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Abstract: Assuming that resonances play a major role in the transfer of energy among the Fourier
modes, we apply the Wave Turbulence theory to describe the dynamics on nonlinear one-dimensional
chains. We consider α and β Fermi-Pasta-Ulam-Tsingou (FPUT) systems, and the discrete nonlinear
Klein-Gordon chain. We consider both the thermodynamic limit and the discrete regime and we
conjecture that all the systems thermalize for large times, and that the equipartition time scales as a
power-law of the strength of the nonlinearity, at least for a range of values of the nonlinear parameter.
We perform state of the art numerical simulations and show that the results are mostly consistent
with theoretical predictions. Some observed discrepancies are discussed. We suggest that the route
to thermalization, based on the presence of exact resonance, has universal features. Moreover, a by-
product of our analysis is the asymptotic integrability, up to four wave interactions, of the discrete
nonlinear Klein-Gordon chain.
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1. Introduction

The numerical experiment of Fermi, Pasta, Ulam and Tsingou (FPUT) in 1955 [18] has been of great
influence to physics in many respects. The idea of the experiment was related to the role of chaos on the
foundations of statistical mechanics. As chaotic systems are highly irregular, like stochastic ones, they
lose memory of initial conditions rapidly, in agreement with ergodic hypothesis. In this perspective,
the result of Poincaré about the non existence in Hamiltonian systems of first integrals of motion, other
than the energy or those due to a particular symmetry, seems positive. In his early theoretical activity,
Fermi generalised the result of Poincaré showing that in Hamiltonian systems with N > 2 degrees of
freedom no smooth surface can divide the phase space into two regions containing invariant sets. From
this correct result, Fermi deduced that non-integrable Hamiltonian systems are generically ergodic and,
even in absence of a rigorous proof, the ergodic problem was considered basically solved. However,
Fermi came back to the problem after the war with this numerical experiment, probably too much
absorbed by the development of the just born quantum mechanics in the meanwhile.

With one of the first available computers, they investigated the dynamics of a simple system of
springs and masses, where the force is only between nearest neighbours. The novelty consisted in
the methodology (it was one of the first numerical studies), but also in the fact that the force was not
linear. In the case of linear forces, it is known that the Hamiltonian of the system can be diagonalized,
the eigenstates are linear waves, and there is no interaction between them, namely the initial energy
distribution among the modes does not change over time. Fermi and collaborators wanted to test
whether introducing a small nonlinear term in the equations of motion (they used quadratic, cubic
and split-linear terms) would allow energy to spread among the linear modes, and attain equipartition,
confirming the earlier idea of Fermi that ergodic hypothesis can be considered true, giving a dynamical
justification to statistical mechanics. However, this was not the case and instead quasi-periodic motion
was observed or, at most, just a few modes close to the ones initially excited were active for the whole
simulation time.

The surprising results of FPUT generated a lot of interest, and sparked research that resulted in a
large body of work, as witnessed by an excellent review [23]. In particular, even though ergodicity
and chaos have been clarified to be largely irrelevant for statistical mechanics of macroscopic
systems, that is when N � 1 [30, 33, 35], the existence of solitons arise from a possible explanation of
the FPUT phenomenology [46]. Moreover, the FPUT experiment was the first to show that numerical
simulations are a powerful instrument to get physical insights of complex phenomena, and therefore
an indispensable tool for theoretical progress. In parallel, at the same time, it was shown by
mathematicians via the KAM theorem [25, 28, 31] that generic non-integrable Hamiltonian systems
are not ergodic for small perturbations. This fundamental result showed that the first guess by Fermi
was incorrect, even though in high dimensional systems (N > 2) the presence of KAM tori does not
preclude chaotic orbits because of the Arnold diffusion mechanism.

Despite these outstanding developments and considerable efforts, a clear and exhaustive explanation
of the FPUT problem is still lacking. In particular, while there is some consensus concerning the
metastability picture [3, 22], the precise mechanisms driving to equipartition on very long time-scales
is still elusive. One crucial point is that studies have focused on peculiar initial conditions and the
specific phenomena that emerge from them in the short or medium timescales. For example, in the
original experiments and in most of the successive studies the initial conditions consisted in exciting the
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low-frequency modes [2], which leads to the formation of coherent nonlinear structures, that is solitons,
at least in the short-time. Some attention has been focused also on high-frequency initial conditions
and this led to the study of breathers. However, it is difficult to understand all these peculiar directions
in one larger vision of the FPUT problem. The problem with generic initial conditions seems to be yet
more relevant from a general perspective, as recognised in an important recent contribution [8].

In the present work, we propose a more unifying picture; therefore, we seek universality traits
that can explain the dynamics in a way that is only weakly dependent on the particular microscopic
processes of the nonlinear chain in consideration. For this reason, we will consider generic initial
conditions that are randomly out of equilibrium, involving low and high modes. Moreover, we will
use tools and methods of the so-called Wave Turbulence (WT) theory. Originally introduced in fluid
dynamics, WT is a statistical mechanics theory of weakly interacting waves, and it has been recently
applied in relation to one dimensional anharmonic chains. In some sense, our approach is in line with
the recent results that have clearly showed that the α-FPUT chain is a perturbation of Toda lattice,
which is an integrable system [1]. Our main claim is that the irreversible transfer of energy in the
spectrum in a weakly nonlinear system is achieved by exact resonant wave-wave interactions. In the
context of the FPUT system, this idea was around already in the sixties, see [19]. Such resonances are
the base for the WT theory and are responsible for the phenomenon of thermalization.

In this paper we give an overview on resonances and WT in a comprehensive manner as well as
present new results regarding the limit of a large number of modes, providing some insight in the
fundamental mechanics of anharmonic chains. Our main result is the establishment of the power-law
scaling of the equipartition time Teq as a function of the nonlinearity strength (to be defined precisely
later). In varying the number of elements in the chain, we show the crossover between two different
scaling laws (lower exponent for large systems, that is the thermodynamic limit, steeper for smaller
ones).

We remark that some of the ideas presented here have partially appeared in a series of papers by the
same group of authors [5, 36, 41, 42]. All the simulations presented on the α and β FPUT problem are
performed with a different class of initial conditions with respect to our previous work. Moreover, the
α and β FPUT simulations for large values of the number of particles are completely new.

2. The models

We consider Hamiltonian systems of the form

H = Hlin + Hnlin, (2.1)

where Hlin is the integrable Hamiltonian, corresponding to a linear dispersive dynamics, and Hnonlin

that contains the anharmonicity of the potential. More in particular we will deal with the α, β-FPUT
and the discrete nonlinear Klein-Gordon (DNKG) (also called the φ4 ) systems, all characterized by
the quadratic Hamiltonian

Hlin =

N−1∑
j=0

1
2

p2
j +

1
2

(q j − q j+1)2 +
1
2

mq2
j , (2.2)

where N is the number of elements in the chain, q j is the j-th coordinate and p j its conjugate momentum
and m models the linear part of the site-potential. For the α and β-FPUT systems m = 0. The nonlinear
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part of the Hamiltonian for the three models is given by:

H(α)
nlin =

α

3

N−1∑
j=0

(q j − q j+1)3, H(β)
nlin =

β

4

N−1∑
j=0

(q j − q j+1)4, H(KG)
nlin =

β

4

N−1∑
j=0

q4
j . (2.3)

Without loss of generality, we use the same parameter β in front for nonlinearity in the DNKG and the
β-FPUT. We will use periodic boundary conditions. It should be noted, given an initial energy, that
there is a finite probability that the α-FPUT chain breaks up, especially for large N, since the nonlinear
part of the Hamiltonian is not bounded from below. While being an inherently ill-posed problem, it has
been shown that for low enough energies the α-FPUT chain can be stable for long times [7]. For the
other models, we restrict ourselves to the case where the quartic terms are positive, that is β > 0, so that
no blow-ups can occur. The parameter m is constrained to be greater than zero in the DNKG model,
and we can anticipate that it will play a secondary role since we are interested in the effects of the
nonlinear interactions. The presence of the quadratic finite difference terms in the linear Hamiltonian
is important, because without that the eigenstates of the linear system would not be waves.

