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Abstract

This paper deals with the issue of concept drift in supervised machine learn-
ing. We make use of graphical models to elicit the visible structure of the data
and we infer from there changes in the hidden context. Differently from previous
concept-drift-detection methods, this application does not depend on the super-
vised machine learning model in use for a specific target variable, but it tries to
assess the concept drift as independent characteristic of the evolution of a data
set. Specifically we investigate how a graphical model evolves by looking at the
creation of new links and the disappearing of existing ones in different time pe-
riods. The paper suggests a method that highlights the changes and eventually
produce a metric to evaluate the stability over time. The paper evaluate the
method with real world data on the Australian Electric market.

1 Introduction

In the last decades, both the increasing availability of digitised information and the
improvement in the algorithms made the use of machine learning widespread across
different industries. Specifically, supervised machine learning became a standard tool
for predicting key information in various organization processes such as for instance
to mention a few risk default of firms and individual, fraudulent claims, customers
churn, and machine failures. The assessment of model uncertainty within a supervised
machine learning exercise is based on testing the goodness on a test-set, whose observa-
tions have not been employed in the model training. This practice allows for flexibility
in the choice of the model and prevents from the risk of over-fitting. However, this
analysis relies on the assumption the data generating structure is similar between the
test-set and the future observations. While this assumption is rarely debatable in phys-
ical process, social process change overtime and a model trained on past data might
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see a deterioration of its predictive power Gama et al. [2014]. This phenomenon is
known as concept- or model- drift and describes the situation in which there exists an
hidden context of data generative structure, that is any effect of the outcome variable
not captured by the model features, which changes over time abruptly, incrementally,
or periodically Widmer and Kubat [1996], Webb et al. [2016]. Scholars addressed this
issue and developed a battery of techniques for concept drift detection and early detec-
tion. As reviewed in Klinkenberg and Joachims [2000] and Elwell and Polikar [2011],
traditional techniques in concept drift detection typically relies by adopting different
time windows or size of the training data [Klinkenberg and Renz, 1998] or in explain-
ing how the weights of different features change overtime in the outcome prediction
[Klinkenberg and Renz, 1998, Taylor et al., 1997, Klinkenberg, 2004]. A recent review
[Althabiti and Abdullah, 2020] surveys also methods which can also deal with model
update with stream data [Bose et al., 2011]. However, all of these techniques rely on
some sort of computation or statistical comparison of the changes on classification er-
ror overtime and from this evidence they deduct the presence of concept drift [Widmer
and Kubat, 1996]. In this paper, we approach the problem from a different angle. We
make use of graphical models [Lauritzen, 1996] to elicit the visible structure of the data
and we infer from there changes in the hidden context with use of statistical measure.
Thus, differently from previous concept-drift-detection methods, this application does
not depend on the supervised machine learning model in use, but it tries to assess the
concept drift as an independent characteristic of the evolution of a data set.

2 Graphical Models, background

Consider a dataset, composed by p random variables Xp, where p can be divided in d
discrete and q continuous random variables. Graphical Models are a method to display
the conditional independence relationships between random variables in a dataset. The
conditional independence relationships can be showed as a networks of variables with
an undirected graph, that is mathematical object G = (V,E), where V is a finite set of
nodes, one-to-one correspondence with the p random variables present in the dataset,
and E ⊂ V×V , is a subset of ordered couples of V. Links represent interactions between
the nodes. If a link between two nodes is absent, the two variables represented by the
node are conditional independent given the dependence of the remaining variables.

Pairwise, local and global Markov properties are the connections between graph
theory and statistical modeling [Lauritzen, 1996]. As said before, there exist a one-
to-one correspondence between the variables and the nodes in the graph and, for this
reason, the sets of nodes is ∆ and Γ, where V = {∆∪Γ}. Let the corresponding random
variables be (Z,Y) where Z = (Z1, ...,Zd) and Y = (Y1, ...,Yq) and a i -observation
be (zi,yi). This means that z is a d-tuple containing the values of discrete variables,
and y is a real vector of length q. Our interest is to estimate the joint probability
distribution P (x) for the random variables (Z,Y) to build a conditional (undirected)
graph from the data. A product approximation of P (x) is defined to be a product of
several of its component distribution of lower order Pa(x). As suggest Chow and Liu
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[1968], we can consider the class of second-order approximation, i.e:

Pa(x) =

p∏
i=1

P (xi, xj(i)), 0 6 j(i) 6 p (1)

where (j1, ..., jp) is an unknown permutation of integers (1, 2, ..., p), where p=d+q.
Chow and Liu in [6] proved that for discrete random Z, the problem of finding the
goodness of approximation between P (z) and Pa(z) with the minimization of the
closeness measure:

I(P, Pa) =
∑
z

P (z) log
P (z)

Pa(z)
(2)

where
∑
z P (z) is nothing more than the sum over all levels of discrete variables. The

equation (2), is equivalent to maximizing the total branch (link) weight
∑p
i=1 I(zi, zj(i)),

where:

I(zi, zj(i)) =
∑
zi,zj(i)

P (zi, zj(i)) log

(
P (zi, zj(i))

P (zi)P (zj(i))

)
(3)

The task is to build a tree or forest (different trees) of maximum weight. We make
use of the Kruskal’s algorithm [Kruskal, 1956] to compute trees with the minimum
of total length. To choose a tree of maximum total branch weight, we first index
the d(d − 1)/2 according to decreasing weight. This algorithm starts from a square
weighted matrix d × d, where a weight for a couple of variables (Zi, Zj) is given by
the mutual information I(zi, zj). In the real world the probability distributions are
no given explicitly, for this reason we have to estimate the mutual information. Let
z1, z2, ..., zN be independent samples of finite discrete variables z. Then the mutual
information is given by:

Î(zi, zj) =
∑
u,v

fu,v(i, j) log
fu,v(i, j)

fu(i)fv(j)
, (4)

where fu,v(i, j) = nuv(i,j)∑
uv nuv(i,j)

and nuv(i, j) is the number of samples such that their

ith and j th components assume the values of u and v, respectively. It was showed that
with this estimator we also maximize the likelihood for a dependence tree Chow and
Liu [1968]. This procedure works only with the discrete random variables, but it can be
extended to data with both discrete and continuous random variables Edwards et al.
[2010]. To present this extension, we have to consider the distributional assumption
of our random variables X i.e. the distribution of Y given Z = z is a multivariate
normal N (µi,Σi) so that both the conditional mean and covariance may depend on
ith component.
We distinguish between homogenous and heterogeneous case, if Σ depend on i we are
in the homogenous case, otherwise we are in the heterogeneous case. More details this
conditional Gaussian distribution can be found in Sudderth et al. [2004]. Before to
apply the Kruskal’s algorithm, we need to find an estimator of the mutual information
I(zu, yv) between each couple of variables in the mixed case. For a couple of variables
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(Zu, Yv) we can write the sample cell count, mean, and finally the variance, respectively,

{ni, ȳv, s(v)i }i=1,...,|Zu|. An estimator of mutual information, in the homogenous case
is give by:

Î(zu, yv) =
N

2
log
(s0
s

)
, (5)

where s0 =
∑N
k=1(y

(k)
v − ŷv)/N and s =

∑|Zu|
i=1 nisi/N . kzu,yv = |Zu|−1 are the degree

of freedom associated to the mutual information in the homogenous case.
While,i n the heterogeneous case an estimator of the mutual information is equal to

Î(zu, yv) =
N

2
log(s0)− 1

2

∑
i=1,...,|Zs|

ni log(si) (6)

with kzu,yv = 2(|Zu|−1) degrees of freedom. According Edwards et al. [2010] it is

useful to use either ÎAIC = Î(xi, xj) − 2kxi,xj
or ÎBIC = Î(xi, xj) − log(n)kxi,xj

