(t) =
{
i σi(t) = i

min ERi (t) σi(t) 6= i
. (9)

Of course (5) remains valid without (9), as it defines the
values associated with j and not j itself.With the correct
distance of i from 1, andD the true pseudo-diameter (see
(1) and Definition 2), the desired stationary point is
(σi(t), d̂i(t), Ri(t)) ≡ (1, di, g(D)),∀i ∈ V and D1(t) = D.

(10)
Note in (10) every node has 1 as leader and radius of
influence g(D). At steady state D1 = D. However, as
explained later, not all steady state Di will equal D.
Henceforth we will call a node i, converged at t1 if σi(t) =
1 and d̂i(t) = di, for all t ≥ t1.

3.2 Insights and convegence mechanism
Note in the lexicographic minimization i = σj(t) still
resolves for the first tuple in (5) as 0, the second com-
ponent of (i, 0, g(Di(t))), is less than d̂j(t) + 1, due to
d̂j(0) ≥ 0. The role of (4) is straightforward: i chooses
its pseudo-diameter estimate as the maximum of its own
new distance estimate and the pseudo-diameter esti-
mate at nodes previously estimated as further from their
leader than i. It follows that

Di(t) ≥ d̂i(t). (11)

The inequality will be strict iff the neighbor’s distance
estimate at t exceeds i’s current estimate.

2

4 31
!𝑑! 0 = 3
𝜎! 0 = 2
𝐷! 0 = 1
𝑅! 0 = 6

!𝑑" 0 = 3
𝜎" 0 = 2
𝐷" 0 = 1
𝑅" 0 = 5

!𝑑# 0 = 1
𝜎# 0 = 4
𝐷# 0 = 3
𝑅# 0 = 4

!𝑑$ 0 = 3
𝜎$ 0 = 1
𝐷$ 0 = 1
𝑅$ 0 = 3

Fig. 2. An example graph.

To illustrate the convergence mechanism consider Fig-
ure 2 with g(x) = 2x+ 1. Observe, 2 is the only current
leader (σ2(0) = 2), 1 should eventually be the sole
leader. Node 1 is following 2, (σ1(0) = 2) while 3 fol-
lows 4 and 4 follows 1. Node 1 has only one neighbor
4 which follows 1. Thus in the lexicographic minimiza-
tion with i = 1, (i, 0,−g(Di(0))) = (1, 0,−3) wins
out over (σ4(0), d̂4(0) + 1,−R4(0)) = (1, 4,−3) and
(σ1(1), d̂1(1),−R1(1)) = (1, 0,−3). In any case 4 is not
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Algorithm 1: Pseudo-code of the leader election algorithm
Input : Connected, undirected graph G = (V,E) and node IDs;
Output: i’s leader σi;
States : The distance estimate d̂i of i from i’s leader; Radius

of influence, Ri at i; Pseudo-diameter estimate Di at
i; The leader of i, σi;

1 t = 0;
2 Initialize d̂i(0), σi(0), Ri(0), Di(0) for all i ∈ V , set function g;
3 /* line 5 to 16: the G block; line 18: the C block */
4 foreach i ∈ V and t ≥ 0 do
5 /* The set of neighbors following leaders with priority

higher than i and having distance estimates less than
radii of influence. Elements of this set are called
eligible neighbors. */
Ei(t+ 1) = {j ∈ N (i) | d̂j(t) < Rj(t) ∧ σj(t) < i};

6 if Ei(t+ 1) = ∅ then
7 /* If it has no eligible neighbors, then i elects

itself a leader, sets its distance estimate to zero
and its radius of influence to g(Di). */
σi(t+ 1) = i, d̂i(t+ 1) = 0, Ri(t+ 1) = g(Di(t));

8 else
9 /* Set of eligible neighbors following the highest

priority leaders. */
Eσi (t+ 1) = {j | j = arg min`∈Ei(t+1){σ`(t)}};

10 /* If Eσi has multiple members find those with the
smallest distance estimates. */
Edi (t+ 1) = {j | j = arg min`∈Eσ

i
(t+1){d̂`(t)}};

11 /* If Edi has multiple members find those with the
largest radii of influence. */
ERi (t+ 1) = {j | j = arg max`∈Ed

i
(t+1){R`(t)}};

12 /* Find j, the highest priority member of this
reduced set. Call it the constraining node of i. */

13 j = min ERi (t+ 1);
14 /* i follows the constraining node j’s leader, sets

its distance estimate to one more than j’s distance
estimate, adopts j’s radius of influence as its
own. */

15 σi(t+ 1) = σj(t), d̂i(t+ 1) = d̂j(t) + 1, Ri(t+ 1) = Rj(t);
16 end
17 /* Find i’s pseudo-diameter estimate. */
18 Di(t+ 1) = max

{
d̂i(t+ 1), {Dj(t) | j ∈ N (i) ∧ d̂j(t) >

d̂i(t+ 1)}
}
;

19 t = t+ 1;
20 end

an eligible neighbor as d̂4(0), the distance estimate of
4 is not less than R4(0), 4’s radius of influence. Thus 2
and 3 become leaders at t = 1.

As σ3(0) = 4, 3 is not 4’s eligible neighbor, but 1 and
2 are as d̂i(0) < Ri(0) and σi(0) < 4 for each. Thus,
in (5) one among the second tuples wins. As σ1(0) =
σ2(0), in the lexicographic minimization there is a tie in
the first variable. As d̂1(0) = d̂2(0), there is a further
tie in the second variable. Then 1 wins out as R1(0) >
R2(0) and 1 is the constraining node of 4, i.e. c4(1) = 1.
Consequently (σ4(1), d̂4(1),−R4(1)) = (2, 4,−6). As 2
and 3 are leaders at t = 1, (σ2(1), d̂2(1),−R2(1)) =
(2, 0,−3) and (σ3(1), d̂3(1),−R3(1)) = (3, 0,−7).