Our approach is of perturbative nature, hence we need a way to quantify the nonlinearity strength.
In general, the linear and nonlinear parts of the Hamiltionan are not conserved separately, but only the
total Hamiltonian is. However, in typical situations where the nonlinear interactions are not too strong,
operatively, we define the following nondimensional parameter for the α-FPUT

εα =

∑N−1
j=0

∣∣∣h(α)
nlin( j)

∣∣∣
Hlin

2

∝ α2, (2.4)

and for the β-FPUT and DNKG

εβ,KG =
H(β,KG)

nlin

Hlin
∝ β. (2.5)

h(α)
nlin( j) is the nonlinear part of the Hamiltonian density of the j-th particle in the for α-FPUT. The

absolute value in Eq (2.4) is necessary because hnlin( j) can be negative and cancellations in the sum
would cause an incorrect accounting of the nonlinearity strength. The different scalings in Eqs (2.4)
and (2.5) are due to the different degrees of nonlinearity between the α-FPUT and the other two models.
Definitions (2.4) and (2.5) allows us to refine our statement that the nonlinearity must be small, that
is, we require that the parameters are much less than one. In general, they fluctuate over time, so
an appropriate averaging is needed to have a meaningful estimate of the nonlinearity strength. The
parameters are further discussed when presenting the numerical results.

2.1. Fourier space

The eigenstates of the quadratic Hamiltonian are waves, hence it is useful to work in Fourier space.
We define the direct and inverse discrete Fourier transform of the q j variables,

q̂k =
1
N

N−1∑
j=0

q je−i2πk j/N , q j =

N−1∑
k=0

q̂kei2πk j/N (2.6)

and similar definitions for p̂k. We will use the convention that 0 ≤ k < N, and we note q̂∗k = q̂N−k

and p̂∗k = p̂N−k. After this change of variables, and using
∑N−1

j=0 ei2π(k1−k2) j/N = Nδk1−k2 with δ(N)
k1+k2+... =

Mathematics in Engineering Volume 1, Issue 4, 672–698.



676

δ(k1 + k2 + ... mod N) that is the Kronecker’s delta modulo N, the linear part of the Hamiltonians can
be written as

Hlin

N
=

1
2

N−1∑
k=0

(
p̂2

k + ω2
k

∣∣∣q̂2
k

∣∣∣) , (2.7)

where we have defined the linear dispersion relation

ωk =

√
m + 4 sin2

(
π

k
N

)
(2.8)

(we recall that m = 0 for the FPUT models). The nonlinear part of the Hamiltonians couple the modes
and can be interpreted as n-wave collision terms. For the sake of brevity, we denote q̂ j = q̂k j and
δ(N)

1+2+... = δ(k1 + k2 + ... mod N). For the FPUT models we obtain

H(α)
nlin

N
=
α

3

N−1∑
k1,k2,k3=0

Ã1,2,3q̂1q̂2q̂3δ
(N)
1+2+3,

H(β)
nlin

N
=
β

4

N−1∑
k1,k2,k3,k4=0

B̃1,2,3,4q̂1q̂2q̂3q̂4δ
(N)
1+2+3+4, (2.9)

where the collision matrices Ã1,2,3 and B̃1,2,3 are (after symmetrization)

Ã1,2,3 = 8ieiπ(k1+k2+k3)/N sin
(
π

k1

N

)
sin

(
π

k2

N

)
sin

(
π

k3

N

)
, (2.10)

B̃1,2,3,4 = 16eiπ(k1+k2+k3+k4)/N sin
(
π

k1

N

)
sin

(
π

k2

N

)
sin

(
π

k3

N

)
sin

(
π

k4

N

)
. (2.11)

The complex exponential is relevant only when crossing Brillouin zones in the sum of wave numbers.
For the DNKG model, it turns out that the interaction matrix is equal to unity, hence the nonlinear part
of the Hamiltonian is simply

H(KG)
nlin

N
=
β

4

N−1∑
k1,k2,k3,k4=0

q̂1q̂2q̂3q̂4δ
(N)
1+2+3+4. (2.12)

From Eq (2.7), we can further simplify the problem using the normal modes representation,

ak =
1
√

2ωk
( p̂k − iωkq̂k) , a∗N−k =

1
√

2ωk
( p̂k + iωkq̂k) (2.13)

as the linear part of the Hamiltonians becomes simply

Hlin

N
=

N−1∑
j=0

ωk |ak|
2 , (2.14)

whereas the nonlinear terms in the FPUT models and in the DNKG become (after renaming N−ki = k′i
where needed and dropping the prime)

H(α)
nlin

N
= α

N−1∑
k1,k2,k3=0

[
1
3

(A1,2,3a1a2a3 + c.c.)δ(N)
1+2+3 + (A−1,2,3a∗1a2a3 + c.c.)δ(N)

1−2−3

]
, (2.15)
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H(β,KG)
nlin

N
=β

N−1∑
k1,k2,k3,k4=0

[
1
4

(B(β,KG)
1,2,3,4 a1a2a3a4 + c.c.)δ(N)

1+2+3+4 + (B(β,KG)
−1,2,3,4a∗1a2a3a4 + c.c.)δ(N)

1−2−3−4+

+
3
2

B(β,KG)
−1,−2,3,4a∗1a∗2a3a4δ

(N)
1+2−3−4

]
,

(2.16)

with the interaction matrices given by

A1,2,3 =
Ã1,2,3

23/2√ω1ω2ω3
, B(β)

1,2,3,4 =
B̃1,2,3,4

4
√
ω1ω2ω3ω4

, B(KG)
1,2,3,4 =

1
4
√
ω1ω2ω3ω4

. (2.17)

The nonlinear terms show that a nonlinearity in physical space turns into n-mode collision terms such
as a1a2a3δ

(N)
1+2−3. From the Hamilton equations, we can obtain the dynamical equations

ȧk = −i(1/N)δH/δa∗k, which read for the α-FPUT

iȧ1 = ω1a1 + α

N−1∑
k1,k2,k3=0

(
A−1,2,3a2a3δ

(N)
1−2−3 − 2A−3,1,2a∗2a3δ

(N)
1+2−3 − A1,2,3a∗2a∗3δ

(N)
1+2+3

)
(2.18)

and for the β-FPUT and DNKG

iȧ1 = ω1a1 + β

N−1∑
k1,k2,k3,k4=0

(
B(β,KG)
−1,2,3,4a2a3a4δ

(N)
1−2−3−4 + 3B(β,KG)

−1,−2,3,4a∗2a3a4δ
(N)
1+2−3−4+

+ B(β,KG)
−4,1,2,33a∗2a∗3a4δ

(N)
1+2+3−4 + B(β,KG)

1,2,3,4 a∗2a∗3a∗4δ
(N)
1+2+3+4

)
.