,
where kxi,xj

are the degree of freedom, to avoid inclusion of links not supported by
the data. This aspect is suggested by the algorithm to find the best spanning tree,
because it stop when it has added the maximum number of edges. Furthermore the
algorithm avoid inside the tree a forbidden path. The definition of forbidden path
is a path between tow not adjacent discrete nodes which passes through continuous
nodes [de Abreu et al., 2009]. However, we can start from the best spanning tree and
determine the best strongly decomposable graphical model. A strongly decomposable
graphical model whose graph neither contains cycles of length more than three nor
forbidden path. Strongly decomposable model is an important class of model that can
be used to analyze mixed data. This class restrict the class of possible interaction
model which would be to huge to be explored [Abbruzzo and Mineo, 2015]. The graph
build to find the best spanning tree, can be see with a symmetric adjacency matrix
AM , with dimension V × V , in which each element takes value of 1 if an edge exists
between two of the V variables, and zero otherwise. Elements in the main diagonal
are zeros, since self-loops are not allowed.

3 A measure of dynamic stability as proxy for the
model drift

Considering the additional dimension of time t to the dataset of N observations and
p variables as a tensor X with dimension (N × p× T ), we are interested in modeling
the evolution of the joint probability P (X1, ..., Xp) over T time periods. In other
words, considering the graph G, with V = p vertices of the maximum spanning tree
with mutual information as express in Eq. 6 for each period t = 1, ..., T and the
corresponding T adjacency matrices AMt, the aim of the paper is to describe how the
graphs, as represented by their adjacency matrix AMt with t = 1, 2, ...T , change over
time.
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3.1 Transition Matrix Processes

In order to accomplish this task, we analyse the transition process which connects the
original adjacency matrix AM1 to any adjacency matrices in a subsequent period AMT .
We first introduce a function which maps any possible state of AMt into a transition
matrix TM = f(AMt) with t = 1, 2, 3, ..T , noted TMT , of dimension V ×V . Its generic
element wi,j registers all possible states of dependence of any couple of variable Vi and
Vj in T periods. Specifically, the function takes the following form:

TMt =

T∑
t=1

2(T−t)AMt (7)

For the sake of clarity, the following paragraph describes the process up to T = 3
and, thereafter, generalizes for T periods.

AM1 AM2 AM3 TM3

0 0 0 0
1 0 0 4
1 1 0 6
1 1 1 7
0 1 0 2
0 0 1 1
1 0 1 5
0 1 1 3

Table 1: All possible AMt values for two nodes i and j and the resulting wi,j in TMT

function for T = 3

As a starting point, in t = 1 the transition matrix TM1 is equal to the adjacency
matrix AMt, where wi,j;1 = 0 means that the i -node and j -node are not connected,
while when wi,j;1 = 1 means that the i -node and j -node are connected. At t = 2
existing links can persist or not, while non-existing links can appears or not. From
Eq. 7,

TM2 = 2×AM1 +AM2 (8)

Thus, TM2 maps any possible evolution of connections wi,j;2 with values {0, 1, 2, 3}.
When Vi and Vj are never connected,that is AMi,j;t=1 = AMi,j;t=2 = 0, then TMi,j;2 =
0. If Vi and Vj stay connected, that is AMi,j;t=1 = AMi,j;t=2 = 1, then wi,j;2 = 3. For
AMi,j changing from 0 in t = 1 to 1 in t = 0 and viceversa, we have wi,j;2 = 2 and
wi,j;2 = 1, respectively. At time t = 3 the possible evolution of AM can be described
has 8 levels, since it can be either 0 or one three times, given by:

TM3 = 22 ×AM1 + 21 ×AM2 + 20 ×AM3 (9)

Table 1 summarizes all possible combinations between two nodes of binary values
of the AMt in the three periods, mapped on TM3. Generally, for time T we can derive
Eq. 7:
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TM2 = 2×AM1 +AM2

TM3 = 2× TM1,2 +AM3

TM3 = 2× (2×AM1 +AM2) +AM3

TM3 = 22 ×AM1 + 21 ×AM2 + 20 ×AM3

TM3 =

T∑
t=1

2(3−t)AMt

...

TMT =

T∑
t=1

2(T−t)AMt

(10)

In general, the value of the generic element wi,j;t ∈ W ⊂ N of TMt can be consid-
ered as a discrete random variable with density f(wi,j;t)

f(wi,j;t) = P (Wi,j;t = wi,j;t), t = 2, ..., T (11)

Thus, wi,j;t represents the evolution of the connection between i -node with j -node
at time T , for each node V. The numerosity of the setWi,j;T = {0, 1, 2.., 2T −1} is 2T .