Turn now to (4). As d̂i(1) = 0 < d̂4(0), for all
i ∈ {1, 2, 3}, Di(1) = D4(0) = 1. On the other hand the
set {j|d̂j(0) > d̂4(1)} = ∅. Thus, D4(1) = d̂4(1) = 4.
As 1, is the highest priority node, σ1(t) = 1 and d̂1(t) =
0, ∀ t > 0. Thus 1 is an eligible neighbor of and be-
ing a leader with higher priority than 4, remains 4’s
leader and propagates its radius of influence to 4:
(σ4(2), d̂4(2),−R4(2)) = (1, 1,−3). Henceforth due to
(11), R1(t) = 2D1(t) + 1 > d̂1(t), i.e. 1 remains a valid
neighbor of 4, ensuring that 4 converges at t = 1, i.e.,
σ4(t) = 1 and d̂4(t) = 1 for t ≥ 1.

For t ≥ 2 because of (11) D4(t) ≥ d̂4(t). Further, for
t ≥ 2, as d̂4(t − 1) > d̂1(t) = 0, it follows from (4) that
D1(t) = D4(t) ≥ d̂4(t). Thus for R1(t) = 2D1(t) + 1 =
2D4(t) + 1 > d̂4(t). As 4 inherits 1’s radius of influence
at the next iteration, for t ≥ 4, 4 is an eligible neighbor
of both 2 and 3, whereupon both converge.

The mechanism of convergence is thus: Node 1 converges
at t = 1, after which convergence proceeds in waves.
Suppose all nodes within a distance d have converged.

(I) Diameter estimates are sent back to leaders:
In an inward wave, using (4), all followers including
the converged ones, transmit back to 1 their pseudo-
diameter estimates. If a converged node i is di =
d̂i(t) = d away from 1, then due to (4) Di(t) ≥
d̂i(t) = d. On reaching 1 in d steps, D1(t) ≥ d. As
g(x) > x, 1’s radius of influenceR1(t) = g(D1(t)) >
d exceeds the distance estimate of any such i.

(II) R1(t) is broadcast by 1 to its followers: In an
outward wave, 1 broadcasts to its converged follow-
ers R1(t). A converged follower j, d hops from 1 re-
ceives this in d steps and at this point j’s radius of
influence Rj(t) = R1(t) > d ≥ dj = d̂j(t).

(III) Converged nodes within d of 1, cause more
nodes to converge: Because of (II) every con-
verged node j at a distance d from 1, has d̂j(t) <
Rj(t). As it also follows the highest priority node
1 it is an eligible neighbor for any neighbor k with
dk = d+1. This induces k to converge with, d̂k(t) =
d+ 1 = dk. The radius of convergence of k also be-
comesRk(t) = R1(t) = g(D1(t)) ≥ g(d). As long as
d+ 1 = dk < g(d), k becomes eligible, and induces
its neighbors at d + 2 hops from 1 to converge. As
(1) ensures that every node at distance d+ 1 from
1 must have at least one neighbor d away from 1,
nodes dj ≤ g(d) hops from 1 converge in dj+1 steps
after 1 acquires the pseudo-diameter D1(t) ≥ d.

In (5), with ties in σj(t), choosing a constraining node j
with the smallest d̂j(t), and with further ties, the largest
Rj(t), speeds j’s becoming eligible. If converged these
nodes can induce neighbors to converge quicker.

5
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Fig. 3. Resilience: 0 the global leader is lost at t = 0.
3.3 The role of radii of influence in resilience
Consider Fig. 3 where the algorithm has converged at
t = 0 when it loses its erstwhile leader 0. All nodes
have d̂i(0) < Ri(0) and constrain one or more of their
neighbors. For example, 1 and 4 keep constraining each
other. The result is that their distance estimates keep
increasing while the radii of influence remain constant
as 1 and 4 keep exchanging them. Eventually R4(t) =
d̂4(t) and 1 lacking an eligible neighbor becomes a leader.
Other fake (leader) IDs are similarly flushed out and
recovery occurs.

In contrast consider a min-consensus algorithm: σi(t +
1) = min{j∈N (i)∪{i}} σj(k). This will eventually provide
each node with σi(t) = 1. Should 1 disappear there-
after, the other nodes will continue to exchange 1, as it
is smaller than their IDs, with no new leader emerging.

Note a tension between resilience and convergence speed.
A small g(·) leads to smaller Ri and in the example
above, Ri(t) = d̂i(t) occurs quicker. A large g(·) leads to
faster convergence as more converged nodes become eligi-
ble quicker. Section 5.3 provides a g(·) that balances the
two. The lemma below is key to proving resiliency.
Lemma 1. Under (5), there holds:

d̂i(t) ≤ Ri(t), ∀i ∈ V and ∀ t ≥ 1. (12)
Proof. Consider t > 0. If i is a leader, d̂i(t) = 0 ≤ Ri(t)
by (6) and (3). If it is not a leader it must have an eligible
neighbor which its constraining node j = ci(t+1) obeys
d̂j(t − 1) < Rj(t − 1). From (7) d̂i(t) = d̂j(t − 1) + 1
and Ri(t) = Rj(t − 1). Hence d̂i(t) = d̂j(t − 1) + 1 ≤
Rj(t− 1) = Ri(t).

4 Analysis Framework and Stationary Point
The following is our standing set of assumptions.
Assumption 1. The graph G is connected and undi-
rected, t0 = 0 is the initial time, di,N (i), ci(t+1), σi(t),
d̂i(t), Ri(t), Di(t), g(·) are defined as in Section 3, and
for all i ∈ V , d̂i(0), Ri(0), Di(0) are all in N.

Note that we do not assume that σi(0) ∈ V . The case of
σi(0) /∈ V models the situation where due to the loss of
previous leaders, some nodes have invalid leader ID at
t = 0. Even though lost leaders may have had IDs below
1, we allow such fake IDs to be any number not in V.

Theorem 1 shows that the desired state, with the single
leader 1, is the unique stationary point of the algorithm.