(2.19)

These types of Hamiltonians are the canonical form of Hamiltonians for system composed of
interacting particles or waves. If nonlinearity is small in the above mentioned sense, then there is a
well developed theory called Wave Turbulence theory, which is described in detail in [17, 38] and
briefly in the subsequent section.

The number of modes in the nonlinear terms defines the collision order, that is the α-FPUT
contains 3-wave collisions, while β-FPUT DNKG 4-wave collisions (we will see that the effective
collision order in the α-FPUT is also of the 4-wave type). The number of non-conjugate and
conjugate variables (which matches the number of positive vs. negative terms in the Kronecker’s
deltas) defines different collision processes, e.g., a1a2a3δ

(N)
1+2+3 is a 3 → 0 collision process

(annihilation), while a1a2a∗3a∗4δ
(N)
1+2−3−4 is a 2→ 2 collision process (scattering).

The WT approach starts from the equations of motion in the canonical variables ak. Note that so far
we have not taken any approximation; we only made the choice of using periodic boundary conditions.

3. Wave-Turbulence theory in a nutshell

When the number of modes is large, the microscopic dynamics given by Eqs (2.18) and (2.19) do
not provide much analytical insight and a statistical approach is needed. WT is the general statistical
theory valid in the weak-nonlinear regime. While the theory has been recently developed for higher-
order statistical observables [10, 16, 38], the core of the WT is the kinetic equation developed for the
prediction of the energy spectrum. The basic statistical observable is the two point correlator 〈a1a∗2〉
which, under the hypothesis of homogeneity, it is given by

〈a1a∗2〉 = n1δ(k1 − k2), (3.1)
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with nk = n(k, t) the wave actions spectral density, i.e., the Fourier transform of the autocorrelation
function of a(x, t). The average is over an ensemble of realizations of the system with the same initial
linear energy Hlin. Then, the energy spectrum that gives the mean energy per mode is

ek = ωknk. (3.2)

The evolution equation for the wave action spectral density can be obtained by various
techniques [10, 16, 17, 38–40]. The main issue is due to the fact that calculating the evolution of nk

from the equation of motion (2.18) or (2.19), one encounters the well know problem of the BBGKY
hierarchy [14], that is, the evolution of lower order correlators depends on higher order correlators
and a closure problem arises. Different approaches have been used in the past, see for example [40]
for a recent discussion. Accordingly to [39], a natural asymptotic closure arises because of the
smallness of higher order cummulants. A closure was also obtained with a quasi-gaussian
approximation which allowed to express higher cumulants in terms of lower ones [17]. It is sufficient
to make a random-phase approximation and to consider initial conditions which have also random
amplitudes [10, 12, 13, 16, 38]. The random phase assumption is generally deemed to be solid because
the linear waves decorrelate quickly even in the linear regime, hence it is expected that such property
still holds true in the weakly nonlinear regime, as corroborated by numerical experiments [9]. The
resulting kinetic equation can be obtained in the thermodynamic limit N → ∞. Generally also the
continuum limit is taken at the same time, and both physical x and momentum space k are continuous.

The main concept underneath the kinetic equation is the existence of conservation laws associated
to the wave scattering processes. Indeed, each nonlinear term in the Eqs (2.18) and (2.19) contains
an appropriate Kroneker δ function over wave numbers. Depending on the shape of the dispersion
relation, it may be possible to associate also a related conservation of energy. To be more specific, let
us consider for example the scattering processes,

k1 = k2 + k3, (3.3)

contained in Eq (2.18), then the main question is to verify if a similar relation holds for frequencies,
i.e.,

ω1 = ω2 + ω3. (3.4)

Eqs (3.3) and (3.4) define a resonant manifold in wave number space, whose existence, as anticipated,
depends only the analytical form of the dispersion curve ωk. If Eqs (3.3) and (3.4) are satisfied for
the same wave numbers, then we are dealing with a resonant process which, according to the kinetic
equation, will lead to an irreversible transfer of energy.

There are two main types of wave systems that are typically considered in the framework of WT:
The one dominated by three wave resonances and by four wave resonances (higher order are also
possible). Examples of the systems dominated by three wave resonances include capillary waves on
a surface of fluid and internal waves in the ocean. Examples of four wave resonant systems include
gravity waves on deep water, as well as the celebrated 2D-Nonlinear Schrödinger equation.

For capillary waves on a surface three wave resonant interactions are possible and a kinetic equation
can be derived [17]:

∂n1

∂t
=

∫ +∞

−∞

|A123|
2n1n2n3

(
1
n1
−

1
n2
−

1
n3

)
δ(k1 −k2 −k3)δ(ω1 −ω2 −ω3)dk23 + 2 {(k1 ↔ k2)} , (3.5)
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where k is a two dimensional wave vector, dk23 = dk2dk3 and {(k1 ↔ k2)} implies the same integral
with k1 and k2 exchanged. A123 is a matrix that can be derived directly from the dynamical equations
for capillary waves.

For surface gravity waves in deep water, it can be show that the leading order resonant process is
the four-wave one, characterized by the following resonant process:

k1 + k2 = k3 + k4

ω1 + ω2 = ω3 + ω4.
(3.6)

The appropriate kinetic equation describing such process is

∂n1

∂t
=

∫ +∞

−∞

|B1234|
2n1n2n3n4

(
1
n1

+
1
n2
−

1
n3
−

1
n4

)
δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)dk234.

(3.7)

Note that in both kinetic equation the interaction matrix is squared. The latter equation, with a
transport term, a forcing term due to the wind and term mimicking the dissipation, is integrated daily
for operationally ocean wave forecasting pourposes, see [27].

The kinetic Eqs (3.5) and (3.7) have a number of important properties. First of all, it can be shown
that both equations conserves the total energy and momentum:

E =

∫
ωknkdk, M =

∫
knkdk. (3.8)

The kinetic equation for four-wave interactions preserves also the number of waves (particles) in the
scattering:

N =

∫
nkdk. (3.9)

The kinetic Eq (3.7) is reminiscent of the Boltzmann equation for hard spheres [44] and there exists an
entropy function

S =

∫
dk log(nk) (3.10)

such that dS/dt ≥ 0 (the same entropy can be defined for the three wave kinetic equation). The
equilibrium is reached when dS/dt = 0, i.e., at the Rayleigh-Jeans distribution:

nk|equilibrium =
T

ωk + µ + u · k
, (3.11)

where T is some normalization constant linked to the total energy and µ is a chemical potential linked to
the conservation of the total number of particles (3.9) and it is zero in the case of a three wave process;
u is a constant vector associated to momentum conservation. We observe that in isotropic conditions u
= 0, and when µ = 0 then WT predicts a relaxation towards equipartition of energy. In this framework,
exact resonances bring the system to thermalization with a time-scale which is proportional to the
coupling coefficient in front of the collision integral.

