
Citation: Gresta, F.; Oteri, M.;

Scordia, D.; Costale, A.; Armone, R.;

Meineri, G.; Chiofalo, B. White Lupin

(Lupinus albus L.), an Alternative

Legume for Animal Feeding in the

Mediterranean Area. Agriculture 2023,

13, 434. https://doi.org/10.3390/

agriculture13020434

Academic Editor: Joana Nery

Received: 1 February 2023

Revised: 8 February 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

White Lupin (Lupinus albus L.), an Alternative Legume for
Animal Feeding in the Mediterranean Area
Fabio Gresta 1 , Marianna Oteri 1 , Danilo Scordia 1,* , Annalisa Costale 2, Rosangela Armone 1 ,
Giorgia Meineri 3 and Biagina Chiofalo 1

1 Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata,
98168 Messina, Italy

2 Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
3 Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
* Correspondence: danilo.scordia@unime.it; Tel.: +39-0906766731

Abstract: Interest in white lupine has increased in recent years in animal nutrition due to its balanced
protein and lipid content, phytochemical compounds, and low alkaloid content. Agronomic traits,
nutrients, and antioxidant phenols of six white lupin genotypes grown in a Mediterranean area were
explored. Genotypes significantly differed in growth stages and life cycle length (from 172 to 204
days after sowing), plant height (from 36.1 to 97.2 cm), seed yield (from 1.02 to 3.50 Mg ha−1), and
yield components. Seed yield was positively correlated with the number of seeds per pod and the
thousand-seed weight. Across the average of genotypes, a high protein content (397 g kg−1), a low
fiber content (133 g kg−1), and oil content (116 g kg−1) with a high oleic acid (453–509 g kg−1) and
low erucic acid content (8–17 g kg−1) were found. The n3/n6 ratio varied from 1:1 to 1:4. Ecotype G
showed the highest TPC, DPPH•, and ABTS•+ and Multitalia showed the highest content of Apigenin
1 and 2 derivatives. The lowest alkaloid content was recorded in Volos, Luxor, and Lublanc. Overall,
this species can be considered a suitable feed crop and a valuable ingredient in animal nutrition
due to its overall nutritional profile. At present, only Volos, Luxor, and Lublanc can be suggested in
animal nutrition due to the low alkaloid content. Nonetheless, interesting agronomic and quality
traits in Multitalia and the two ecotypes suggest room for breeding to reduce their antinutritional
factors.

Keywords: Lupinus albus; cropping systems; seed yield; quality traits; phenolic compounds; antioxi-
dant activity

1. Introduction

The European Union (EU) is heavily dependent on imported soybean for its domestic
consumption, being widely exposed to risks associated with world trade. In this context,
the identification of alternative plant protein sources for sustainable livestock farming,
which is highly dependent on international soybean imports, is key to fulfill the gap
between consumption and demand [1,2]. In this sense, the measures set in the recent
Common Agricultural Policy (CAP) have already contributed to the expansion of the
plant protein sector in the EU. In the Mediterranean area, there is a large diffusion of
winter legume crops that, in addition to the reduction in feed costs for livestock, may
provide a sustainable benefit for the environment against soil nitrogen impoverishment
and disruption of biological cycles of pests and plant diseases [3].

Among grain legumes, lupin species (Lupinus spp.) could represent a suitable alter-
native protein source in both monogastric and ruminant feeds, capable of replacing soy
without loss of quantity and quality of livestock products [4,5]. Actually, lupins have been
suggested as possible alternative crops and traceable protein sources in Europe. In addition
to the nutritional value in animal feeding, lupins grain productivity is reasonable [6], can
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adapt to less fertile soils [7], are low-nutrients-demanding [8], and can play an excellent
role in crop rotation [9].

Nowadays, a growing interest in the production of white lupin (Lupinus albus L.) for
animal feed has been observed, due to its seed nutritional quality and the potential benefits
for health [6].