Theorem 1. Suppose Assumption 1 holds and di is as
in (1), g(·) is as in Definition 3 and D as in Definition
2. Then the unique stationary point of the algorithm in
(5) and (4) is given by (10) and
Di(t) ≡ D∗i = max

{
di, {D∗j | j ∈ N (i)∧dj > di}. (13)

Proof. Because of (4), (10) implies (13). To see that (13)
implies D∗1 = D, note that as the graph is connected
there is a set of nodes C = {1 = i0, · · · , iD} such that ik
is the true constraining node of ik+1 (Definition 1). Note
dik = k.Use induction to show that ∀ j ∈ C,D∗j = D.As
diD = D ≥ dl, ∀l ∈ V , (13) impliesD∗iD = D. IfD∗ik = D
for some k > 0, then as ik ∈ N (ik−1) and dik > dik−1 ,
D∗ik−1

= max
{
dik−1 ,D} = D, proving D∗1 = D.

Suppose for all i ∈ V , (σi(t), d̂i(t), Ri(t)) = (1, di, g(D)).
Then from (4),D1(t+1) = D. Further, from (6) we have
d̂1(t+1) = 0 = d1 = d̂1(t) andR1(t+1) = g(D) = R1(t).

Because of (3), the definition of D and (6),
d̂i(t) = di ≤ D < g(D) = Ri(t). (14)

Thus as each i > 1 there is a neighbor j ∈ N (i) with
σj(t) = 1 < i, i has eligible neighbors, and from (7),
Ri(t+1) = Rj(t). Thus,Ri(t+1) = g(D) = Ri(t). From
(1), for all i > 1, minj∈N (i){dj = d̂j(t)} = di − 1. As
all σi = 1, in (5) the neighbor with the smallest d̂j(t)
resolves the tie and d̂i(t + 1) = di − 1 + 1 = di. From
(13), Di(t+ 1) = D∗i , i.e. (10, 13) is a stationary point.

Define Sl = {i|di = l}. To prove uniqueness, we show
using induction that for all l ∈ {0, · · · ,D} and i ∈ Sl a
stationary point must obey
{σi(t), d̂i(t)} ≡ {1, di}, Ri(t) ≥ g(l), Di(t) ≥ l. (15)

As S0 = {1}, because of (5) σ1(t) = σ1(t + 1) must
imply {σ1(t), d̂1(t), R1(t)} = {1, 0, g(D1(t))}. As Di(t)
are non-negative and g(0) > 0, (15) holds for l = 0.
Suppose it holds for all l ∈ {0, · · · , L − 1} for some
L ≤ D. Consider i ∈ SL. There must be a j ∈ SL−1 that
is in N (i). From the induction hypothesis σj(t) = 1,
d̂j(t) = dj = L−1, Rj(t) ≥ g(L−1) and Dj(t) ≥ L−1.
Thus as d̂j(t) = L − 1 < g(L − 1) ≤ Rj(t), from (5)
σi(t + 1) = σi(t) implies σi(t + 1) = σj(t) = 1 and
d̂i(t + 1) = dj + 1 = di = L. Further, from (4) we have
Di(t+ 1) ≥ di = L. This proves (15). From (4) this also
means Di(t + 1) = D∗i . As D∗1 = D, R1(t) = g(D), and
from (7) Ri(t+ 1) = g(D), for all i ∈ SL.

This is a desired stationary point as 1 is the sole leader.
Not all D∗i = D. Node 2 in Figure 3 is an example:
d2 = 2, d4 = 1 and D4 = D = 3. As d2 > d4, from
(13), D2 = 2. However, all radii of influence do equal
g(D). Observe from (14) that the proof of (10,13) being
a stationary point critically relies on (3).

6



5 Stability and Resilience Analysis
In our framework, at t = 0 nodes may carry fake leader
IDs due to the loss of a prior leader or the past advent of
a fake leader. Section 5.1 proves that these fake IDs even-
tually disappear. Section 5.2 proves convergence. While
a faster growing g(·) delays the disappearance of fake
leaders, it speeds subsequent convergence. Section 5.3
seeks to balance these two competing requirements. Sec-
tion 5.4 illustrates the competitiveness of convergence
time.

5.1 Resilience to fake or lost leaders
We demonstrate the resilience of the algorithm to the loss
of leaders, temporary or otherwise, or of other nodes. As
noted earlier this is modeled as nodes carrying fake IDs.
These IDs reflect nodes following leaders that have been
lost. This thus permits recovery from the loss of multiple
nodes (subject to continued connectivity) many of which
may have been temporary leaders themselves. We define
the set of unrooted nodes and prove that only unrooted
nodes can carry fake leader IDs.

We assume that the loss occurs before t = 0 and at t = 0,
even though this node is nonexistent, existing nodes may
continue following it.
Definition 4 (Unrooted Node Set). Define the set of
unrooted nodes U(t) as U(t + 1) = {i ∈ V | i 6= ci(t +
1) ∈ U(t)} and U(0) = V . Thus U(t + 1) comprises
non-leader nodes constrained by members of U(t). Let
L(t) = {σi(t) | i ∈ U(t)} be the set of unrooted leaders
and Uk(t) be the set of unrooted nodes with leader k:

Uk(t) = {i ∈ U(t) | σi(t) = k}.

Furthermore, define d̂kmin(t) = min{d̂i(t) | i ∈ Uk(t)}
and Rkmax(t) = max{Ri(t) | i ∈ Uk(t)}.