Some remarks are in order.
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• Given a physical dispersive waves system, it has to be checked if exact resonances are allowed.
In some cases, only trivial collisions or processes which are not able to transfer energy are found.
In those cases, it is necessary to pursue the perturbative procedure and derive a kinetic equation
with higher-order processes to check if at some point resonances are found. This issue is related
to the dispersion relation, and in physical phenomena 3-, 4-, 5- and 6-wave processes have been
recognised [38]. In other cases, it can be shown that no exact resonances exist and therefore no
exchange of energy is possible, as rigorously shown to be the case for integrable systems [47].
Other systems may show some resonances which are not yet able to transfer energy among modes
because resonating waves belong to isolated clusters [6].
• The WT framework is an asymptotic theory valid in the weakly nonlinear regime. If the

nonlinearity is not small, different effects can play a role. In particular, the broadening of the
frequencies due to the finite value of the nonlinear coupling, may trigger some resonances which
were not present in the weak asymptotic limit, therefore allowing a more efficient transfer of
energy.

In the present paper, we estimate the time scale of equipartition; therefore, it is of major importance
to be able to derive a kinetic equation for our chain models. One should note that chains are intrinsically
discrete in physical space and, for a finite number of masses, also the Fourier space is discrete. This
issue makes the derivation of the kinetic equation not straightforward and, only in the thermodynamic
limit, a formal derivation of the kinetic equation is possible. We shall deal with these points in the
following section in some detail.

4. Resonance and effective Hamiltonians in the thermodynamic limit

We consider the thermodynamic limit which consists in taking the number of particles going to
infinity, N → ∞, keeping constant the mass linear density. The general linear dispersion relation
becomes

ωk =

√
m + 4 sin2

(
k
2

)
(4.1)

with k real in the interval 0 ≤ k < 2π. We consider interaction processes from X to Y waves for which
the following equations are satisfied:

k1 + k2 + ... + kX = kX+1 + kX+2... + kX+Y mod 2π,
ω1 + ω2 + ... + ωX = ωX+1 + ωX+2... + ωX+Y .

(4.2)

Our goal is to find resonances. Once the leading order resonance (lowest value of X and Y) has been
found, using tools from Hamiltonian mechanics, an effective Hamiltonian can be established and a
kinetic equation can be built.

The first trivial observation is that resonances of the type X to 0 are excluded for all three models;
this is because ωk ≥ 0, and it is equal to zero only for m = 0 for mode k = 0 which does not play any
role in the dynamics (for m = 0).

4.1. Three-wave resonant interactions in the α-FPUT

The leading order nonlinearity in the evolution equation for the α-FPUT is cubic; this implies three-
wave interactions of the form 2 → 1, 1 → 2 or 3 → 0 (the latter have been already excluded). It is
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Figure 1. The continuous resonant manifold for 2 → 2 resonances with m = 0, that is
ω1 +ω2 = ω1 +ω1+2−3. The trivial solutions k1 = k3 or k2 = k3 are not shown for clarity. The
pairing-off resonances, to be discussed later, of Eq (5.3) are highlighted with the red line.

known, see for example [5, 37], that the function fk = 2| sin(k/2)| is a subadditive function, i.e.,

| sin(k1/2)| + | sin(k2/2)| ≥ | sin((k1 + k2)/2)|. (4.3)

The equality holds only for k1 or k2 = l2π, with l ∈ Z; those wave numbers do not enter into the
dynamics. The subadditivity implies the non existence of three-wave resonant interactions for m = 0.

4.2. Four-wave resonant interactions in the α, β-FPUT and DNKG models

The β-FPUT and DNKG models include processes involving four waves, while, at first sight, the
α-FPUT model does not include them; however, as it will be shown in the following, the absence of
three-wave resonances allows for a perturbative approach on the α-FPUT model that leads to four and
higher order wave-wave interaction processes. In [5] it has been shown that resonant processes 3 →
1 or 1 → 3 are excluded for the FPUT models, i.e., in the case m = 0. In the Appendix we show
that this implies that also for the case of m , 0 there are no such processes. It turns out that in the
thermodynamic limit there exist, apart from trivial resonances k1 = k2 = k3 = k4 or k1 = k3, k2 = k4,
a nontirvial resonant manifold for interactions of the type 2 → 2 (see Figure 1 for a visualization of
the case m = 0, similar result apply for m > 0). The result has been obtained using the software
Mathematica Wolfram.

4.3. The effective Hamiltonian and the kinetic equation for α, β-FPUT and DNKG models

The effective Hamiltonian is obtained by removing all non resonant interactions from the original
one. As standard in Hamiltonian systems, this can be carried out through a canonical change of
variables (quasi-identity transformation), from the normal modes ak to some other variables bk, such
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that in the new variables the nonresonant terms are removed from the Hamiltonian, generating higher
order nonlinearities. It is worth stressing that one has to ensure the canonicity of the transformation, at
least up to the order of the new interaction terms that appear in the new variables. For example, to
remove all the three-wave terms in the α-FPUT model one uses

a1 = b1 +

∫ 2π

0

(
X(1)

1,2,3a2a3δ
(2π)
1−2−3 + X(2)

1,2,3a∗2a3δ
(2π)
1+2−3 + X(3)

1,2,3a∗2a∗3δ
(2π)
1+2+3

)
dk2dk3 + ..., (4.4)

where the integral corresponds to three integrals from 0 to 2π and not from −∞ to +∞ and δ2π account
for periodicity of the Fourier space; this is because of the discreteness of our system in physical space.
In Eq (4.4) we recognize terms equivalent to the nonlinear interactions in Eq (2.18). The matrices
X(i)

1,2,3 are determined by inserting Eq (4.4) into the α-FPUT Hamiltonian and by grouping the terms
corresponding to different wave processes. The transformation generates four-wave interactions (and
higher) and again one has to look for resonances and remove the non resonant ones. The calculation
leads to the following effective Hamiltonian for the α-FPUT

H(α) =

∫ 2π

0
ωk |bk|

2 dk +
α2

2

∫ 2π

0
B̄(α)

1,2,3,4b∗1b∗2b3b4δ
(2π)
1+2−3−4dk2dk3dk4 (4.5)

For the β-FPUT and for the DNKG a transformation is used to remove the 3→ 1, 1→ 3 and 4→ 0
terms, so that the effective Hamiltonian takes the form:

H(β,KG) =

∫ 2π

0
ωk |bk|

2 dk +
β

2

∫ 2π

0
B̄(β,KG)

1,2,3,4 b∗1b∗2b3b4δ
(2π)
1+2−3−4dk2dk3dk4. (4.6)

For an interested reader, a comprehensive procedure for removing three and four-wave interactions, is
presented in [15, 32, 34]. All three models are dynamically described by the Zakharov equation:

i
∂b1

∂t
= ω1b1 +

∫ 2π

0
W1,2,3,4b∗2b3b4δ

(2π)
1+2−3−4dk2dk3dk4, (4.7)

where the coefficient W1,2,3,4 takes different form, depending on the particular system under
consideration. Its actual analytical form is irrelevant in our discussion (except in those cases for
which the coefficient is zero on the resonant manifold [48, 49]); it is just sufficient to mention that it is
proportional to α2(A1,2,3)2 for the α-FPUT model and to βB(β,KG)

1,2,3,4 for the β-FPUT and DNKG models.
The Zakharov equation is the starting point for developing the statistical theory, i.e., the wave kinetic

equation, which takes the following form (see for details [10, 17, 38]):

∂n1

∂t
=

∫ 2π

0
dk2,3,4|W1,2,3,4|

2δ(2π)(k1+k2−k3−k4)δ(ω1+ω2−ω3−ω4)n1n2n3n4

(
1
n1

+
1
n2
−

1
n3
−

1
n4

)
. (4.8)

Note that, because of the δ(2π), instead of δ, the momentum is not conserved. The time scales, Teq, of
four wave resonant interaction, which lead to a thermalized state, are:

Teq ∝ α
−4 ∝ ε−2

α (4.9)

for the α-FPUT model and
Teq ∝ β

−2 ∝ ε−2
β,KG (4.10)
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for the DNKG and β-FPUT models.
We stress that the theory developed in this section is asymptotic and valid when the thermodynamic

limit and the weak non-linear limit are taken, in the given order. It is important to wonder if the scaling
laws obtained can be observed in actual finite-size systems and in particular in numerical experiments.
We expect a positive answer, at least for sufficient large N and small nonlinearity. Indeed, it is well
known that a small nonlinearity cause a frequency shift of the linear modes, and also a stocasticization
of the frequencies, or in other words, a broadening [11, 26]. It is reasonable to assume that resonances
do not need to be satisfied exactly in practical applications [29]. It is sufficient that broadening of
frequencies becomes comparable with the spacing of the frequencies, which decreases with the number
of modes, so that ωk becomes continuous in the thermodynamic limit. In this sense, the discrete
representation should converge to the continuous theory, and the higher the number of modes the
smaller the nonlinearity required to be in agreement with the theory. We shall check this argument
with extensive numerical simulations in the following.

5. Discrete exact resonances

In many interesting cases, the number of modes N is not too large, like for instance in the original
FPU numerical experiments. In this case, it is not possible to consider the system a good approximation
of the continuous one, and it has to be studied in its discrete form. As mentioned, one should recall
that in discrete systems the condition in the Kroneker δ over wave numbers should be intended mod N.

5.1. Four-wave resonant interactions, effective Hamiltonian and itegrability

The first problem is to find out if discrete exact resonances exist and at which order. The previous
discussion on three-wave resonance still applies here, hence three-wave resonances are always
excluded from the α-FPUT model. Concerning 4-wave resonances, the only process that is potentially
active for the dispersion relation (2.8) is the scattering process 2 → 2. These resonances have been
considered extensively in [5, 41, 42], and we will recap here the results. Obviously, even discrete
processes of the type X → X admit trivial resonances of the type

k1 + k2 = k1 + k2 mod N, ω1 + ω2 = ω1 + ω2 (5.1)

or k1 = k2 = k3 = k4. These processes, however, do not result into an exchange of energy, but rather
cause a frequency shift of the linear modes [38]. Because the system is periodic and the dispersion
relation is symmetric,

ωk = ωN−k = ω−k, (5.2)

it turns out that nontrivial resonances of the type 2 → 2 are possible with the crossing of Brillouin
zones (Umklapp scatterings). For N even, these resonances take the form

k1 + k2 = −k1 − k2 mod N, k1 + k2 = N/2, (5.3)

and are known as pairing-off resonances [5]. However, one can easily check that these resonances
are all disconnected, and they actually give rise to integrable dynamics [24, 43]. In [42] other special
resonances have been considered for some very specific values of m , 0, but they are limited in number
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and they do not appear in general to be able to cover the whole Fourier space (a detailed study should
be performed for such specific cases).

The effective integrable Hamiltonian, up to four-wave interactions for the α, β and DNKG equations
(with m different for those special values for which other resonant quartets exists), can be recast as
follows:

Hintegrable

N
=

∑
k

ωk|bk|
2 +

1
2

∑
k

Wk,k,k,k

(
|bk|

2
)2

+
∑
k1,k2

Wk1,k2,k1,k2 |bk1 |
2|bk2 |

2+

+

bN/4c∑
k=1

2Wk, N
2 −k,−k,− N

2 +k

(
b∗kb∗N

2 −k
b−kb− N

2 +k + c.c.
)
,

(5.4)

where c.c. denotes complex conjugate. The first three terms depend on the moduli of the amplitudes
only and underline an integrable dynamics (Birkhoff normal form); interestingly, the last term does not
break integrability (resonant Birkhoff normal form) [24,43], due to the relations (5.2) and the following
symmetries:

Wk1,k2,k1,k2 = Wk2,k1,k2,k1 = W−k1,k2,−k1,k2 ,

Wk1,k2,k1,k2 + W N
2 −k1,k2,

N
2 −k1,k2

−W−k1,k2,−k1,k2 −W− N
2 +k1,k2,−

N
2 +k1,k2

= 0 ,
(5.5)

valid for all admissible values of k1, k2. It can be proven that N − 1 functionally independent invariants
exist and are in involution (for α and β-FPUT see the proof of integrability in [24, 43]). We present
these invariants in a way that highlights the fact that the resonant quartets are disconnected:

For each k = 1, . . . , bN/4c, define an irreducible quartet as the set Qk =
{
bk, b−k, b N

2 −k, b− N
2 +k

}
. There

are four different modes in Qk, except for the degenerate case k = N/4, valid when N/4 is integer,
where QN/4 has two different modes. In the non-degenerate case, the following four invariants depend
on the four modes in Qk:

• 3 quadratic invariants:

|bk|
2 + |b−k|

2, |bk|
2 + |b− N

2 +k|
2, |b N

2 −k|
2 + |b− N

2 +k|
2.

• 1 quartic invariant:

2Wk, N
2 −k,−k,− N

2 +k

(
b∗kb∗N

2 −k
b−kb− N

2 +k + c.c.
)

+ Wk,k,k,k|bk|
2|b−k|

2 + W N
2 −k, N

2 −k, N
2 −k, N

2 −k|b N
2 −k|

2|b− N
2 +k|

2.

In the degenerate case, valid when N/4 is integer, we have QN/4 =
{
b N

4
, b− N

4

}
and the following two

invariants depend on the two modes in QN/4:

• 1 quadratic invariant:
|b N

4
|2 + |b− N

4
|2 .

• 1 quartic invariant:

W N
4 ,

N
4 ,−

N
4 ,−

N
4

[(
b∗N

4
b− N

4

)2
+ c.c.

]
+ W N

4 ,
N
4 ,

N
4 ,

N
4
|b N

4
|2|b− N

4
|2.
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Thus, in terms of counting, any irreducible quartet (degenerate or not) contributes with a number of
invariants that is equal to the number of modes in the quartet. Finally, notice that the mode b N

2
is not in

any irreducible quartet. In fact, the following is an invariant: |b N
2
|2.

It is thus easy to show by simple counting of the modes in the irreducible quartets that the system
has a total of N − 1 functionally independent invariants:

1. When N/4 is not integer, the irreducible quartets give a total of 4× bN/4c = N − 2 invariants. The
missing invariant is |b N

2
|2.

2. When N/4 is integer, we get a total of 4 × (N/4 − 1) = N − 4 invariants from the non-degenerate
quartets, plus 2 invariants from the degenerate quartet QN/4, totalling again N − 2 invariants. The
missing invariant is |b N

2
|2.

The result shows the asymptotic integrability of the DNKG model up to four wave interactions and
justifies the metastable states observed in numerical simulations previously performed [22].

5.2. Higher order resonances and break-down of integrability

For the discussion above, we see that the 3- and 4-wave collision terms cannot be effective in
bringing the system to equipartition. The isolated resonant quartets of the 4-wave integrable
Hamiltonian do not bring the system to a thermalized state and resonances at higher order are to be
investigated. For all discrete models considered here we have to perform an extra canonical change of
variables, from the normal modes bk to some other variables ck, such that in the new variables the
nonresonant terms are removed from the Hamiltonian. The question is now what is the leading order
resonant wave interaction. In [41], only power-of-two values of N were investigated (akin to the
original paper on the α-FPUT problem) and five-wave interactions were excluded on numerical
grounds. From a more recent investigation [5], it turned out that five-wave resonant interactions exist
only if N is divisible by 3 when m = 0. When N = 2a3b with a, b > 1, the resulting five-wave clusters
are connected and, in principle, a thermalized state might be reached, but this requires further study,
to be discussed in a subsequent paper.