3.2 From the transition process to stability

The main idea of the paper is to consider as a proxy for the model drift the appearance
or disappearance of connections between nodes, that is changes of the conditional
independence structure of a dataset over time. For this reason, we are specifically
interested in two specific levels. The one describing the state of the word in which
a connection between two nodes never exists, that is AMi,j;t = 0 ∀ t and the one
describing a stable connection over time, that is AMi,j;t = 1 ∀ t. For the case T = 3,
the two cases map into wi,j;3 = 0 and wi,j;3 = 7, as showed in Table 1. In general for
a generic T , we have a stability of connections when connections are always absent,
with wi,j;T = 0, or always existing, with wi,j;T = 2T − 1. This transition process is a
partition process (Fig 1) of the set of V possible connections between the V nodes in

the undirected graph: V = V (V−1)
2 . Each transition in time t generates a subsequent

partition of V, one of whose will always contain elements for which wi,j;t = 0 or
always wi,j;t = 2t − 1. This transition processes is a special case of the Tail-free
processes [Jara and Hanson, 2011]. Consider a sequence T0 = {V}, T1 = {A0, A1},
T2 = {A00, A01, A1}, and so on, of measurable partitions of the V elements, obtained
by slitting every set in the preceding partition into two new sets for the node on left
and maintain the same node for the others.
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Partition of Transition Matrix Process

V

A0

A00

A000 A001

A01

A01

A1

A1

A1

Figure 1: Representation of Transition Matrix process with Tail-free processes

Specifically, at each time t we can partition the elements between stable and un-
stables ones. Fig. 1 shows a tree diagram that represents the distribution of mass
over time V = A0 ∪A1 = (A00 ∪A01)∪A10 of the elements at each time. A0 contains
elements for wi,j,2 = 0, 3, that is stable connections while A1, the remaining ones.
At the subsequent period, A0 is partitioned between A00, in which connection remain
stable with wi,j,3 = 0, 7,while A01 = 1, 6 and A1 the remaining ones.

Clearly, every partition is composed by the union of all possible evolution of the
connection given by the levels of W, and, by construction, there is always a partition
with elements wi,j;t = 0 and wi,j;t = 2t − 1, that containing stable links between the
i -node and the j -node until time t. We describe this process as a variable Yi,j;t with
values :

Yi,j;t =

{
yi,j;t = 1 if wi,j;t = 0 ∨ wi,j;t = 2t − 1

yi,j;t = 0 otherwise
, t = 2, ..., T (12)

Thus, Yi,j;t is indicate persistent status of dependence over time Yi,j;k = 1 or not

Yi,j;k = 0. Be Yt the vectorization of Yi,j;t, vec(Yi,j;t) = Yt with length V = V×(V−1)
2 ,

that is at each time we observe the stability of the V connection between each possible
pair of nodes. The structure of the transition matrix process depend by the spanning
forest at time t = 1, and for each period we have a partition of V given by µt =∑N
i=1 Yi,t with t = 1, ..., T − 1.
Therefore, we pool together the T − 1 periods and define Stability, the resulting

variable Y with length n = V × (T − 1). Stability is the cornerstone of our strategy
to estimate an empirical measure of model drift.

3.3 The stability index

In this section we introduce the Stability as a latent variable, which capture stability
of connection of a graph overtime.
Consider the following variable with same length i = 1, ..., n:
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• Y , Stability as defined above

• W = vec(TMi,j,t) that is the vectorization of the value wi,j;t of TM .

• T the corresponding time for each Yi.