Ruminants are the largest consumers of lupins [5,10,11] and its use in dairy cows has
shown an increase in milk production, fat, and protein contents, and an improvement of
the fatty acid profile [5,12]. Monogastrics, such as pigs and poultry, are the second animal
consumers; however, the high level of non-starch polysaccharides and the low level of
starch in lupin seeds [13,14] affect the utilization of energy and contribute to the reduction
in feed intake and digestibility [15,16]. Lastly, significant nutritional advantages have been
identified in fish diets supplemented with lupins, where there is an increasing demand for
plant protein to replace protein fish meal [17,18]. In addition, lupins have some unique
functional properties to contribute to aquafeed pellets [19].

From a nutritional point of view, white lupin seeds have a high protein content,
from 32.9% [20,21] up to more than 36.0% [22]. Oil content varies from 9% to 13% with a
high concentration of PUFA, which represent a precious source of essential fatty acids [6];
moreover, it has a high n3/n6 polyunsaturated fatty acid ratio compared to other vegetable
oils [23,24] appropriate for animal feeding [6,25,26]. Moreover, white lupin is characterized
by many valuable biologically active substances [27], such as phenolic acids, flavones, and
isoflavones [28–30], that promote antioxidant activity [29–32] and improve health [20]. In
fact, white lupine seeds have an interesting content of biologically valuable substances
with a high antioxidant potential that allow them to be used as a suitable nutraceutical
for the prevention and treatment of some diseases [33–35]. It has been reported that white
lupins can have a role in the pathogenesis of health disorders due to their influence on lipid
and glucose metabolism. Furthermore, functionality effects on inflammatory processes
and changes in the gut microbiome, with significant influence on several physiological
parameters, including metabolism, nutrient absorption, and immune function, have also
been demonstrated [33–35].

However, a drawback of lupin is the presence of antinutritional factors (ANFs), mainly
represented by quinolizidine alkaloids, which can reduce animal performances [33–35].
Therefore, the suitability of this legume is closely related to the alkaloid content, which can
be reduced by adopting sweet varieties with low alkaloid content [36].

Nutritional characteristics linked to protein content, lipid accumulation, fatty acid
quality, phytosterol composition, as well as antinutritional factors of seeds are strongly
influenced by the variety [6,34,35]; however, only a few researchers have explored the effect
of genotypes on productive and qualitative traits in white lupin seeds.

To this end, the aim of the present research was to explore the productive, chemical,
and fatty acid composition, the total phenolic content, the antioxidant activity, the content
of phenolic compounds, and total alkaloids in six genotypes of white lupin, grown side-by-
side in the Mediterranean environment, in order to evaluate the possibility of introducing
this species in animal feeding.

2. Materials and Methods
2.1. Plant Materials and Field Experiment

Six genotypes of Lupinus albus L. were adopted in this study. Two recently released
varieties (Volos and Luxor) were compared with two older varieties (Lublanc and Multitalia)
and two ecotypes from Southern Italy (Ecotype F and Ecotype G).

Lupin genotypes were sown in a medium-textured loamy soil in Southern Italy
(Calabria, 38◦04′51′′ N, 15◦40′49′′ E) with nearly neutral pH (6.75), low salinity (0.6 mS
cm−1), poor organic matter (0.69%), low nitrogen (0.62 g kg−1) and exchangeable P2O5
(1.0 mg kg−1), and high assimilable K2O (285 mg kg−1). Plots of 8 m2 (4 × 2 m), three-
times-replicated in a randomized block design, were adopted. Sowing was executed on 22
November 2013 with a plant density of 60 plant m−2 on a ploughed and fertilized soil with
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100 kg ha−1 of P2O5. Weed control was performed just after sowing, on 25 March and on 7
May by hand. Seeds were harvested between May and June, according to the physiological
maturity of genotypes. Plant height and yield components (pods plant−1, seeds pod−1,
and thousand-seed weight) were evaluated using ten plants for each plot, while total yield
was determined on the two central rows in each plot. The date of the main growth stages
(i.e., sowing-emergence, emergence-flowering, flowering-seed setting, seed setting-seed
maturation) was also recorded according to the scale proposed by Dracup and Kirby [37].