Excluding such specific values of N, six-wave resonant interactions are the leading order processes:
It is always possible to find resonant six-wave tuples that are all interconnected and cover the whole
Fourier space. These resonances are due to the same symmetries of ωk and are of the form:

k1 + k2 + k3 = −k1 − k2 − k3 mod N, k1 + k2 + k3 = 0 mod N. (5.6)

Such resonances are valid for even and odd values of N. Additional resonances can be found both
in pairing-off form for even N, and recently also other resonances not in pairing-off form have been
found [5], but they are not necessarily to cover the whole Fourier space and we will not discuss them.
Another six-wave processes is theoretically possible, that is 4 → 2. Explicit formulas for 4 → 2
resonances have been found recently in [5], at least for N divisible by 3.

Excluding those specific values of N for which five wave interactions and 4 → 2 (or 4 → 2) exist,
the six wave interaction Hamiltonian for the α, β-FPUT and DNKG equation can be written as

H
N

=
Hintegrable

N
+

∑
1,2,3,4,5,6

Z1,2,3,4,5,6c1c2c3c∗4c∗5c∗6δ
(N
1+2+3−4−5−6, (5.7)

where δN is the Kronecker modulo N. The new matrix interaction can be calculated [34], but its precise
form is not relevant to our scope.
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5.3. The time scale of thermalization

The next step to be taken in order to evaluate the thermalisation time-scale should be the derivation
of the corresponding kinetic equation, as done in the continuous case. Unfortunately, the kinetic
equation can be rigorously derived only in the thermodynamic limit, that is N → ∞. Deriving a
discrete version (N finite) of the kinetic equation poses significant mathematical problems [16].

Here, we make the conjecture that the time scale for thermalization in the discrete dynamics
corresponding to the 6-wave interaction given by Eq (5.7) is at the leading order equivalent to the
corresponding continuous 6-wave process. We also assume that the integrable part of the dynamics
does not lead to any irreversible transfer of energy and the irreversible dynamics is fully contained in
the six-wave interaction term. Our conjecture is therefore tantamount to saying that the thermalisation
time-scale in the discrete case will be always inversely proportional to the square of the coupling
coefficient Z1,2,3,4,5,6 in the six by Eq (5.7), the latter coefficient being proportional to α4 in the
α-FPUT model and β2 in the β-FPUT and DNKG system. We get the following estimates for the
thermalisation time-scale for the α-FPUT model

Teq ∝ α
−8 ∝ ε−4

α (5.8)

and
Teq ∝ β

−4 ∝ ε−4
β,KG (5.9)

for the β-FPUT, DNKG models. The argument used in the discrete case is always made for the limit
of vanishing nonlinearity, where only exact resonances are important. However, the presence of a
small but finite nonlinearity is expected to broaden the frequencies. In the case of a small number of
modes N, that is in the present discrete case, an important difference with respect to the continuous
case is expected. Since the wave-space is discrete, a large enough nonlinearity may cause a sufficient
broadening to trigger resonances which are not in the exact-resonance manifolds and are found at a
lower-order than the exact ones. Therefore, we can expect that at small N and sufficient nonlinearity
the transfer of energy can be made through lower-order processes on smaller time-scales. A definite
answer on the role of quasi-resonance is beyond the scope of the present manuscript.

5.4. Final remarks on the Wave Turbulent approach

Concluding the theoretical analysis, the WT formalism applied to the different anharmonic chains
leads to consider the problem of transfer of energy as related to the collisions between waves in the
system. In this framework, the energy is redistributed among modes if resonances exist which connect
the whole wave-space. In the thermodynamic limit, the theory predicts that 4-wave processes are the
leading order process in all chains and this fact allows a transparent estimate of the equipartition time-
scale. In the case of a finite small N, we have considered the system intrinsically discrete and we
have searched for the exact discrete resonances. We have seen that in this case, 4-waves processes
are not able to transfer energy among modes, nor 5-wave collisions. The leading order is found to
be 6-waves. Although we are not able to write the corresponding discrete kinetic equation, we have
made the hypothesis that the same reasoning as in the continuous case can be followed, at least when
looking at statistical observables like equipartion time-scale. In this way, an estimate of this time-scale
is obtained always proportional to the square of the nonlinear coupling coefficient. Moreover, also
when N is small, nonlinear effects can be important. We expect that the broadening of the frequencies
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Figure 2. The initial distribution of ek for the DNKG model with m = 1, N = 64 (circles),
with E = 0.2 and N ' 0.129. The thermalized final state is shown with the squares, and it
approximately corresponds to a Rayleigh-Jeans distribution (3.11) with µ = 0.

due to nonlinearity can trigger lower-order process to transfer energy among modes when it becomes
of the same order of the spacing in the frequency space, which is inversely proportional to N. The
discrete case stands therefore on a less rigorous ground and the conjectures proposed can be only
verified numerically a posteriori.

6. Numerical simulations

We now present the result of numerical simulations in support of the previous discussion. The Eqs
(2.18) and (2.19) have been implemented in physical space, with a symplectic algorithm of the sixth
order [45]. It is important to use a high-order integration scheme that preserves accurately the energy
of the system, because simulation times are very long compared to the typical wave periods. The
initial random energy per mode, ek, was drawn from an uniform distribution, and then scaled in order
to obtain the desired total linear energy E and an initial number of particles N compatible with a final
relaxation distribution with µ = 0 in Eq (3.11), in order to better observe equipartition. Each wave
number has the same energy per mode ek for different members of the ensemble. The initial condition
is out of equilibrium. As an example, we show the initial distribution of ek for the simulations of the
DNKG system with N = 64 in Figure 2, together with its final thermalized state. The linear energy
E and the wave action N change only for one part in 104 across the whole simulation time, being
quasi-conserved quantities.

Each realization in the ensemble shares the same initial energy per mode, but phases are
randomized. This scheme of initialization ensures that all the realization share the same initial linear
energy. The time step was set to 0.1 in all simulations, and it was checked that from beginning to the
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end of the simulation the total energy is conserved up to one part in 107. The computation is very easy
to parallelize, since ensemble averages need to be computed. For this reason we implemented the
code on GPU hardware, which is powerful when the code can be parallelized.

The parameter α and β are chosen in such a way that the nonlinear energy is small compared to the
linear one and the parameters εα and εβ,KG are small. We will present the results of Teq as a function of
εα and εβ,KG.

In our numerical simulations we monitor the approach to equipartition using the entropy

S ′WT = −

N−1∑
k=0

log(e′k), (6.1)

where

ek = ωk〈|ak|
2〉 and E = Hlin =

N−1∑
k=0

ek. (6.2)

Such entropy is a discretized version of Eq (3.10) and has the useful property that at equipartition then
S ′WT = 0 and it is greater than zero in any other state. This expression preserves the monotonicity of
the WT entropy with an inverted sign (dS ′WT/dt ≤ 0, S ′WT = 0 at equipartition).

