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Abstract: Stratifying prognosis following coronary bifurcation percutaneous coronary intervention
(PCI) is an unmet clinical need that may be fulfilled through the adoption of machine learning (ML)
algorithms to refine outcome predictions. We sought to develop an ML-based risk stratification
model built on clinical, anatomical, and procedural features to predict all-cause mortality following
contemporary bifurcation PCI. Multiple ML models to predict all-cause mortality were tested on
a cohort of 2393 patients (training, n = 1795; internal validation, n = 598) undergoing bifurcation
PCI with contemporary stents from the real-world RAIN registry. Twenty-five commonly available
patient-/lesion-related features were selected to train ML models. The best model was validated
in an external cohort of 1701 patients undergoing bifurcation PCI from the DUTCH PEERS and
BIO-RESORT trial cohorts. At ROC curves, the AUC for the prediction of 2-year mortality was 0.79
(0.74–0.83) in the overall population, 0.74 (0.62–0.85) at internal validation and 0.71 (0.62–0.79) at
external validation. Performance at risk ranking analysis, k-center cross-validation, and continual
learning confirmed the generalizability of the models, also available as an online interface. The
RAIN-ML prediction model represents the first tool combining clinical, anatomical, and procedural
features to predict all-cause mortality among patients undergoing contemporary bifurcation PCI with
reliable performance.

Keywords: percutaneous coronary intervention; coronary bifurcation; machine learning; prognosis

1. Introduction

The evolution of both stent technology and implantation techniques has translated
into improved clinical outcomes following percutaneous coronary intervention (PCI) in
complex anatomical and procedural settings, such as coronary bifurcation lesions [1–5].

However, real-life contemporary registries [6,7] still report a considerable risk of
adverse events in this high-risk subset, warranting precise prognostication.

Available risk scores to predict adverse events associated with PCI are based on
study populations with a small proportion of bifurcation lesions [8–11]. The external
performance of such models in this lesion setting remains modest [12]. The absence of
dedicated algorithms to predict long-term outcomes of PCI in coronary bifurcations clashes
with the abundant evidence demonstrating a significantly poorer short- and long-term
prognosis of these lesions compared to the overall PCI population, most likely as a result
of multifaceted differences in procedural technique, hemorheology and vessel healing
that makes PCI in bifurcations less forgiving than in other anatomical subsets [5,13–16].
While the risk stratification of ischemic endpoints is pivotal to informing patient manage-
ment and therapeutic choices, mortality prediction remains an important goal to improve
physician-patient communication, orientate follow-up and clinical decision making, and
allow comparative effectiveness research in order to guide procedural strategy and further
technical advances [17,18]. However, to date, there is no available predictive tool to predict
long-term mortality following bifurcation PCI.

In the clinical research field of risk prediction following PCI, available studies favored
either clinical [8] or anatomy/procedure [11,19] focused approaches to assess residual risk
rather than exploiting the multidimensional nature of risk, which may be better determined
by integrating these factors, especially in the bifurcation setting. Moreover, traditional
prognostic risk assessment is constructed upon a limited selection of variables based on a
priori assumptions, potentially omitting routinely assessed, powerful outcome predictors.
This potential limit of classical inferential statistics could be overcome by machine learning
(ML) that adopts a radically different approach, focusing on algorithmic representations
of data and their classification in order to establish and quantify the relationships among
variables [20]. Indeed, ML has emerged as a powerful approach to circumvent the limi-
tations of current methods by applying computational algorithms to large datasets with
numerous multiparametric variables, capturing high-dimensional, non-linear relationships
among clinical features to make data-driven outcome predictions [21]. The effectiveness of
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this strategy has been shown across several cardiovascular applications, where ML was
superior to validated traditional risk stratification tools, including the prediction of adverse
events among patients with coronary artery disease or heart failure undergoing cardiac
resynchronization therapy [22–24]. Thus, we developed an ML-based risk stratification
model integrating clinical, anatomical, and procedural features to predict mortality follow-
ing bifurcation PCI, utilizing a large international cohort of patients undergoing coronary
bifurcation PCI with contemporary stents [5]. The model was then validated in a large
population derived from two randomized trials of contemporary stents.

2. Materials and Methods
2.1. Study Population

The present study includes 4094 patients with a coronary bifurcation lesion treated
with contemporary, very thin drug-eluting stents. The ML-based model was developed
and internally validated using the RAIN (very thin stents for patients with left main or
bifurcation in real life, NCT03544294) registry population (defined as the discovery cohort
in the present study). RAIN is a multicenter retrospective registry including consecutive
patients undergoing unprotected left main or coronary bifurcation PCI from 2014 to 2017
at 23 institutions worldwide [5]. Patients undergoing ostial/mid-shaft left main PCI
or patients with incomplete clinical, angiographic, procedural, and outcome data were
excluded from this study. Thus, 2393 patients undergoing bifurcation PCI with very thin
strut stents comprised the final discovery cohort. The discovery cohort was randomly
divided into a training cohort (n = 1795) and an internal validation cohort (n = 598).