After sowing, monthly maximum and minimum air temperature gradually decreased
and reached a minimum of 6.7 ◦C in January (Figure 1). Subsequently, the air temperature
had an increasing trend from March, up to the monthly maximum temperature of 34.2 ◦C
in June. The rainfall was 562.2 mm between September 2013 and June 2014, and over 67%
was concentrated between November and March. The wettest month was December with
109.4 mm, while the driest months were May and June (20 and 5 mm, respectively).
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Figure 1. Meteorological trend (maximum and minimum air temperature and rainfall) during the
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2.2. Sample Preparation

Before all analyses, lupin seeds were ground using a 1.1 mm sieve (SM 100, Retsch,
Haan, Germany). Analytical determinations were carried out in triplicate.

2.3. Proximate Chemical Analysis

Proximate chemical analyses of the lupin seed samples, such as moisture, crude protein,
ether extract, crude fiber, and ash, were carried out following the standard procedures
from the Association of Official Analytical Chemists [38]: for moisture content (method
n. 930.15), for crude protein (method n. 2001.11) by means of the Kjeldahl procedure
using a Kjeltec system (FOSS, Padua, Italy), for ether extract (method n. 920.39) by using
the Soxtec™ 8000 Extraction Systems (FOSS, Padua, Italy), for crude fiber (CF) (method
n. 978.10) using a Fibertec™ 2010 (FOSS, Padua, Italy) after acid (with H2SO4) and basic
(with NaOH) hydrolyses, and for ash content (method n. 942.05). All determinations were
expressed as fed, and the seed moisture content ranged from 80 g kg−1 in Multitalia and
Ecotype G to 96 g kg−1 in Volos.

2.4. Analysis of Fatty Acids, Nutritional, and Quality Indices Calculation

Fatty acids (FAs) of lupin seeds were analyzed after oil extraction and their conversion
into fatty acid methyl esters (FAMEs) according to the Christie method [39]. After the
extraction, the FAMEs were analyzed by means of a TRACE 1310 gas chromatography-flame
ionization detector (GC-FID—Thermo Fisher Scientific, Milan, Italy). Quali-quantitative
FAs determination was performed using the analytical method previously reported by
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Oteri et al. [40]. The individual fatty acid concentration was expressed in g kg−1 (1 kg is
the sum of identified FAME areas).

The atherogenic (AI) and thrombogenic (TI) nutritional indices [41], the hypocholes-
terolemic/hypercholesterolemic ratio (H/H) [42], and the peroxidation index (PI) [43]
were calculated.

2.5. Extraction and Identification of Alkaloids

The alkaloids from the sample were extracted as described by Muzquiz et al. [44] and
Oboh et al. [45] and analyzed by high-resolution gas chromatography/mass spectrometry
(HRGC/MS) [46] using a Shimadzu TQ8030 HRGC-MS/MS (Shimadzu Italia, Milan, Italy),
equipped with a Shimadzu AOC-20s autosampler and a Supelco (Supelco, Bellefonte, PA,
USA) SLB-5MS capillary column (5% polydiphenylsiloxane, 95% polydimethylsiloxane)
of 30 m × 0.25 mm, 0.25 µm (L × I.D., film thickness), operating in electronic ionization
(EI) mode. The instrumental conditions were performed as described by Calabrò et al. [34]
and Musco et al. [35]. For the quantification of alkaloids, the internal standard method was
adopted (concentration of caffeine equal to 0.5 mg mL−1) [46]. The limit of quantification
was 0.1 mg kg−1 for all alkaloids.

2.6. Total Phenolic and Antioxidant Activity Analyses

The method described by López-Mejía et al. [47] was used for the quantification of the
total phenolic content (TPC) and the extraction yields (%) were calculated gravimetrically
with the weight of the seed and the extracts.

The TPC was determined following the Karamać et al. method [48] and the results
expressed as mg of GAE (gallic acid equivalents) per g of seeds (mg g−1).

The antioxidant capacity of polyphenols was measured by DPPH• and ABTS•+ assays.
The scavenging activity of both DPPH• [49] and ABTS•+ [48] was evaluated spectropho-
tometrically (Cary 60 UV-Vis spectrophotometer, Agilent Technologies, Santa Clara, CA,
USA) and the results were expressed for DPPH• as EC50 (concentration of dried extract
mg mL−1 solution) and for ABTS•+ as µmol TE (Trolox equivalents) g−1 of seeds.