Recall a fake ID refers to a lost leader ID and is σi(t) /∈ V .
We show below that all fake IDs are in L(t). In Figure
3 after the loss of the leader 0, U(0) = V and Ri(0) =
7 > d̂i(0) for all i ∈ V . As only 0 is a leader L(0) =
{0}, only U0(0) = V is nonempty, R0

max(t) = 7 and
d0

min(t) = 1. As d̂i(0) < Ri(0) and each node follows
0, a higher priority ID than all i ∈ V, each node has
an eligible leader and none leaves U(0). At t = 1 the
d̂i(t) is one greater than at least one of its neighbors.
At the same time, as each i receives Ri(1) = 7 from
a neighbor its radius of influenced is unchanged. Thus
U(t), L(t) and U0(t) are unchanged until d̂4(5) = 7 =
R4(5) = d̂5(5) = R5(5). Thus at t = 5, 1, 2 and 3 no
longer have viable neighbors and at t = 6 each becomes
a leader, i.e. ci(6) = i ∀ i ∈ {1, 2, 3}. Hence from the
definition of U , 1,2 and 3 leave U(6) but 4 and 5 remain
and continue following 0 and L(6) = {0}. At t = 6,
both 4 and 5 have eligible neighbors with leaders (the
neighbors themselves) with priority higher than them.
Each starts following one among 1,2 and 3, U(t) empties,
all fake IDs are flushed out and all nodes become rooted.

In this example and as proved below, L(t) does not grow
and only unrooted nodes carry fake IDs, as IDs carried
by rooted nodes are in V. Thus, all fake IDs are in L(t).
Lemma 2 (L(t) Does Not Grow). Consider (4,5) under
Assumption 1. Then: (i) L(t) in Definition 4 obeys L(t+
1) ⊆ L(t); (ii) σi(t) ∈ V if i ∈ V \ U(t).

Proof. Suppose j ∈ L(t + 1). By definition of L(t + 1),
there exists i ∈ U(t + 1) such that σi(t + 1) = j. Thus
from Definition 4 there exists a k such that i 6= k =
ci(t+ 1) ∈ U(t), and σk(t) = j by (7). Then j ∈ L(t) by
definition of L(t), proving (i).

Use induction on t to prove (ii). For t = 0, (ii) is true as
there are no rooted nodes V = U(0). From Definition 4,
the constraining node of i ∈ V \U(t+1) can only be such
that either ci(t + 1) = i or ci(t + 1) = j /∈ U(t). In the
former case, σi(t+ 1) = i ∈ V . In the latter, σi(t+ 1) =
σj(t), which is in V by the induction hypothesis.

Recall the intuition behind resilience given in Section
3.2 through Figure 3: d̂i(t) of nodes following a lost lead-
ers grow, while their estimated Ri do not making them
eventually ineligible neighbors. Lemma 3 together with
Lemma 2 shows that this is true for all unrooted leaders
i.e. members of L(t).
Lemma 3. Under the conditions of Lemma 2, suppose at
a t ≥ 0, L(t) is nonempty and k ∈ L(t). Then, d̂kmin(t) ≥
d̂kmin(0) + t and Rkmax(t) ≤ Rkmax(0).

Proof. By Lemma 2, k ∈ L(t) implies k ∈ L(0) and
d̂kmin(0), Rkmax(0) are well defined. Use induction on t.
For t = 0 the result is trivial. Assume that t > 0 and i ∈
Uk(t). By Definition 4, j ∈ U(t−1) and j 6= i. From (7),
σi(t) = σj(t− 1) = k, thus j ∈ Uk(t− 1). By induction
hypothesis and (7), Ri(t) = Rj(t − 1) ≤ Rkmax(0), and
d̂i(t) = d̂j(t− 1) + 1 ≥ d̂kmin(0) + (t− 1) + 1.

We now prove resilience by showing that all fake ID’s
disappear, i.e. for some TF , and all t ≥ TF and i ∈ V ,
σi(t) ∈ V. In view of Lemma 2, this requires us to show
that no member of L(t) that is not in V can lead any
member of V after a certain time TF . This follows from
Lemma 3 consequent to which after a time all members
of U(t) following a member of L(t) have radii of influence
no greater than their distance estimates, i.e. are ineligi-
ble neighbors. This is also consistent with themechanism
described in Section 3.2 through Figure 3. As for t ≥ TF ,
1 does not have a neighbor carrying a fake ID, 1 imme-
diately becomes a leader. These time bounds are con-
servative and recovery may be faster. In fact, as shown
in the lemma after t = T0 ≤ TF node has higher ranked
leader than 1. This is so as T0 is the time at which nodes
with IDs less than 1 become ineligible. Thus 1 has the
highest priority after this all will eventually follow 1.
Lemma 4 (Fake Leader IDs Disappear). Suppose the
conditions of Lemma 3 hold. (i) No node follows a fake
leader after t = TF below, i.e. σi(t) ∈ V for all i ∈ V and
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t ≥ TF = 1 + max{0, Rkmax(0)− d̂kmin(0) | k ∈ L(0) \V }.

(ii) In fact for all i ∈ V σi(t) ≥ 1, ∀ t ≥ T0 and (iii)
σ1(t) = 1, ∀ t ≥ T0, where

T0 = 1 + max{0, Rkmax(0)− d̂kmin(0) | k ∈ L(0)∧ k < 1}.

Proof. Suppose there are i ∈ V and t ≥ TF such that
σi(t) = k /∈ V . By Lemma 2, k ∈ L(0) and i ∈ Uk(t)
since k /∈ V . By Lemma 3, ∀ t ≥ TF :

d̂i(t)≥ d̂kmin(t) ≥ d̂kmin(0) + t ≥ d̂kmin(0) + TF (16)
≥ d̂kmin(0) +Rkmax(0)− d̂kmin(0) + 1 = Rkmax(0) + 1.

From Lemma 3 and the definition of Rkmax(t) we obtain:
Ri(t) ≤ Rkmax(t) ≤ Rkmax(0). Thus, d̂i(t) > Rkmax(0) ≥
Ri(t), contradicting (12) as TF > 0. Similarly, (ii) is
proved by noting that minV = 1. Thus if σi(t) = ` < 1,
then ` ∈ L(0) and for t ≥ T0, (1) is again violated.
Finally, (iii) follows because of (6) and the facts that
1 ≤ T0 ∈ N and for t ≥ T0, σi(t) ≥ 1, for all i ∈ V.

Thus fake IDs vanish after TF ≥ T0. As no fake leader
with ID greater than 1 exists at T0, node 1 becomes a
leader at T0 even before all fake IDs vanish.