The external validation cohort for the ML-based model was obtained from the merged
DUTCH PEERS (Durable polymer-based stent Challenge of Promus ElemEnt versus Res-
olute integrity: TWENTE II) trial and BIO-RESORT trial patient cohorts [2,25,26]. More
specifically, 1701 patients with a coronary bifurcation lesion treated with very thin stents
(n = 465 from DUTCH-PEERS, n = 1236 from BIO-RESORT) with follow-up truncated at
2-years comprised the external validation cohort.

Detailed descriptions of the study cohorts are provided as Supplementary Materials.
Cardiovascular risk factors, clinical presentation, angiographic features, use of intravascular
imaging, bifurcation technique details, characteristics of the treated lesion, and implanted
stents were collected in a dedicated database. The primary endpoint of the study was
all-cause mortality at two years, while all-cause death at 30 days and at one year were
evaluated as secondary endpoints. The study complies with the Declaration of Helsinki,
all of the patients provided informed consent for inclusion in the registries, and local
institutional review board approval was obtained by each center.

2.2. Model Development

An overview of model development is provided in Figure 1A. The model was trained
and validated according to TRIPOD guidelines. The discovery cohort was randomly split
into a training (n = 1795) and an internal validation (n = 598) dataset. The Fisher score
was used for feature selection in the training cohort, and the variables with a coefficient
>0.75 were retained (Figure S1); the selected variables were used to develop predictive
models. A grid search including 5 different ML classifiers (linear discriminant analysis
[LDA], random forest [RF] regressor, support vector machine [SVM] with a linear or Gaus-
sian kernel, and isolation forest) and 3 algorithms for data imbalance correction (synthetic
minority over-sampling technique [SMOTE], SMOTE and nearest neighbors, and random
oversampling methods) was performed on the training cohort, generating 13 models for
mortality prediction after bifurcation PCI. Data imbalance correction algorithms were
applied to avoid the accuracy paradox (a falsely high accuracy due to over-prediction
of the most represented class); oversampling techniques impute simulated patient data
starting from real patients from the discovery cohort in the virtual space created by pa-
tient parameters to balance the number of patients with death occurrence and patients
without events during model training. LDA applies a linear combination approach; the
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predicted endpoint is derived from the following equation: “Endpoint (all-cause mortal-
ity) = LDAcoeff1*Variable1 + LDAcoeff2*Variable2 + . . . + LDAcoeffn*Variablen > tested
thresholds”. The coefficients are generated by the algorithm to maximize the separation
between groups (Death vs. No events), increasing precision estimates by variance reduc-
tion; variables represent patients’ features, selected as described above. The RF algorithm
generates a pre-defined set of classification trees (“n” classification trees) with a fixed
maximum number of splits for each tree. The predicted endpoint results from the out-
come of each classification tree of the forest; if at least “(n/2) + 1” of “n” trees of the RF
predicts death as an outcome, then this endpoint is assigned to the patient. Linear SVM
builds a classification model to assign patients to their outcome given a linear boundary,
while Gaussian SVM allows the patients to be divided using a non-linear boundary. The
model equations are: “SVMcoeff0 + SVMcoeff1*Variable1 + SVMcoeff2*variable2 + . . . . +
SVMcoeffn*Variablen”, and “SVMcoeff0 + SVMcoeff1*f(Variable1) + SVMcoeff2*f(variable2)
+ . . . . + SVMcoeffn*f(Variablen)”, respectively, where “f” is an exponential function co-
efficient. Isolation forest is a particular type of RF that uses unsupervised learning to
discriminate anomalies (in this case, patients with death occurrence) from normal data
(patients without events).

A random forest regressor algorithm with random oversampling correction yielded
the highest accuracy for the prediction of death occurrence, and it is referenced throughout
the manuscript as the RAIN-ML prediction model. A 10-fold cross-validation was used
to select and tune the hyper-parameters (number of classification trees and number of
splits) of the RAIN-ML model in the training cohort; the hyper-parameters reaching the
highest accuracy in outcome prediction were selected. Thereafter, its performance was
assessed by K-center cross-validation, risk stratification analysis, continual learning, and
both internal and external validation. Overfitting bias was defined as the difference between
the accuracy obtained during training and the accuracy during the internal or external
validation. The model was developed to predict 2-years all-cause mortality; its performance
was then assessed also at different time points (30-day and 1-year). A detailed description
of the model development is provided in the Supplementary Materials (Extended Methods
section).

A user-friendly online interface was designed to facilitate the application of the RAIN-
ML prediction model in clinical practice (available at https://rain.hpc4ai.it; accessed on 12
May 2022).