2.7. HPLC Analysis of Phenolic Compounds

The liquid chromatographic (LC) analyses were carried out on two different instru-
ments. The quantification of Apigenin derivatives was performed using HPLC-DAD
equipment and based on the Apigenin calibration curve, while their identification was
carried out using an HPLC-MS system PDA (Waters Corp., Milford, CT, USA) [50].

The quantification of Apigenin derivatives was performed using the calibration curve
obtained with an external standard. HPLC-MS analyses were carried out on a Waters
Fraction Link autopurification system equipped with a Waters 2487 UV detector, Waters
2525 binary pump, and Waters Micromass ZQ detector operating in ESI+ mode. The
chromatograms obtained show several peaks between two and five, of which only two
were identified as Apigenin derivatives by comparing the UV spectra with the external
standards (ST). The compounds were quantified using the Apigenin calibration curve and
the amounts of derivatives were expressed as Apigenin equivalents (mg g−1 seeds).

Figure 2 reports an HPLC chromatogram characterized by the presence of two domi-
nant peaks (1 and 2) with retention times of 22.6 and 27.7 min, respectively. Both compounds
possessed similar UV spectra with λmax at 335 nm, and a retention time shorter than that
of the Apigenin standard, which suggests that they are Apigenin glycosides. Compound
1, showing a molecular ion [M+H]+ at m/z = 595 (base peak) in the mass spectrum, was
identified as Apigenin-6,8-di-C-beta-glucopyranoside according to Siger et al. [30], while
compound 2 was not chemically identified.
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2.8. Statistical Analysis

Plant height was analyzed by one-way ANOVA with repeated measures, where the
days after sowing represents the within-factor and the genotype represents the between-
factor (PASW Statistics 18, SPSS Inc., South Wacker Drive, Chicago, USA). Seed yield,
yield components, and seed quality were analyzed by a one-way ANOVA according to the
randomized block design using the Bartlett’s test to verify the assumption of homogeneity
of variances. Tukey’s test (p ≤ 0.05) was used for mean separation, and percentage values
were previously arcsin

√
%-transformed.

Pearson’s correlation test (p ≤ 0.05) was executed to assess the significance of correla-
tion coefficients among growth stage (vegetative and reproductive stages), morphology,
yield, and yield components. Relationships between plant height and growth stages
were modeled through non-linear regressions. Coefficients were considered significant at
p ≤ 0.05. Residuals for normality were verified by the Shapiro–Wilk test, and the goodness
of fit was assessed by the R2 (SigmaPlot11, Systat Software Inc., San Jose, CA, USA).

3. Results
3.1. Phenology and Plant Height

Lupin genotypes showed different life cycle lengths and growth stages (Figure 3A).
Ecotypes F and G reached seed maturity 204 days after sowing (DAS), Luxor and Multitalia
reached it 185 DAS, and Volos and Lublanc reached it 172 DAS. Volos showed the longest
sowing-emergence interval (30 DAS) but the shortest emergence-flowering (13 DAS) overall.
This latter interval was the longest in Ecotypes F and G (70 and 67 DAS, respectively). The
flowering-seed setting interval was the shortest in Multitalia, Ecotype G, and Luxor (on
average, 23.5 DAS), and the longest in Lublanc (27 DAS) and Volos (29 DAS). The seed
setting-seed maturity interval was the longest in Multitalia, Luxor, and Volos (on average
99.5 DAS), and the shortest in Ecotype F and Lublanc (averaged, 83 DAS).
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Figure 3. Main growth stages (A) and plant height (B) of six white lupin (Lupinus albus L.) genotypes.
Growth stage intervals: sowing-emergence (S-E), emergence-flowering (E-F), flowering-seed setting
(F-SS), seed setting-seed maturity (SS-M). Effects statistically significant at p ≤ 0.001 (***).

Plant height was also different among genotypes and it was significantly affected by the
time (Figure 3B). Generally, there were no significant differences among genotypes at 100 DAS
(on average, 32 cm), except for Lublanc (~10 cm taller). Lublanc was the tallest genotype up
to 124 DAS (72.9 cm); however, it gained only 9 cm thereafter (at 172 DAS). Volos was the
shortest genotype and reached the maximum height (36.1 cm) at 124 DAS. On the other hand,
plant elongation was rapid in Ecotype G and F from 124 DAS up to the maximum values of
90.1 and 97.2 cm at 168 DAS. Multitalia and Luxor had a similar trend up to 90 DAS; however,
the former was taller than the latter at harvest (72.9 and 53.2 cm, respectively).