5.2 Global Uniform Asymptotic Stability
We now show that a node following the desired leader
eventually cannot have an underestimated distance.
Lemma 5 (Underestimates Decay). Consider (4, 5) un-
der Assumption 1. For every i ∈ V and t ≥ 0 such that
σi(t) = 1, we have d̂i(t) ≥ min(di, t).

Proof. Use induction on t ≥ 0. As d̂i(t) ≥ 0, the result
holds for t = 0. Suppose it holds for some t ≥ 0, and
let i be such that σi(t + 1) = 1. If i = 1 then from (6),
the result holds as d1 = 0 = d̂i(t + 1). If i 6= 1, then
from (7) there is a j ∈ N (i) such that σj(t) = 1 and
d̂i(t+ 1) = d̂j(t) + 1. By induction hypothesis and (1),

d̂i(t+ 1) ≥ min(dj , t) + 1 ≥ min
(

min
k∈N (i)

{dk}+ 1, t+ 1
)

= min(di, t+ 1).

The next lemma documents the inward flow of pseudo-
diameter estimates explained in (I) of Section 3.2. Re-
call diameter estimates are no smaller than distance es-
timates. Thus if all nodes at a distance x from 1 have
converged at time Tx then it takes the diameter esti-
mate, which is greater than x at the furthest converged
node, at most x iterations to reach 1. As g(x) > x, from
(6), R1(t) = g(x) > x for all t ≥ Tx + x.
Lemma 6 (Diameter Collection). Under the conditions
of Lemma 4, suppose Tx for x ≤ D is such that every
device i ∈ V with di ≤ x obeys σi(t) = 1, d̂i(t) = di for
all t ≥ Tx. Then D1(t) ≥ x for all t ≥ Tx + x.

Proof. We prove by induction on k that for all t ≥ Tx+k
and 0 ≤ k ≤ x, there exists i such that di = x − k and
Di(t) ≥ x. Then the result will follow from k = x, as 1 is
the only node i such that di = 0. Consider k = 0, t ≥ Tx
and any i with di = x ≤ D. From (4), Di(t) equals
max{d̂i(t), {Dj(t− 1) | j ∈ N (i) ∧ d̂j(t− 1) > d̂i(t)}}
≥ d̂i(t) = di = x.

Suppose this is true for some 0 ≤ k < x. Consider t ≥
Tx + k + 1. By induction hypothesis, there is an i such
that di = x − k and Di(t − 1) ≥ x. With j a true
constraining node of i, d̂i(t− 1) = di = x− k = dj + 1.
Thus x − (k + 1) = dj = d̂j(t). Then the result follows
as Dj(t) equals
max{d̂j(t), {D`(t− 1) | ` ∈ N (j) ∧ d̂`(t− 1) > d̂j(t)}}
≥ Di(t− 1) ≥ x.

Thus if all nodes with di ≤ x converge at t = Tx, then
R1(t) = g(x) > x for all t ≥ Tx + x. The next lemma
documents the outward flow of radii of influence from 1,
leading tomore converged nodes, as explained in (II) and
(III) of Section 3.2. Consider any node di < g(x) away
from 1. Once R1(t) = g(x) > di, nodes converge and
receiveR1 one hop at a time, becoming eligible neighbors
as long as their distances are less than g(x). They then
induce their neighbors one hop further away from 1, to
converge. Thus, all nodes with di < g(x) converge in
Tx + x+ di + 1 steps.
Lemma 7 (Radius Broadcast). Under the conditions of
Lemma 4, suppose T ≥ T0 is such that D1(t) ≥ x for
t ≥ T . Consider i ∈ V with di ≤ g(x). Then for all
t ≥ T + di + 1, σi(t) = 1, d̂i(t) = di, and Ri(t) ≥ g(x).

Proof. Use induction on y, with 0 ≤ di = y ≤ g(x). If
y = 0, then i = 1. From Lemma 4, for t ≥ T0, σi(t) =
1, d̂i(t) = di = 0. From (6) and Definition 2, Ri(t+ 1) =
g(D1(t)) ≥ g(x), initiating the induction.

Suppose the result holds for some 0 ≤ y < g(x) and
every m ∈ V with dm = y. Consider i with di = y + 1
and t ≥ T + y + 2. From Definition 1, j ∈ N (i) is a
true constraining node of i iff dj = y. Thus by induction
hypothesis for any j a true constraining node of i, σj(t−
1) = 1, d̂j(t − 1) = dj < g(x), Rj(t − 1) ≥ g(x). Thus
j ∈ Ei(t) given in (8).

Suppose k = ci(t) is the constraining node of i. Because
of (5), 1 ≤ σk(t−1) ≤ σj(t−1) = 1, and y ≤ d̂k(t−1) ≤
d̂j(1− 1) = y. Thus σk(t− 1) = 1 and d̂k(t− 1) = y. As
k ∈ N (i), dk ≥ y. Thus from Lemma 5, y = d̂k(t− 1) ≥
min(dk, T + y + 2) i.e., y ≥ dk ≥ di − 1 = y and k is a
true constraining node of i. Thus, from (7), d̂i(t) = y+1,
σi(t) = 1 and Ri(t) = Rk(t− 1) ≥ g(x).

Combining the last two lemmas, Theorem 2 recursively
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characterizes the overall convergence time Tx for nodes
at distance x. It uses the definition below.
Definition 5 (Discrete Inverse). Define g−1(D) as the
smallest x ∈ N such that g(x) ≥ D. Note g−1(·) : N→ N.