2.3. Statistical Analysis

Categorical variables were reported as count and percentage and analyzed by chi-
square test. Continuous variables were reported as median and interquartile ranges and
analyzed by Mann–Whitney U-test. The analysis of the receiver operating characteristic
(ROC) curves was performed to calculate the area under the curve (AUC) and to derive
the best cut-off by evaluation of the Youden Index (J = sensitivity + specificity − 1). A
two-tailed p-value of less than 0.05 was considered significant. Analyses were performed
by IBM SPSS Statistics 26 (IBM, New York, NY, USA), Python 3.5 (library, scikit-learn), and
GraphPad PRISM 8.0 (La Jolla, California, CA, USA).

https://rain.hpc4ai.it
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Figure 1. RAIN-ML model. The RAIN-ML prediction model was built in the discovery cohort (n = 
2393). (A) The discovery cohort was randomized in a training and in an internal validation cohort. 
The model was developed in the training cohort (n = 1795): 5 machine learning models (linear dis-
criminant analysis [LDA], random forest regressor [RF], support vector machine [SVM] with differ-
ent kernels, and isolation forest) and 3 algorithms for dataset imbalance correction (SMOTE, Syn-
thetic Minority Oversampling Technique, SMOTE & nearest neighbours, and random over-
sampling) have been evaluated; the best model was an RF with random oversampling algorithm 
(reported in bold). The model was then tested in the internal and external validation cohorts (n = 
598, n = 1701, respectively) and by K-center cross-validation, risk stratification analysis, and contin-
ual learning. (B) Radar chart reporting the 8 normalized best predictors associated with patient out-
come. (C) Representative classification tree from the RAIN-ML RF model. (D) Confusion matrix, 
real and predicted diagnosis (Death vs. No event), accuracy, sensitivity, and specificity for the 
RAIN-ML model at training, internal validation, and external validation. CKD, Chronic Kidney Dis-
ease; PCI, Percutaneous Coronary Intervention; EF, Ejection Fraction; ACS, Acute Coronary Syn-
drome. 

Figure 1. RAIN-ML model. The RAIN-ML prediction model was built in the discovery cohort
(n = 2393). (A) The discovery cohort was randomized in a training and in an internal validation
cohort. The model was developed in the training cohort (n = 1795): 5 machine learning models (linear
discriminant analysis [LDA], random forest regressor [RF], support vector machine [SVM] with differ-
ent kernels, and isolation forest) and 3 algorithms for dataset imbalance correction (SMOTE, Synthetic
Minority Oversampling Technique, SMOTE & nearest neighbours, and random oversampling) have
been evaluated; the best model was an RF with random oversampling algorithm (reported in bold).
The model was then tested in the internal and external validation cohorts (n = 598, n = 1701, respec-
tively) and by K-center cross-validation, risk stratification analysis, and continual learning. (B) Radar
chart reporting the 8 normalized best predictors associated with patient outcome. (C) Representative
classification tree from the RAIN-ML RF model. (D) Confusion matrix, real and predicted diagnosis
(Death vs. No event), accuracy, sensitivity, and specificity for the RAIN-ML model at training, internal
validation, and external validation. CKD, Chronic Kidney Disease; PCI, Percutaneous Coronary
Intervention; EF, Ejection Fraction; ACS, Acute Coronary Syndrome.
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3. Results
3.1. Characteristics of the Discovery Cohort

The discovery cohort (n = 2393) was used to develop and internally validate the RAIN-
ML prediction model. The baseline characteristics of the patients undergoing bifurcation
PCI (median age 69 [interquartile range, IQR: 61–77] years, male sex 76.0%) from the
discovery cohort are reported in Table S1, as stratified by death occurrence. The discovery
cohort was randomized into a training and an internal validation dataset to develop and test
the predictive models (Table 1). There were no differences between the training and internal
validation cohorts (Table S2). After a median follow-up of 274 (IQR 52–434) days, 137 (5.7%)
patients died (103 and 34 from the training and internal validation cohort, respectively;
30-day, 1-year, and 2-year mortalities were 1.2%, 3.7%, and 5.2%, respectively).

Table 1. Clinical, anatomical, procedural features and outcomes in the study cohorts.

Variable Training Cohort
(n = 1795)

Internal Validation
Cohort

(n = 598)

External Validation
Cohort

(n = 1701)

Patient parameters

Age (years) 70 [61; 77] 69 [61; 78] 65 [57; 72]
Sex (ref. male; n, %) 1379 (76.9) 440 (73.6) 1329 (78.1)

Hypertension (ref. yes; n, %) 1331 (74.2) 460 (76.9) 820 (48.2)
Hyperlipidemia (ref. yes; n, %) 1074 (59.8) 377 (63.0) N.A.