3.2. Seed Yield and Yield Component

Yield components, namely the number of pods per plant, the number of seeds per pod,
and the thousand-seed weight, as well as seed yield were significantly different among
lupin genotypes (p ≤ 0.05).

The number of pods per plant was the significantly highest in Multitalia, Ecotype F,
Ecotype G, and Lublanc (on average, 4.5), and the lowest in Luxor (3.4). Volos differed
neither from the highest nor from the lowest values (Figure 4A). The number of seeds per
pod was the significantly highest in Luxor, Ecotype G, and Lublanc (on average 3.5), and
the lowest in Volos (2.4). Ecotype F and Multitalia differed neither from the highest nor
from the lowest values (Figure 4B). The thousand-seed weight was the significantly highest
in Multitalia and Lublanc (on average, 426.3 g), and the lowest in Luxor, Ecotype F, Ecotype
G, and Volos (on average, 326.7 g) (Figure 4C). The seed yield was the significantly highest
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in Lublanc (3.5 Mg ha−1) and the lowest in Volos (1.02 Mg ha−1). Multitalia differed neither
from Lublanc nor from Luxor. Ecotype G differed neither from Luxor nor from Ecotype F
(Figure 4D).
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Figure 4. Number of pods per plant (A), number of seeds per pod (B), thousand-seed weight (C),
and seed yield (D) of six white lupin (Lupinus albus L.) genotypes. Mean values ± standard deviation
with different letters differ significantly (p ≤ 0.05).

3.3. Correlations and Relationships

Several significant correlations among morphology, growth stages, yield, and yield
components of white lupin genotypes were observed (Table 1). Plant height was positively
correlated with the vegetative stage, the number of pods per plant, and the number of seeds
per pod. Vegetative and reproductive stages were negatively correlated; the vegetative
stage was negatively correlated with the thousand-seed weight, as was the reproductive
stage with plant height. Seed yield was positively correlated with the number of seeds per
pod and the thousand-seed weight.

Table 1. Pearson correlation coefficients (r) among growth stage (vegetative and reproductive stages,
VS and RS, respectively), morphology (plant height), yield, and yield components of six white lupin
genotypes. Significant per p ≤ 0.001 (***), p ≤ 0.01 (**), p ≤ 0.05 (*).

Height VS RS Pod Plant−1 Seed Pod−1 TSW

VS 0.812 ***
RS −0.822 *** −0.765 ***

Pod plant−1 0.527 ** 0.325 −0.329
Seed pod−1 0.457 * 0.352 −0.368 0.154

TSW −0.047 −0.469 * 0.073 0.348 −0.051
Seed Yield 0.384 −0.075 −0.347 0.235 0.406 * 0.682 ***
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A positive relationship was found between plant height at harvest and the vegetative
growth of white lupins (Figure 5A). The increasing trend was almost linear from a plant
height of 38 cm up to around 85 cm, which was reached at vegetative growth from 43 to
80 days. Afterward, plant height reached a plateau with further vegetative growth. On the
contrary, plant height and reproductive growth showed a negative relationship (Figure 5B).
Plant height was the highest and almost stable at the lowest interval of reproductive
stages (from 109 to 117 days). Beyond 120 days, the plant height quickly dropped and the
reduction was almost linear with the length of the reproductive growth.
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3.4. Nutritional composition of lupins

Table 2 shows the mean values of the chemical composition in the six genotypes of
white lupin seed. Volos showed the significantly (p ≤ 0.05) highest crude protein, crude
fiber, and ash content, and the lowest oil content. Lublanc and Multitalia showed the
highest oil and the lowest ash content. Lublanc also had the lowest crude protein and
Multitalia had the lowest crude fiber. Both Ecotype F and G showed the highest crude fiber
and ash, but the lowest crude protein (Ecotype F) and oil content (Ecotype G). Alkaloids
were significantly lower in Volos, Luxor, and Lublanc (0.05–0.19 g kg−1) than in Multitalia
and Ecotype F and G (2.0–2.5 g kg−1).