As from Definition 3, g(x) > x, g−1(x) < x. Thus
g−1(x) ≤ x− 1, g−1(1) = 0 and g

(
g−1(x)

)
≥ x. (17)

Theorem 2 (Convergence). Under the conditions of
Lemma 4 with T0 given there,

σi(t) = 1, and d̂i(t) = di, (18)
for all i with 0 ≤ di ≤ x ≤ D and

t ≥ Tx = Tg−1(x) + g−1(x) + x+ 1. (19)

Proof. Use induction. The result is true for x = 0 from
Lemma 4, as for all t ≥ T0, σ1(t) = 1 and d̂1(t) = 0 = d1.
Because g−1(x) < x, sustain the induction by assuming
that for some x and all i such that 0 ≤ di ≤ g−1(x) < D
and t ≥ Tg−1(x) given by (19), (18) holds. By Lemma 6,
D1(t) ≥ g−1(x) for t ≥ Tg−1(x) + g−1(x). From Lemma
7, (18) holds for all t ≥ Tg−1(x) + g−1(x) + x + 1 = Tx
and i such that di ≤ g

(
g−1(x)

)
. As g

(
g−1(x)

)
≥ x, (18)

holds for all i such that di ≤ x and t ≥ Tx in (19).

Thus d̂i(t) and σi(t) converge by TD. With initial time
t0, this shifts to t0+TD,making stability uniform. Notice
that the previous theorem does not prove convergence
for the hidden variables Di(t) and Ri(t). However, once
d̂i(t) and σi(t) converge, another application of Lemmas
6 and 7 proves convergence also for them in an additional
2D time (D for collection, reaching the limitDi(t) values,
thenD for broadcast to propagate the finalRi(t) values).

SupposeL(x) is the smallest integer for which g−L(x)(x) =
0. Then for all 0 ≤ x ≤ D and x ∈ N, (19) becomes

Tx = T0 + x+
L(x)∑
k=1

(2g−k(x) + 1). (20)

Indeed, from (19) and (17), L(1) = 1 and we have T1 =
T0 + 2 = T0 + 1 +

∑L(1)
k=1 (2g−k(1) + 1). Furthermore

L(g−1(x)) = L(x) − 1. Thus assuming (20) to be true
for all nonnegative integer x = y − 1 ≥ 1, from (17):

Tg−1(y) = T0 + g−1(y) +
L(g−1(y))∑

k=1

(
2g−k(g−1(y)) + 1

)
.

Thus

Ty = T0 + 2g−1(y) +
L(y)−1∑
k=1

(
2g−(k+1)(y) + 1

)
+ y + 1

= T0 + y +
L(y)∑
k=1

(2g−k(y) + 1).

5.3 Tuning g(x) for optimality
A slow growing g(·) improves T0, the time to recovery
from fake and lost leaders, while the remaining terms in
TD decline with a fast growing g(·). We now tune g(·)
to balance these requirements. For the slowest growing
g(x) = x+ 1, g−k(x) = x−k for x ≥ k, L(x) = x. Thus

Tx = T0 + x+
x∑
k=1

(2(x− k) + 1) = T0 + x(x+ 1).

Hence TD is quadratic in D, and thus not time optimal.

Contrast this to the setting of convergence after loss of
the true leader. Relabel the highest priority node as 1,
and reset the the time at which recovery starts as 0.
From Theorem 1, D1(0) = D and the time to recovery
T0 in Lemma 4, it is readily seen that
max{0, Rkmax(t)− d̂kmin(t) | k ∈ L(t) ∧ k < 1} ≤ g(D).
and from Lemma 4 in the worst case T0 = 1 + g(D).
Accordingly, to balance convergence and recovery times
we consider the choice of g(·) that leads to minimizing

Tx = 1 + g(x) + x+
L(x)∑
k=1

(2g−k(x) + 1) (21)

with x = D. Due to the second term, it is important to
choose g(x) to be at least asymptotically linear. Thus we
characterize the best coefficient P = limx→∞

g(x)
x under

the implicit assumption that as D tends to infinity
g(D) = PD + o(D). (22)

This implies that as D tends to infinity

g−k(D) = D
P k

+ o(D). (23)

As g : N→ N, as D tends to infinity
L(D) = logP (D) + o(logD). (24)

Then we have the following lemma.
Lemma 8. Assume that 1 < P = limx→∞

g(x)
x is finite.

Then in (21), limD→∞ TD
D = P 2+1

P−1 .

Proof. As D tends to infinity, from (21)-(24),

TD = (P + 1)D + 2
L(D)∑
k=1

D
P k

+ o(D)

= (P − 1)D + 2DP − 1/PL(D)

P − 1 + o(D)

= (P − 1)D + 2DP − 1/D
P − 1 + o(D)

= DP
2 + 1
P − 1 + o(D).

Minimization of (P 2 + 1)/(P − 1) yields the following.
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Theorem 3. Under the conditions of Lemma 8, the
smallest limD→∞ TD

D is 2+2
√

2, attained forP = 1+
√

2.

Thus for large D, the optimal g(x) = (1 +
√

2)x +
o(x), leading to an asymptotic convergence time of 2(1+√

2)D. This fact allows us to calculate the overall mes-
sage complexity of the algorithm before convergence.
Corollary 1. The total message complexity of (4,5) is
O(DE), where D and E are the diameter and the number
of edges of G, respectively.

Proof. At each round, there are message exchanges be-
tween the linked nodes. Then the message complexity
per round is O(E) and the total message complexity is
O(DE) as GCF will converge within O(D) rounds and
D is upper bounded by the diameter of G by Definition
2.

5.4 Competitiveness with optimal
The TD in Section 5.3 is only asymptotically optimal. For
finite diameters, we define K-competitive algorithms.
Definition 6. Given Ox the shortest possible time to
converge with knowledge of the diameter x, the algorithm
is K-competitive (resp. for all x ≥ a) if Tx ≤ KOx for
all x ∈ N (resp. ∀ x ≥ a).

As Ox is unknown we use an optimistic estimate for it:
Ox = 2x+ 1. (25)

This is so as if D is known, the loss of a leader will
require at least D iterations for its successor to learn
of its disappearance (e.g., after not receiving messages
from the lost leader), one iteration for the new leader to
appoint itself, and D more steps to apprise others.