Diabetes (ref. yes; n, %) 605 (33.7) 200 (33.4) 319 (18.8)
Smoker

N.A.No (n, %) 872 (48.6) 291 (48.6)
Previous (n, %) 548 (30.5) 181 (30.3)
Current (n, %) 375 (20.9) 126 (21.1)

CKD (ref. GFR < 60 mL/min; n, %) 391 (21.8) 147 (24.6) 50 (2.9)
Previous PCI (ref. yes; n, %) 605 (33.7) 187 (31.3) 301 (17.7)

Previous CABG (ref. yes; n, %) 97 (5.4) 29 (4.8) 120 (7.1)
Previous MI (ref. yes; n, %) 554 (30.9) 183 (30.6) 339 (19.9)

EF at echo (%) 55 [55; 60] 55 [55; 65] 50 [50; 50] *
PCI indication
STEMI (n, %) 305 (17.0) 114 (19.1) 383 (22.5)

NSTEMI (n, %) 447 (24.9) 133 (22.2) 388 (22.8)
Unstable angina (n, %) 257 (14.3) 90 (15.1) 296 (17.4)

Stable angina (n, %) 440 (24.6) 147 (24.5) 634 (37.3)
Positive stress test (n, %) 227 (12.6) 82 (13.7) 0 (0.0)

Planned angiography (n, %) 119 (6.6) 32 (5.4) 0 (0.0)
ACS at presentation (ref. yes; n, %) 1007 (56.1) 337 (56.4) 1067 (62.7)

STEMI at presentation (ref. yes; n, %) 305 (17.0) 114 (91.1) 383 (22.5)
Kind of DAT (aspirin plus)

Clopidogrel (n, %) 1170 (65.2) 391 (65.4) 1131 (66.4)
Ticagrelor (n, %) 479 (26.7) 162 (27.1) 513 (30.2)
Prasugrel (n, %) 146 (8.1) 45 (7.5) 57 (3.4)

First lesion vessel
LM (n, %) 435 (24.2) 160 (26.8) 179 (10.5)

LAD (n, %) 876 (48.9) 296 (49.5) 1044 (61.5)
Cx/MO (n, %) 320 (17.8) 98 (16.4) 332 (19.5)

RCA (n, %) 133 (7.4) 33 (5.5) 142 (8.3)
RI (n, %) 31 (1.7) 11 (1.8) 4 (0.2)

Lesion localization
Ostial (n, %) 64 (3.6) 21 (3.5) 63 (3.7)

Proximal (n, %) 545 (30.4) 187 (31.3) 964 (56.7)
Middle (n, %) 642 (35.7) 209 (34.9) 401 (23.6)
Distal (n, %) 544 (30.3) 181 (30.3) 273 (16.0)

Type C lesion (ref. yes; n, %) 685 (38.2) 212 (35.5) N.A.
Severe calcification (ref. yes; n, %) 261 (14.5) 88 (14.7) 397 (23.3)

Diffuse disease (ref. yes; n, %) 700 (39.0) 238 (39.8) N.A.
Kind of bifurcation

Distal LM (n, %) 481 (26.8) 174 (29.1) 179 (10.5)
LAD/Diag (n, %) 839 (46.7) 284 (47.5) 1045 (61.5)

Cx/MO (n, %) 341 (19.0) 109 (18.2) 334 (19.6)
RCA/PL (n, %) 134 (7.5) 31 (5.2) 143 (8.4)

Medina class
1,1,1 (n, %) 605 (33.8) 205 (34.2) 378 (22.2)
1,1,0 (n, %) 587 (32.7) 198 (33.0) 640 (37.6)
1,0,1 (n, %) 174 (9.7) 47 (7.9) 85 (5.0)
0,1,1 (n, %) 87 (4.8) 32 (5.4) 80 (4.7)
1,0,0 (n, %) 158 (8.8) 41 (6.9) 119 (7.0)
0,1,0 (n, %) 92 (5.1) 47 (7.9) 258 (15.2)
0,0,1 (n, %) 92 (5.1) 28 (4.7) 141 (8.3)

Kind of strategy

Predilatation (ref.
yes; n, %)

Provisional (n, %) 1474 (82.1) 490 (81.9) 1447 (85.1)
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Table 1. Cont.

Variable Training Cohort
(n = 1795)

Internal Validation
Cohort

(n = 598)

External Validation
Cohort

(n = 1701)
Two stents (n, %) 321 (17.9) 108 (18.1) 254 (14.9)
Use of imaging

No (n, %) 1186 (66.1) 400 (66.9) 1648 (96.9)
IVUS (n, %) 586 (32.6) 194 (32.4) 36 (2.1)
OCT (n, %) 23 (1.3) 4 (0.7) 17 (1.0)

Predilatation (ref. yes; n, %) 1559 (86.9) 531 (88.8) 1375 (80.8)
Kind of balloon

Conventional (n, %) 1521 (97.5) 518 (97.5) 1666 (97.9)
Angiosculpt (n, %) 18 (1.2) 4 (0.8) 35 (2.1)

Scoring (n, %) 20 (1.5) 9 (1.7) 0 (0.0)
Rotablator (ref. yes; n, %) 106 (5.9) 38 (6.4) 25 (1.5)

Kind of stent on MB

N.A.