In numerical simulations, the entropy shows some fluctuations and never reaches exactly zero,
because the simulation time is finite, but most importantly because the ensemble size is finite. In the
following, we will determine Teq looking at the time when the entropy crosses a threshold value from
above. The selection of the threshold depends on the ensemble size and the number of particles, but it
does not depend on the degree of nonlinearity. Generally we chose a value of S ′WT two orders of
magnitude smaller than that of the initial conditions.

6.1. Small number of particles, discrete resonances

We first present the results on the case of a limited number of particles, N = 64, so that discrete
resonances need to be considered. To recap, we expect for the α-FPUT system the scaling

Teq ∝ α
−8 ∝ ε−4

α (6.3)

and for β-FPUT and DNKG systems the scaling

Teq ∝ β
−4 ∝ ε−4

β,KG. (6.4)

We show the results of the simulations for N = 64 in Figure 3. A line obtained from a fitting procedure
has also been included. We see a good alignment with the expected power-laws for all the three models.
We chose m = 1 in the DNKG model arbitrarily: In [42] it is argued that since the resonances in the
discrete case do not depend on m, then in the scope of the thermalization dynamics the value of m is
not relevant. However, we should add here a comment for the limit of m very small. In such cases, the
contribute to Hnlin increases for the low frequency modes. On the other hand, for the FPUT systems
the nonlinearity depends on a power of the finite differences, which are approximately proportional
to k, hence the contribute to the nonlinear part of the Hamiltonians for modes with small k does not
grow. As a consequence, in the case of the DNKG system with m = 0, a complete thermalization of
the lower modes would invalid the weak-nonlinear assumption, because the nonlinearity would be too
high. What is observed actually (see Figure 4) is a partial thermalization of the system, with the lower
modes stationary at a lower energy than equipartition.
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Figure 3. Teq as a function of ε for the α, β-FPUT and DNKG (m = 1) systems with N = 64.
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Figure 4. The equilibrium linear energy of the DNKG model with N = 64, m = 0, E = 1.
The modes close to k = 0 do not thermalize as the other modes, because their contribute to
Hnlin is significantly higher than the other modes.

6.2. Large number of particles, continuous resonances

We now present the results of numerical simulations for the continuous resonance manifold. The
expected results are

Teq ∝ α
−4 ∝ ε−2

α (6.5)

for the α-FPUT system, and
Teq ∝ β

−2 ∝ ε−2
β,KG (6.6)

for β-FPUT and DNKG systems. The number of particles and the strength of the nonlinearity necessary
to observe the continuous resonances are not something predicted by our treatment. However, estimates
of the frequency broadening are available in [36,38], and they can be compared to the typical frequency
spacing for a fixed number of particles. We point out that in general a higher value for m in Eq (2.8)
makes the frequency gaps smaller among modes, hence the DNKG model in general requires a small
number of particles to observe the continuous resonances.

In Figure 5 we show the results for simulations with N = 1024, again with m = 1 for the DNKG
system. The figure highlight a reasonable agreement between numerics and the theoretical predictions.
A discussion of the numerical results is reported hereafter.

7. Discussion and relation to other results in the literature

Before entering in the discussion, we summarise our numerical results here below:
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Figure 5. Teq as a function of ε for the α, β-FPUT and DNKG (m = 1) systems with
N = 1024.
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Thermodynamic limit:
WT prediction: ν = −2
DNKG: ν = −1.97 ± 0.04
β-FPUT: ν = −2.00 ± 0.08
α-FPUT: ν = −2.49 ± 0.02

Discrete regime limit:
WT prediction ν = −4
DNKG: ν = −3.79 ± 0.02
β-FPUT: ν = −3.72 ± 0.07
α-FPUT: ν = −3.84 ± 0.19

7.1. Discussion on the Thermodynamic limit

We mention that the formal derivation of the Wave Kinetic equation is made by taking the large
box limit (N → ∞) and then the small nonlinearity assumption is made. By looking at the above
fitting numbers, for the DNKG and β-FPUT systems the agreement with the prediction from WT
theory is remarkable, despite the fact that the simulations are done for large but finite N. Any
numerical simulation, by definition, is performed with finite N. In this respect we recall that, besides
transferring energy, two are the main effects of nonlinearity: (i) nonlinear shift of the frequencies and
(ii) broadening of the frequencies [36]. If the broadening is large enough, then two adjacent
frequencies can be connected and the system can be considered as continuous (even if the simulation
is performed with a finite number of masses). The continuous limit assumed in the Wave Kinetic
equation is therefore achieved numerically, with finite N, with a subtle balance between the Fourier
spacing (which is proportional to 1/N) and the broadening.

The correct recipe to be used in numerical simulations is still not fully understood theoretically;
however, results show clearly that, for a given (large) N, if the nonlinearity is too small, then the
discrete effects (lack of four-wave resonant interactions) may start taking place and consequently
slopes steeper than predicted are observed. In our DNKG and β-FPUT simulations discussed in the
manuscript, a proper balance between Fourier spacing and broadening is achieved. For the α-FPUT
system, unfortunately the thermodynamic limit was never reached in our simulations. The reason is
that the range in which simulations can be performed in the α-FPUT system corresponds to very weak
nonlinearity, for which discrete effects start dominating. For larger nonlinearity (and large N), the
probability of a blowup becomes very large [7], making it impossible to run simulations. In practice,
the α-FPUT system would need a higher level of nonlinearity in order to show the expected scaling
due to the continuous resonant manifold. More specifically, for N = 1024, the α-FPUT system starts
showing very often blowups beyond ε ' 0.03, making it difficult to obtain the ensemble averages that
we use in our treatment. The thermodynamic limit is very difficult to reach in the α-FPUT and this is
why a steeper slope is observed. One more thing should be considered: in order to derive the Wave
Kinetic Equation, a canonical transformation that removes the three wave nonresonant interaction is
performed. The convergence of such transformation is unknown in the thermodynamic limit. Note
that for fixed N, if a simulation of the DNKG or β-FPUT would have been carried out for weaker
nonlinearity, a steeper power law would have been observed because of discreteness and possible
higher order effects.

In [3] the authors perform a large number of simulations mainly with the α+βmodel. For this model,
our WT prediction for the equipartition time is 1/ε2 when β , βT ; note that our ε is proportional to β.
The result obtained in their simulation is 1/ε2.25, which is definitely not far from the WT prediction.
We may attribute this behaviour to an effect of discreteness in their simulations at low energies. As
mentioned before, for a given value of N, as the nonlinearity becomes small, the effect of discreteness
starts emerging and this leads to a deviation form the WT prediction. Interestingly, the WT theory
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is able to predict the slopes shown in Figure 5 of [3]: For β = βT , γ = γT and δ , δT (γ and δ

are the coefficients of higher order interactions in the one dimensional chains and the subscript T
corresponds to the Toda lattice coefficients) of the the prediction in the thermodynamic limit from WT
theory would be 1/ε4 (it is a simple and straightforward calculation to show this). The physical reason
is that for those parameters the first nontrivial resonant interaction is the six-wave one (the coefficient
in the collision integral calculated on the resonant manifold would be zero for lower-order resonances,
namely five-wave and four-wave resonances). Numerical simulations in [3] show a slope of −3.95 and
−3.97, which are very close to −4, the prediction from WT theory. For β = βT and γ , γT then it is
easy to show that the first nontrivial interactions are the five-wave interactions which, according to our
theory, give a slope of −3. Numerical simulations show −2.98 and −3.05. We think that the agreement
of our WT theory prediction with the numerical results provided in [3] is not a coincidence.