Through (25) we are comparing with an algorithm which
knows D, which ours does not. Nevertheless we settle on
an incontrovertible, but conservative value. A candidate
algorithm that achieves this bound is obtained by an-
choring Ri(t) to g(D) in (5). Theorem 3 precludes the
possibility of K-competitiveness with K < 1 +

√
2, as

limx→∞ Tx/Ox ≥ 1
2 limx→∞ Tx/x ≥ 1 +

√
2. We argue

in the sequel that our algorithm is 32
13 -competitive after

a leader loss.

To show this we first present an algorithm that veri-
fies K-competitiveness for GCF for a given K. 3 The
GCF algorithm is K-competitive iff there is a progres-
sive, monotonic g(x) such for all x ∈ N

g(x) ≤ bKOxc − 1− x−
L(x)∑
k=1

(2g−k(x) + 1). (26)

3 The C++ code for this algorithm is available at https://
github.com/fcpp-experiments/near-optimal-election
with a full license to reuse.

As all terms in the summation can be obtained from
g(y), with y < x, this provides a recursive computation
of g(x) that leads to K-competitiveness. Selecting the
largest g(x) that satisfies (26) at a given x is the best
option, as it reduces the summation for larger values
of x. To ensure monotonicity, if the obtained g(x) is
such that g(x) < g(x − 1) we need to reset g(x − 1) =
g(x) (and possibly recursively other smaller values). This
does not violate the previous constraints since g−1(x) is
unchanged (since g(x) > x, any z < x with g(z) ≥ x).
For a candidate K, K-competitiveness is false if for that
K and some x ∈ N, (26) yields g(x) ≤ x. On the other
hand if (4,5) is K-competitive then this recursion may
not stop.

To circumvent such a potential non-termination, the the-
orem below provides a sufficient condition that helps
finds a g(x) that ensures K-competitiveness. It assumes
that the recursion yields a progressive function g(x), a
K and an x0 such that Tx ≤ KOx for all x ≤ x0. It then
provides a sufficient condition on g(x) and x0, so that a
continuation of g(x) can be found to satisfy Tx ≤ KOx
for all x > x0.
Theorem 4. Consider Tx as in (21) amd Ox as in (25).
Suppose there is an x0 > 1,K ≥

√
2+1 and a progressive

monotonic function g : N→ N such that Tx ≤ KOx, for
all x ≤ x0. Assume, g(x0) > g(x0 − 1). Define,
γ = max

g−1(x0)<x≤x0,
g(x)>g(x−1)

{x− (
√

2− 1)(g(x− 1) + 1)}, (27)

δ = max{γ, g−1(x0)− (
√

2− 1)x0} (28)
and α = (1− δ)(

√
2 + 1). Suppose

x0 ≥
(2K −

√
2)δ + 2 +

√
2

2
√

2
(
(
√

2− 1)K − 1
) . (29)

Then with

g(x) =
⌊
(
√

2 + 1)x+ α
⌋
∀ x > x0, x ∈ N, (30)

Tx ≤ KOx for all x ∈ N.

Proof. We first prove that
g−1(x) ≤ (

√
2− 1)x+ δ ∀ x > x0. (31)

To this end we consider three cases that between them
cover all x > x0.:

Case I: x0 < x ≤ g(g−1(x0)).

Observe, g−1(g(g−1(x0))) = g−1(x0). Thus x0 < x ≤
g(g−1(x0)) implies g−1(x0) ≤ g−1(x) ≤ g−1(x0), i.e.
g−1(x0) = g−1(x). Then from (28) we obtain:
g−1(x) = g−1(x0) = (

√
2− 1)x0 + g−1(x0)− (

√
2− 1)x0

≤ (
√

2− 1)x0 + δ ≤ (
√

2− 1)x+ δ.
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Case II: g(g−1(x0)) < x ≤ g(x0).

In this case, g−1(x0) + 1 ≤ z = g−1(x) ≤ x0. Further
from (17), z = g−1(x) means g(z) ≥ x > g(z− 1). From
(27), it follows that z − (

√
2− 1)(g(z − 1) + 1) ≤ γ. As

γ ≤ δ by (28),
z = g−1(x) ≤ (

√
2− 1)(g(z − 1) + 1) + δ

≤ (
√

2− 1)x+ δ (32)

where (32) uses the fact that x ≥ g(z − 1) + 1.

Case III: x > g(x0).

In this case, g−1(x) > x0, hence it only depends on
the continuation of g defined in (30). Notice that given
w = (x− α)(

√
2− 1),

g(dwe) =
⌊
(
√

2 + 1)dwe+ α
⌋

≥
⌊
(
√

2 + 1)w + α
⌋

= bx− α+ αc = x.

As y = g−1(x) is the smallest integer such that g(y) ≥ x,
we have that g−1(x) ≤ dwe, thus
g−1(x) ≤ w + 1 = (x− α)(

√
2− 1) + 1

= (
√

2− 1)x− (1− δ)(
√

2 + 1)(
√

2− 1) + 1
= (
√

2− 1)x+ δ.

Thus as the three cases between them cover all x > x0,
(31) holds for all x > x0. Use induction on x to prove the
theorem. The result is true for 0 < x ≤ x0. For x > x0,

Tx = Tg−1(x) + g−1(x) + x+ 1
< Tg−1(x) + g−1(x) + x+ 1 + g(x)− x
≤ K(2g−1(x) + 1) + g−1(x) + 1 + g(x) (33)
= (2K + 1)g−1(x) + (K + 1) + g(x)

≤ (2K + 1)
(

(
√

2− 1)x+ δ
)

+ (K + 1) +

+ (
√

2 + 1)x+ (1− δ)(
√

2 + 1) (34)
= K + (2K −

√
2)δ + 2 +

√
2

+
(

2K(
√

2− 1) + 2
√

2
)
x

< K +
(

2
√

2
(
(
√

2− 1)K − 1
))
x0

+
(

2K(
√

2− 1) + 2
√

2
)
x (35)

< K +
(

2
√

2
(
(
√

2− 1)K − 1
))
x

+
(

2K(
√

2− 1) + 2
√

2
)
x (36)

= K(2x+ 1) = KOx

where (33) uses the induction hypothesis that Tg−1(x) ≤
K(2g−1(x) + 1), (34) uses (31) and (30), (35) uses (29),
and (36) uses that x > x0.

x

y

0 0.5·105 1·105 1.5·105 2·105 2.5·105 3·105 3.5·105 4·105 4.5·105 5·105
0

0.2·106

0.4·106

0.6·106

0.8·106

1·106

1.2·106

best asymptotic

Fig. 4. Plot of the 32
13 -competitive function g(x).