Resolute Onyx (n, %) 506 (28.6) 186 (31.3)
Xience Alpine (n, %) 454 (25.5) 136 (22.9)

Synergy (n, %) 374 (21.0) 131 (22.1)
Ultimaster (n, %) 165 (9.3) 50 (8.4)

Biomatrix alpha (n, %) 2 (0.1) 2 (0.3)
Promus (n, %) 276 (15.5) 89 (15.0)

MB lesion diameter (mm) 3.0 [2.8; 3.5] 3.0 [2.8; 3.5] N.A.
MB lesion length (mm) 22 [16; 28] 23 [16; 28] 15 [10; 22]
MB atmospheres (atm) 12 [12; 16] 14 [12; 16] N.A.

Stent on SB (ref. yes; n, %) 321 (17.9) 108 (18.1) 442 (26.0)
SB lesion diameter (mm) 2.3 [1.0; 2.8] 2.5 [1.0; 2.8] N.A.

SB lesion length (mm) 28 [20; 33] 28 [20; 33] N.A.
SB atmospheres (atm) 12 [10; 14] 12 [12; 14] N.A.

POT (ref. yes; n, %) 1384 (77.1) 447 (74.7) N.A.
ATM Post (atm) 20 [16; 22] 20 [16; 20] N.A.

Predilatation (ref.
yes; n, %)

Final kissing balloon (ref. yes; n, %) 746 (41.6) 248 (41.5) 366 (21.5)

Outcome

Death (ref. yes; n, %) 103 (5.7) 34 (5.7) 39 (2.3)
Median follow-up at the event

(days) 274 [61; 433] 253 [23; 458] 284 [65; 500]

Death within 30 days (ref. yes; n, %) 20 (1.1) 9 (1.5) 6 (0.4)
Death within 1 year (ref. yes; n, %) 68 (3.8) 21 (3.5) 22 (1.3)
Death within 2 years (ref. yes; n, %) 94 (5.2) 31 (5.2) 39 (2.3)

Patient and lesion parameters in the discovery cohort (n = 2393) after randomization into training (n = 1795)
and internal validation cohorts (n = 598), and in the external validation cohort (n = 1701). Variables are reported
as median [interquartile range], or absolute number (percentage, %), as appropriated. CKD, Chronic Kidney
Disease; PCI, Percutaneous Coronary Intervention; CABG, Coronary Artery Bypass Graft; MI, Myocardial
Infarction; EF, Ejection Fraction; STEMI, ST-segment Elevated Myocardial Infarction; NSTEMI, Non-ST-segment
Elevated Myocardial Infarction; ACS, Acute Coronary Syndrome; DAT, Double Antiaggregant Therapy; LM,
Left Main; LAD, Left Anterior Descending; Cx/MO, Circumflex/Marginal; RCA, Right Coronary Artery; RI,
Right Intermedius; Diag, Diagonal; PL, Posterior Left; IVUS, IntraVascular UltraSound; OCT, Optical Coherence
Tomography; MB, Main Branch; SB, Side Branch; POT, Proximal Optimization Technique. *For the external
validation cohort, EF was coded dichotomously and reported for each patient as a value of either “30%” or “50%”.

3.2. Development and Internal Validation of the RAIN-ML Prediction Model

Several patient and lesion-related parameters differed significantly between patients in
whom the all-cause death endpoint was or was not reached at 2-year follow-up (Table S1).
Features associated with all-cause mortality were selected by Fisher score (see Methods
and Extended Methods sections) in the training cohort. Of the 38 patient and lesion-related
parameters, 13 were excluded leading to a final set of 25 input variables (13 related to
patient history and clinical presentation, seven to coronary anatomy, and five to the PCI
procedure; Figure S1). Chronic kidney disease (CKD, defined as a glomerular filtration
rate < 60 mL/min/1.73 m2) was the best predictor of all-cause mortality, followed by the
indication for PCI, first lesion vessel, diabetes, diffuse coronary disease, left ventricular
ejection fraction (EF, %), kind of bifurcation, and age (Figure 1B).
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Among the 13 trained models, a random forest regressor algorithm with random
oversampling correction yielded the highest accuracy in predicting 2-years all-cause mor-
tality and was selected as the RAIN-ML prediction model (Table S3). A representative
classification tree of the random forest RAIN-ML model is shown in Figure 1C. After tuning
(Table S4), the RAIN-ML model displayed an accuracy of 81.1% at training (AUC 0.791; 95%
CI 0.742–0.840), and 79.8% at internal validation (AUC 0.768; 95% CI 0.669–0.868), with an
overfitting effect of 1.3% (Figure 1D). The sensitivity and specificity were 82.5/81.0% during
training and 67.6/80.5% during internal validation, with 85 of 103 and 23 of 34 patients
experiencing the correctly classified endpoint.

The performance of the RAIN-ML model in all-cause mortality prediction was assessed
at different time points: the model was developed to predict 2-year all-cause mortality as
the primary endpoint, and then its performance was also assessed at 30-days follow-up,
1-year follow-up, and including all events; Figure 2). After 1 year, the AUC was 0.777 (95%
CI 0.721–0.834) during training and 0.718 (95% CI 0.586–0.850) during internal validation
(Figure 2B). After 2 years, the AUC was 0.799 (95% CI 0.745–0.852) during training and
0.736 (95% CI 0.624–0.847) during internal validation (Figure 2C).