We build a dataset with this variables and call it D. Note that by construction the
observations of D is exchangeable since we have built D respecting the temporal period
of the adjacent matrices, thus:

P (D1, ...,Dn) = P (Dσ(1), ...,Dσ(n))

for all n ≥ 1 and all permutations σ of (1, ..., n). In other words, the order of appear-
ance of the observation does not matter in terms of their joint distribution. Let θi the
probability of a realization of Yi = 1 of Stability with odds of stability θi

1−θi . Thus the
dichotomous variable Y can be described by a Bernoulli distribution with probability
of success θi:

Yi|θi
ind∼ Bern(θi), i = 1, .., n

Consider a logistic regression model1, which writes that the logit of the probability
θi, or the log of the its odd is a linear function of some predictor variables xi:

Logit(θi) = log

(
θi

1− θi

)
= β0 +

2t∑
j

βjxj,i (13)

where the j predictors are T , that is the time of the realization of Y and W , that
is the corresponding value. Since W has 2t levels, we regress 2t − 1 dummy variable
and keep W = 0 as the reference category:

log

(
θi

1− θi

)
= β0 + β1 × T +

2t−1∑
j

βjwj,i (14)

By construction, the intercept of this model β0 can be interpreted as the baseline
risk for Stability. A high β0 suggests that the underlying graphical model is not
changing much over time. βt captures the effect of the drift over time. It can be
shown that Stability is weakly decreasing over time and, thus β1 define the speed of
convergence towards the absence of stability. Finally, since the variable Y takes value 1
for Wi,j = (0, T 2−1), the coefficient βT 2−2, that is the coefficient for Wi,j = T 2−1 with
reference Wi,j = 0 captures which component of Stability originates in the persistence
of existing connections, rather than on the persistence of absence of connections.

The computation is straightforward: by rearranging the logistic regression Equation
13, it is possible to express the regression as a nonlinear equation for the probability

1The logistic regression seem the most natural way to describe this phenomenon. However, ac-
cording to the type of expected drift, we could employ other function, without loss of generalization.
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of success θi :

log

(
θi

1− θi

)
= β0 +

p∑
j

βjxj,i

θi
1− θi

= exp

β0 +

p∑
j

βjxj,i


θi =

exp
{
β0 +

∑p
j βjxj,i

}
1 + exp

{
β0 +

∑p
j βjxj,i

}
(15)

From the Equation 15 we can define the likelihood for the sequence of Yi over data set
of n subjects is then

(16)

p(D|β0,βp) =

n∏
i=1


 exp

{
β0 +

∑p
j βjxj,i

}
1 + exp

{
β0 +

∑p
j βjxj,i

}
yi

1−
exp

{
β0 +

∑p
j βjxj,i

}
1 + exp

{
β0 +

∑p
j βjxj,i

}
(1−yi)

where D is the dataset composed by Ti and the corresponding dummy variables gen-
erated by the level of Wi. The set of unknown parameters consists of β0, βT , ..., βT 2−2.
In general, any prior distribution can be used, depending on the available prior infor-
mation. The literature suggests the use of informative prior distributions if something
is known about the likely values of the unknown parameters, otherwise, the use of
non-informative prior if either little is known about the coefficient values or if one
wishes to see what the data themselves provide as inferences. In this case, we will use
the most common priors for logistic regression parameters:

βj ∼ N(µj , σ
2
j ) (17)

The most common choice for µ is zero with σ large enough to considered as non-
informative in the range from σ = 10 to σ = 100. The posterior distribution of βj is
extrapolated by combining likelihood Eq. 16, with the prior in Eq. 17:
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(18)

p(β0,βp|D, σj , µj) =

n∏
i=1


 exp

{
β0 +

∑p
j βjxj,i

}
1 + exp

{
β0 +

∑p
j βjxj,i

}
yi

1−
exp

{
β0 +

∑p
j βjxj,i

}
1 + exp

{
β0 +

∑p
j βjxj,i

}
(1−yi)