A g thus constructed has the best asymptotic behavior.
To make g(x) progressive we need x0 ≥ − α√

2 = δ−1
2−
√

2 .
The algorithm in the repository shows that the algo-
rithm is not K−competitive for K < 32/13. However,
g(x) = b

√
2x+ 5.51c, x ≥ 427534, with the first 427534

custom values given in the repository (depicted in Fig-
ure 4), is 32

13−competitive. A variation of Theorem 4 also
shows that g(x) = max(b(1+

√
2)x+4.6c, 6) is (

√
2+1)-

competitive for x ≥ 3. This can be considered better,
since graphs with D ≤ 2 are trivial.

6 Simulations
We performed simulations assessing the performance of
the proposed algorithm through the FCPP simulator
(Audrito 2020) implementing the field calculus language
(Audrito et al. 2019) 4 . We compared the performance of
the GCF algorithm introduced in this paper with the al-
gorithm proposed by (Datta et al. 2011b)— knowledge-
free leader election algorithms. For GCF, we set the
parameter g(x) = max(b(1 +

√
2)x + 4.6c, 6). We also

considered filtered versions of both algorithms, which
changes a node’s leader only after the new leader per-
sists for τ = 4 rounds.

We placed 254 nodes uniformly distributed in a 20 × 2
rectangular area with unit disc communication, so that
every node has approximately 20 neighbors on average.
The initial conditions are: ∀i ∈ V , d̂i(0) = Di(0) = 0,
and σi(0) = i, and at t = 100 the leader is lost together
with 10% of the other nodes. We considered both a syn-
chronous scheduling, and an asynchronous scheduling
(where devices appear at a random time between 0 and
20, and have a 25% error in round lengths). We varied
device movement speed, from 0% to 60% of the con-
nection radius per round, and also considered varying
“crash probability” per round ranging from 0% to 6%.

4 The source code for these simulations is avail-
able at https://github.com/fcpp-experiments/
near-optimal-election, with a license to reuse.
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When a device crashes, we assume it to be unavailable
for 20 time units before becoming available again after a
reboot. We ran several instances varying random seeds,
averaging the results.

Figure 5 shows the results for the synchronous case,
and Figure 6 for the asynchronous case. The results in
both cases are very similar, showing that both GCF
and Datta’s algorithms are resilient to scheduling per-
turbations. Overall, the filtered versions succeed in re-
ducing the total number of leaders, and in particular of
spurious leaders (leaders that have never been the cor-
rect leader in the past), while on the other hand slow-
ing down convergence (by τ rounds). In the simulations
with device speed and crash probability, Datta’s algo-
rithm fails to converge at all, with the majority of the
network retaining spurious leaders until the simulation
end. On the other hand, GCF retains good performance
even in the presence of movement and crashes, with only
a slight lengthening of the convergence time. Even with-
out speed and crashes, GCF significantly outperforms
Datta’s algorithm in the number of leaders (especially
spurious one), and in the convergence time from scratch.
The overall recovery time of both algorithms is similar,
although with a different dynamics: Datta’s algorithm
starts immediately to recover, then proceeding slower;
while GCF stays still for a while, then recovering faster.

Figure 7 shows the effect of speed and crashes for the
synchronous case (results for the asynchronous case
are omitted but similar, as shown by Figure 6). GCF
shows very little degradation of performance increasing
device speeds up to 60% of the communication radius
per round, and crash probabilities up to 6% per round
for each device. Datta’s algorithm, instead, degrades
exponentially, becoming practically unusable for speeds
larger than 10% and crash probabilities larger than
2%. The observations made for Figure 5 reflect in these
plots as well: filtering reduces spurious leaders and also
slightly the number of nodes with the correct leader (due
to convergence slowdown); and the different dynamics
of GCF implies a lower number of correct nodes for zero
speed and crash probability (although corresponding to
an identical convergence time).

7 Conclusion
We have introduced a resilient leader election algorithm
involving a feedback interconnection of aggregate com-
puting building blocks. It assumes no prior knowledge
about the network, and is not only globally uniformly
and asymptotically stable, but also resilient to transient
perturbations. The design function g(·) tunes the con-
vergence and resilience rates. It has been shown that
the proposed leader election algorithm is 32

13 -competitive
with an optimistic optimal and stabilizes in (2 + 2

√
2)D

rounds after the loss of leaders.
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Fig. 5. Performance of GCF vs Datta’s algorithm in a synchronous setting over time; with no device speed and crash probability
(left) and with 30% speed and 3% crash probability (right); showing leader count (top), number of nodes with a correct leader
(middle) and with a spurious leader (bottom). Values are averaged across 5000 different random seeds, and the total number
of devices is 254.
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Fig. 6. Performance of GCF vs Datta’s algorithm in an asynchronous setting over time; with no device speed and crash
probability (left) and with 30% speed and 3% crash probability (right); showing leader count (top), number of nodes with a
correct leader (middle) and with a spurious leader (bottom). Values are averaged across 5000 different random seeds, and the
total number of devices is 254.
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Fig. 7. Recovery performance of GCF vs Datta’s algorithm in a synchronous setting; varying device speed with no crash
probability (left) and varying crash probability with no device speed (right); showing leader count (top), number of nodes with
a correct leader (middle) and with a spurious leader (bottom). Values are averaged across the recovery time 100-300s and 500
different random seeds per point. The total number of devices is 254; device speeds range from 0% to 60% of the connection
radius per round, and crash probability per round ranges from 0% to 6%.
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