To further confirm the generalizability of the RAIN-ML prediction model, we applied
a K-center cross-validation approach to the discovery cohort (n = 2393). The analysis
confirmed an acceptable performance in each of the 23 participating institutions, with a
mean accuracy, sensitivity, and specificity of 75.3%, 60.6%, and 76.2%.

3.3. External Validation of the RAIN-ML Model

The patients from the external validation cohort were younger (65 [IQR 57–72] years),
with a lower prevalence of cardiovascular risk factors, prior myocardial infarction, and
coronary revascularizations compared to the discovery cohort (Table 1 and Table S5). At
external validation, 1312 of 1701 patients were correctly classified according to death
occurrence (Figure 1D), resulting in an accuracy of 77.1% (overfitting effect 4%). ROC
curve analysis confirmed a good performance at all the evaluated times of follow-up. After
2 years, 39 patients died (2.3%), and the AUC was 0.706 (95% CI 0.619–0.794; Figure 2C). The
predictive performance in the overall population (mixed discovery and external validation
cohort; n = 4094) was similar, with an AUC of 0.769 (95% CI 0.728–0.810), 0.726 (95%
CI 0.633–0.819), 0.758 (95% CI 0.707–0.810), and 0.786 (95% CI 0.743–0.830), respectively,
considering all events, or a follow up of 30 days, 1 or 2 years (Figure 2).

3.4. Risk Stratification Analysis

In the mixed discovery and external validation cohorts, increasing coefficients of the
RAIN-ML prediction model were directly correlated with the proportion of subjects with
death occurrence (Figure 3A–D). Patient stratification according to the RAIN-ML model
and the occurrence of death at follow-up are reported in Table S6. The lowest risk patients
with an ML model coefficient of 0.10–0.19 displayed an all-cause mortality risk of 0.3%,
0.9%, and 2.3%, after 30 days, 1-year, and 2-year follow-up, respectively. On the other
hand, the highest risk patients with an ML model coefficient of 0.90–1.00 displayed an
all-cause mortality risk of 8.1%, 23.7%, and 72.2%, respectively, after 30 days, 1-year, and
2-year follow-up. Using cut-offs derived by ROC curve analysis to optimize sensitivity
and specificity, we then stratified patients according to the predicted risk of all-cause
mortality. For the RAIN-ML prediction model, a coefficient of less than 0.21 identified a
low-risk subgroup of patients with a risk of 1.4% of all-cause mortality (35 of 2444 subjects),
patients with a coefficient ranging between 0.21 and 0.70 showed an intermediate risk of
4.5% (52 of 1166 subjects), while a coefficient higher than 0.70 identified a risk of 18.4%
(high-risk group; 89 of 484 subjects; Figure 3E). As compared to low risk, being categorized
as intermediate risk and high risk was associated with increased (3.2-fold and 13.1-fold,
respectively, both p < 0.001) mortality. The risk ranking approach (after the exclusion of
patients at intermediate risk) led to a sensitivity/specificity of 71.8/85.9% with an overall
accuracy of 85.3% when low-risk patients were compared to those classified as high risk.
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Figure 2. Predictive performance. Receiver operating characteristics curve to assess the area under
the curve and its 95% confidence interval (lower and upper limits) for the RAIN-ML prediction model
at training (n = 1795), internal (n = 598), external validation (n = 1701), and in the mixed cohort
(n = 4094). (A) Performance at 30-day follow-up; (B) Performance at 1-year follow-up; (C) Perfor-
mance at 2-year follow-up; (D) Performance considering all the events at follow-up.



J. Pers. Med. 2022, 12, 990 10 of 16

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 

The predictive performance in the overall population (mixed discovery and external val-
idation cohort; n = 4094) was similar, with an AUC of 0.769 (95% CI 0.728–0.810), 0.726 
(95% CI 0.633–0.819), 0.758 (95% CI 0.707–0.810), and 0.786 (95% CI 0.743–0.830), respec-
tively, considering all events, or a follow up of 30 days, 1 or 2 years (Figure 2). 