×
p∏
j=0

1√
2πσj

exp

{
−1

2

(
βj − µj
σj

)2
}

Now, we are not that much interested in the regression parameters βj , we want to find
the posterior probability distribution of the stability. Furthermore, this model gives
us the opportunity to compute the prediction of the stability over a specific time t. If
ỹi represents the number of similarity connection between n nodes at time t, then one
would be interested in the posterior predictive distribution of the fraction ỹi/n One
represents this predictive density of ỹi as:

f(Ỹi|y) =

∫
p(β0,βp|D, σj , µj)p(ỹi,X|β0,βp)dβ (19)

where p(β0,βp|D, σj , µj) is the posterior density of β and p(ỹi,X|β0,βp) is the Bi-
nomial sampling density of ỹi conditional of regression vector β = (β0,βp). Figure 2
represents the Bayesian graphical model of the stability, in particular, we can see all
process that describes from the adjacent matrix to the coefficients of the logistic, that
say us how changes the relationship between the variables over the time. Where we
have an adjacent matrix (AM) for each time t, for each pair sequential of the AM we
have a transition matrix TM . From the TM we can build the dataset to compute the
stability with n observation, where n = V × (T − 1), and three variables: W,T,Y.

4 Empirical experiment

As a test bed for this theoretical approach, we apply the stability index to the ELEC2
dataset [Harries, 1999], a benchmark for drift evaluation [Baena-Garcıa et al., 2006,
Kuncheva and Plumpton, 2008, among the many]. It holds information on the Aus-
tralian New South Wales (NSW) Electricity Market, containing 27552 records dated
from May 1996 to December 1998, each referring to a period of 30 minutes. These
records have 5 fields: a binary class label Y and four covariates X1, X2, X3 and X4

capturing different aspects of electricity demand and supply. In order to compute the
empirical evolution of the drift over time, we group observations in one week period.
Thus, for each week we have a panel dataset of 5 variables and 336 observation. Thus,
we have a tensor X with dimension (N × p × T ) with N = 336 records for a week,
p = 5 the variables as described above and T = 82 temporal periods.

10



Stability Process

AMt TMh
wi

ti

yi

µjσ2
j

θi

fii = 1, ..., n

h = 1, ..., T − 1

t = 1, ..., T

Figure 2: Bayesian Graphical Model of the stability

First, we realize a Graphical Models for each period t as the start point of our
strategy to compute the drift. Figure 3 portraits the graphs for some selected periods
and shows that the structure of the graph changes overtime. We thus expect a presence
of the drift.

Figure 4 depicts the evaluation of the drift overtime. The red dots are the percent-
age of stable relations among variables, that is the the sum of variable Yi,t in Equation
12, while the blue line is the estimation of the Equation 18 with its related confidence
interval as the gray contour.The figure highlights 6 periods of drift. The different
Stability values are reported in the table 4. In the table 3 are reported the magnitude
of the coefficients for the baseline β0 or intercept, β2T−1 for the W = 2T − 1 with
reference level W = 0 and for the time βtime.

Percent
of Stability

Evolution of the Drift
ty = 2 ty = 8 ty = 12 ty = 14 ty = 19 ty = 41∑N

i=1 Yi,t

N 1.0 0.8 0.6 0.5 0.2 0.1

Table 2: Approximation of the drift for selected period

5 Conclusion

This paper presented an algorithm to estimate the magnitude of a model drift in a
context of machine learning. While past solutions relies on how the classification errors
of a specific target variable changes over time, the present method tries to describe the
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Spanning Tree t = 1 Spanning Tree t = 8

Spanning Tree t = 12 Spanning Tree t = 14

Spanning Tree t = 19 Spanning Tree t = 41

Figure 3: Graph over the time

Regression Summary

Coefficients Estimation
β0 7.66
β2T−1 19.75
βTime -0.30

Table 3: Coefficients of logistic regression

12



Figure 4: Evolution of Stability

underlying hidden context with the use of graphical models and to estimate how the
observable context changes over time. Specifically, we provide not only an assessment
of the drift, which is independent from the model in use, but also an estimation of
the confidence interval of this prediction. These two characteristics combined together
allow to signal when a data driven process shows an excessive risk due to the drift
and needs to be retrained or re-calibrated. Possible applications are countless such as
predicting defaults, online recommendations systems, or spam filtering. More specific,
any prediction which involves human behaviour is prone to constant changes in the data
generating process, while biological and physical phenomena tend to be more stable
over time. Further lines of research in this area include a fine tuning for estimating
different type of drift, allowing for temporary drift, and testing the index on a wider
array of applications.
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