We also remark that in WT theory the time of thermalization is estimated from the kinetic equation
using a dimensional argument; this implies that the collision integral should be of order one and the
predicted time scale would then given by the power of the small parameter ε in front of the integral.
When β ' βT , the four-wave collision integral is not of order one (for β = βT it is actually zero).
Interestingly, for β � βT the prediction of our theory is 1/β2, exactly what is observed in the
simulations [3] (note that our small parameter ε is proportional to β).

At about the same time of the submission of the present manuscript, two paper have been submitted
in the ArXiv, see [20, 21]. Those authors perform similar simulations to ours but including other
models. Their results are consistent with ours. As in our case, some deviations from WT are observed
for α-FPUT and for very low nonlinearity in the β-FPUT.

Concluding this part on the thermodynamic limit, we wish to stress that, despite not being fully
rigorous, the Wave Turbulence theory offers a very good tool to predict the thermalization time scale
in the broad regime consisting of the combination of weak nonlinearity and large-box limit, and its
predictions apply to several results obtained from numerical simulations from different independent
groups; the region of applicability of the theory (for example in terms of parameter space,
discreteness, etc.) is still unclear and should be further investigated, both phenomenologically and
rigorously. Further work should be performed for the α-FPUT which, apart from blowups, requires a
canonical transformation before applying the WT theory. This could be problematic in the limit of
small wave numbers.

7.2. Discussion on the discrete limit with finite N

While in the thermodynamic limit the boundary conditions should not matter, when N is not so
large, boundary conditions may play a role. We must make clear from the beginning that in [3]
and [4] the authors studied the FPUT system with fixed ends, i.e., in the case where all resonances are
trivial, see [43]. In contrast, the FPUT system we study has nontrivial 4-wave resonances and 6-wave
resonances: although in our case the resulting 4-wave resonant clusters of interacting modes are
isolated and consequently lead to integrable systems, the resulting 6-wave resonant clusters are not
isolated. They are typically connected via 4 common modes in the case of N even. This connectivity
generically produces non-integrable systems. Therefore, from the point of view of energy transfers
across Fourier modes in normal-form coordinates, the system we consider is much more active and
thus one expects to see differences with respect to the system studied in [3, 4]. At the same time, it is
difficult to assess quantitatively these differences, because of a lack of a rigorous theoretical
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framework. Our scaling prediction for the time to equipartition relies on dimensional analysis of the
kinetic equation, whose hypotheses do not necessarily hold in the discrete case.
Having made that clarification we now proceed to discuss our rationale. First, as mentioned
previously, in the discrete case the hypotheses leading to the kinetic equation do not hold and
therefore any prediction based on the kinetic equation is a conjecture. Second (not a conjecture), as
mentioned above, in the discrete case 4-wave resonant interactions exist and are of umklapped type;
they form isolated groups so these interactions are not efficient for thermalization. Therefore, for any
specific value of N one applies formally a transformation of variables to normal-form coordinates,
where the nonresonant terms are removed to obtain a discrete system containing 6-wave interactions
(note that at this level, a thermodynamic limit would not make sense, because in such a limit, 4-wave
interactions would dominate).
The normal-form coordinates satisfy a system of evolution equations where the only energy-transfer
terms arise from 4-wave resonant interactions (forming isolated groups of 4 modes each) and 6-wave
resonant interactions (which connect those isolated groups). With such a discrete system we may only
conjecture that the time scale of interactions would be given by the square of the coefficient in front of
the highest-order nonlinearity in the system (the prediction is made on spectrum and not amplitudes)
This brings a scaling of −4. Now, numerical simulations show less steep values than predicted.
In [3, 4] for the discrete case a stretched exponential is considered. Based on this, we tried to fit our
data with a stretched exponential and the fitting parameter is somehow consistent with the one
obtained in [4]. More specifically, we can fit a stretched exponential if we include in the fit large
values of nonlinearity. In contrast, when we restricted the fit to small values of nonlinearity, a power
law seemed to be more appropriate. We do not exclude that for lower nonlinearity, other effects, such
as for example higher order resonances [20], may take place, changing the behaviour of the curve.
Despite the fact that our predictions seem plausible and not far from numerics, at the moment it is
very difficult to make a final statement on the scaling of these discrete weakly nonlinear systems and
further work is definitely needed.

8. Conclusions

In this work, we have presented recent results on the dynamics of nonlinear chains, focusing on the
thermalisation time. We have proposed to encompass the behaviour of all systems of this kind within
the Wave Turbulence framework. In this context, the universal mechanism invoked to lead the systems
to equipartition is the resonance among different modes, at least when generic initial conditions are
considered. The scaling of the thermalization time Teq as a function of the nonlinearity level of the
system is obtained from the theory. The results show curves that can be fitted by power-laws for all
the cases considered, with an exponent dependent on the order of the active resonances in the system.
Although the point of view is rather different, present results are not in contradiction with the most
recent and accurate estimates obtained also for particular low-wavenumber initial conditions [3]. Since
the resonant manifold is significantly different in the discrete and thermodynamic N → ∞ limit, we
have considered the two cases separately, and they lead to two different scalings. Notably, large-size
chains reach equipartition faster.

Our aim in this paper has been to present the results anticipated in works [36, 41, 42] in an unified
manner to underline how our approach can be systematic, rather than dependent on the particular
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features of the systems. In the thermodynamic limit, we have shown that there exists a resonant
manifold of 2 → 2 waves. We have analysed numerically the thermodynamic limit N → ∞ for the α
and β-FPUT systems, as done previously for the DNKG chain. In the discrete case, for N a power of
two (which excludes the existence of five-wave resonant interactions [5]), we have extensively
verified that, for all the considered systems, the leading order interaction consists of six wave
interactions. All the results seem to indicate a universal route to thermalization predicted. We have
also shown that, besides the α and β-FPUT systems, also the DNKG equation is asymptotically
integrable, if the expansion is truncated at four wave interactions.
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Appendix

Let’s define the function fk = 2| sin(k/2)| as the linear dispersion relation for the α and β- FPUT
models which corresponds to the general dispersion relation, ωk, when m = 0. In [5] it has been shown
that all processes X →1 are forbidden for the dispersion relation fk.

fk1 + fk2 + ... + fkX ≥ fk1+k2+...+kX , (8.1)

where the equality holds only for wave numbers equal to 2lπ, with l ∈ Z. Here we show that

ωk1 + ωk2 + ... + ωkX > ωk1+k2+...+kX (8.2)
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for any value of m >0. In order to show it, we square (8.2) and, after re-arranging, we get:

F(k1, k2, .., kX; m) = (X − 2)m + f 2
k1

+ f 2
k2

+ .. + f 2
kX
− f 2

k1+k2+..+kX
+

X∑
i=1

ωki

X∑
j=1

ωk j −

X∑
j=1

ω2
k j
> 0 (8.3)

The function fk is m-independent, while ωk with m , 0 is proportional to m. The terms of the type
−ω2

ki
all cancel out. It is easy to observe that F(k1, k2, .., kX; m) is an increasing monotonic function of

m. For m = 0, because of the inequality in (8.1), the F(k1, k2, .., kX; 0) ≥ 0; then, for its monotonicity,
for any m > 0, F(k1, k2, .., kX; 0) > 0. This proves that there are no resonances in the DNKG model of
the type X → 1.
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