3.4. Risk Stratification Analysis 
In the mixed discovery and external validation cohorts, increasing coefficients of the 

RAIN-ML prediction model were directly correlated with the proportion of subjects with 
death occurrence (Figure 3A–D). Patient stratification according to the RAIN-ML model 
and the occurrence of death at follow-up are reported in Table S6. The lowest risk patients 
with an ML model coefficient of 0.10–0.19 displayed an all-cause mortality risk of 0.3%, 
0.9%, and 2.3%, after 30 days, 1-year, and 2-year follow-up, respectively. On the other 
hand, the highest risk patients with an ML model coefficient of 0.90–1.00 displayed an all-
cause mortality risk of 8.1%, 23.7%, and 72.2%, respectively, after 30 days, 1-year, and 2-
year follow-up. Using cut-offs derived by ROC curve analysis to optimize sensitivity and 
specificity, we then stratified patients according to the predicted risk of all-cause mortal-
ity. For the RAIN-ML prediction model, a coefficient of less than 0.21 identified a low-risk 
subgroup of patients with a risk of 1.4% of all-cause mortality (35 of 2444 subjects), pa-
tients with a coefficient ranging between 0.21 and 0.70 showed an intermediate risk of 
4.5% (52 of 1166 subjects), while a coefficient higher than 0.70 identified a risk of 18.4% 
(high-risk group; 89 of 484 subjects; Figure 3E). As compared to low risk, being catego-
rized as intermediate risk and high risk was associated with increased (3.2-fold and 13.1-
fold, respectively, both p < 0.001) mortality. The risk ranking approach (after the exclusion 
of patients at intermediate risk) led to a sensitivity/specificity of 71.8/85.9% with an overall 
accuracy of 85.3% when low-risk patients were compared to those classified as high risk. 

The predictive performances of the RAIN-ML model are summarized in Table S7. 

 
Figure 3. Stratification of all-cause mortality risk according to the RAIN-ML model. Patient distri-
bution and risk stratification analysis in the mixed discovery and external validation cohort (n = 4094).
(A–D) Histograms showing the proportion of patients (y-axis, %) stratified according to their outcome
(No Event, grey vs. Death, black); on the x-axis are reported the ML coefficients (for the RAIN-ML
prediction model). Patients were stratified considering death occurrence at different follow-ups
(30 days, 1 year, 2 years, and all events). (E) The table shows confusion matrix reporting risk strat-
ification analysis, sensitivity, and specificity, for the RAIN-ML prediction model * Sensitivity and
specificity were derived on a mixed cohort composed of the low- and high-risk groups, after exclusion
of patients at intermediate risk.

The predictive performances of the RAIN-ML model are summarized in Table S7.

4. Discussion

A reliable and clinically relevant patient risk stratification is a prerequisite for adequate
treatment selection, informed consent, and improved care, all key elements of modern
personalized medicine. Following this guiding principle, we developed and validated a
prediction model based on supervised machine learning algorithms to identify long-term
all-cause mortality in patients undergoing PCI on coronary bifurcations.

Our model was first developed using the largest available bifurcation PCI registry
reflective of contemporary practice, encompassing a wide range of very thin second-
generation drug-eluting stents and procedural techniques, applied to a variety of clinical
scenarios among all-comers at 23 institutions worldwide. Subsequently, our findings were
externally validated using a large bifurcation PCI population derived from two randomized
trials of second-generation drug-eluting stents [2,25,26].

The RAIN-ML model, correctly classifying 3245 of 4094 patients, showed a good
discriminative capability for all-cause mortality prediction, confirmed at both internal and
external validation, and by K-center cross-validation, with an accuracy of 81.1% during
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training and ranging between 77.1% and 79.8% during validation. According to the RAIN-
ML prediction model, following bifurcation PCI, 6% of the patients displayed a 1-year
mortality risk > 20%, while about 60% of them carried a 1-year mortality risk below 2%. The
adoption of the RAIN-ML model in contemporary practice may allow for the performance
of reliable and clinically relevant risk stratification to inform, personalize, and improve
care. An accurate risk stratification would allow, on the one hand, targeted strategies in
patients with the highest risk of death through a comprehensive evaluation and a tailored
approach and, on the other hand, less intensive follow-up for those at low risk.

Despite several differences in the characteristics of the study cohorts, external val-
idation yielded a good performance, suggesting good generalizability and robustness
of the RAIN-ML model applicability. In particular, the cohorts of the BIO-RESORT and
DUTCH-PEERS trials were composed of patients with a lower burden of cardiovascular
risk factors and previous cardiovascular events, translating into lower death rates at follow-
up as compared to the real-world clinical setting of the RAIN cohort. Moreover, in the
external validation cohorts, “left ventricular ejection fraction”, a powerful feature of the
RAIN-ML model, was coded dichotomically, and the variable “diffuse coronary disease”
was unavailable. The model performed well despite these missing data and potentially
limiting factors that might have affected model discrimination. Importantly, the model
performed well at internal validation, suggesting its applicability in the real-world setting
and its potential usefulness in daily clinical practice.

4.1. Rationale of the Study and Related Work

In this study, we focused on all-cause mortality as the primary endpoint to offer a
comprehensive evaluation of the biological risk of this patient subset, which displays unique
features as compared to the overall PCI population. Specifically, patients undergoing
bifurcation PCI have higher short- and long-term all-cause mortality as compared to
patients with non-bifurcation PCI [13,27], pointing to a peculiar association and possibly
causal link of bifurcation lesions with mortality. If, on the one hand, the presence of
bifurcation lesions is a potential proxy for a more severe atherosclerotic burden, on the
other hand, it may also represent a subset biologically more prone to adverse events due
to the peculiar rheological characteristics [14,15]. Moreover, specific procedural aspects
are associated with long-term mortality in bifurcation PCI, highlighting the importance,
beyond the lesion’s natural history, of PCI-related factors in determining the prognosis of
this population [5,16]. However, presently there is no predictive tool reflective of current
clinical practice available to predict long-term mortality following bifurcation PCI. For these
reasons, we focused on a multifaceted approach to residual risk, based on a comprehensive
evaluation of patient-, anatomy-, and procedure-related factors integrated by a machine
learning approach able to handle multidimensional information and produce data-driven
outcome prediction. A key advantage of this approach is that investigators do not generally
need to specify which potential predictor variables to consider and in which combinations.
A multidimensional approach may be highly relevant in this setting, which is characterized
by high anatomical and procedural complexity. Indeed, previous scores to predict adverse
events focusing on either patient-related or anatomy/procedure-related factors performed
only modestly in patients with bifurcation PCI [28]. Specifically, in a previous analysis of
the RAIN registry, the PCI complexity definition proposed by Giustino et al. [11] using
validated and guideline-endorsed criteria (reflecting anatomy/procedure-related factors)
was unable to discriminate post-procedural mortality (AUC 0.49), and the PARIS risk
score [8] (reflecting patient-related factors) displayed only a modest discrimination capacity
(AUC 0.65). More importantly, these tools showed potential for an accurate event prediction
when combined, thus suggesting that a comprehensive evaluation of clinical, anatomical,
and procedural features may better reflect residual risk [28].

Nevertheless, the aim of the RAIN-ML prediction model was not to guide bifurcation
PCI based on pre-procedural risk but rather to provide the patient and the treating physician
with information that also integrates procedural outcome predictors that may significantly
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modify the patient’s prognostic trajectory and, consequently, its clinical management and
follow-up.

4.2. Perspectives

When compared to traditional scores, ML-based models do not always improve
performance in terms of accuracy [29]. However, several advantages may become apparent
in the long term [30–37]. Specifically, compared to the static nature of traditional scores, the
performance of the RAIN-ML prediction model is dynamic, thanks to its evolutive learning
feature allowing the model to improve its classification algorithm by learning strategies at
the increased enrollment time and number of recruited patients.

An example of continual learning applied to the discovery cohort of the RAIN-ML
model is presented in Figure 4: the model was trained at each time point on an increasing
number of patients. From 3 months to 33 months of enrollment, the accuracy increased from
67.9% to 78.7% at validation. We thus will plan through a dedicated anonymized system
integrated with the freely available online interface (https://rain.hpc4ai.it; accessed on
12 May 2022) to prospectively endorse RAIN-ML training to constantly improve outcome
prediction. Moreover, future works should assess whether the integration of more granular
features, such as the characteristics of plaque vulnerability evaluated by intravascular
imaging, might have potentially improved outcome prediction. Similarly, features of
non-cardiovascular comorbidities, which may be relevant to the mortality endpoint in
this complex patient population, have not been evaluated in the present work: future
studies may integrate these features with the RAIN-ML model to possibly improve its
discriminative capability. Finally, prospective validation of the RAIN-ML model in an
external real-world population remains desirable.
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mance (left y-axes) with a continual learning strategy in the discovery cohort (n = 2393). Squares
indicates the number of patients (right y-axes) over the enrolment time (x-axes). (A) Learning simu-
lation for RAIN-ML prediction model at the increase in the enrollment time; 70% of the discovery
cohort is used for training (patients enrolled first), 30% for validation (last enrolled patients). Mean
and standard deviation are shown after 10 repetitions of the analysis. Accuracy at training: from
86.1% to 79.9%. Accuracy at validation: from 67.9% to 78.7%. (B) Accuracy, sensitivity, and specificity
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4.3. Limitations

This study has some limitations to be acknowledged. First, the RAIN registry was
retrospective. However, the good generalizability demonstrated in the external validation
cohort constituted by bifurcation PCI patients from two randomized trials is reassuring.
Second, the model performance in the cohorts and at different time points ranged from
moderate to good. As discussed, the integration of more granular technical and anatomical
features along with data on non-cardiovascular comorbidities might have potentially
improved outcome prediction. However, this would have limited the model adoption as
these features are not yet routinely assessed in everyday clinical practice.

Third, our ML model requires several input variables that might discourage its use.
However, all these variables are generally readily available, and the user-friendly online
interface makes risk estimation at the different evaluated time-points an easy and quick
procedure.

5. Conclusions

The RAIN-ML prediction model represents the first developed tool combining clinical,
anatomical, and procedural features through a machine learning approach to predict all-
cause mortality among patients undergoing contemporary coronary bifurcation PCI, with
robust performance and generalizability for mortality prediction across different clinical
scenarios and at different time points. The adoption of the RAIN-ML model has the
potential to improve doctor-to-patient communication, patient management, and clinical
research.
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