Table 2. Chemical composition (g kg−1, as fed) of the six genotypes of Lupinus albus L. (n = 18).

Genotype
RMSE

Volos Luxor Lublanc Multitalia Ecotype F Ecotype G

CP 356 a 331 b 331 b 342 ab 327 b 340 ab 0.087
EE 86 d 93 c 112 a 107 a 96 bc 99 b 0.025
CF 120 a 120 a 111 ab 101 b 116 a 113 a 0.052

Ash 31 a 30 a 27 b 27 b 28 b 28 b 0.005
AK 0.05 b 0.06 b 0.19 b 2.3 a 2.5 a 2.0 a 0.497

CP: crude protein; EE: ether extract; CF: crude fiber; Ash: total mineral content; AK: total alkaloids. RMSE:
root-mean-square error. Mean values followed by different letters within the same row differ significantly
(p ≤ 0.05).

3.5. Fatty Acids profiles, Nutritional, and Quality Indices

Fatty acid composition in the six genotypes of white lupin seed is presented in Table 3.
In descending order, oleic (C18:1n9), linoleic (C18:2n6), linolenic (C18:3n3), and palmitic
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(C16:0) acids were the dominant fatty acids in all samples. The oleic acid showed a
significantly (p ≤ 0.05) higher value in the Luxor, Lublanc, and Multitalia than in Volos and
Ecotype F and G. The linoleic and linolenic acids were the highest in Volos and the lowest
in Luxor. The palmitic acid was higher in Luxor compared to the remaining genotypes.
The erucic acid (C22:1n9) was the lowest in Luxor and the highest in Ecotypes F and G;
intermediate values were observed in the other genotypes.

Table 3. Fatty acid profile (g kg−1, as fed) in the six genotypes of Lupinus albus L. (n = 18).

Genotype
RMSE

Volos Luxor Lublanc Multitalia Ecotype F Ecotype G

C12:0 0.25 a 0.23 a 0.20 a 0.20 a 0.25 a 0.20 a 0.0004
C14:0 1.5 a 1.3 b 1.1 cd 1.0 d 1.3 bc 1.3 bc 0.0009
C15:0 0.57 b 0.70 a 0.45 c 0.47 bc 0.52 bc 0.57 b 0.0005
C16:0 75 bc 89 a 68 d 69 d 74 c 76 b 0.0067
C16:1 3.1 ab 3.3 a 2.4 c 2.6 bc 2.7 abc 2.5 c 0.0027
C17:0 0.40 b 0.52 a 0.32 b 0.37 b 0.35 b 0.42 ab 0.0005
C17:1 0.40 ab 0.67 a 0.50 ab 0.65 ab 0.40 ab 0.37 b 0.0012
C18:0 18 c 20 bc 22 b 20 bc 29 a 30 a 0.0001

C18:1n7 24 a 24 a 20 b 21 b 20 b 20 b 0.0001
C18:1n9 456 b 509 a 494 a 493 a 453 b 453 b 0.0009
C18:2n6 214 a 174 c 193 b 190 b 200 b 196 b 0.0005
C18:3n3 91 a 82 b 90 ab 90 ab 90 ab 89 ab 0.0003

C20:0 10 b 11 b 12 b 11 b 15 a 16 a 0.0001
C20:1n9 42 a 33 c 40 ab 41 a 41 ab 38 b 0.0001
C20:2n6 3.8 a 2.2 d 3.1 c 3.4 b 3.5 b 3.3 bc 0.0001

C22:0 34 b 31 c 31 c 31 c 42 a 43 a 0.0001
C22:1n9 15 b 8.2 d 13 c 15 b 17 a 17 a 0.0063
C22:2n6 1.1 a 1.1 a 1.1 a 1.3 a 1.3 a 1.5 a 0.0027

C23:0 1.7 a 1.2 bc 1.1 c 1.1 c 1.5 ab 1.4 abc 0.0016
C24:0 7.3 bc 7.8 ab 6.5 c 6.5 c 8.2 ab 8.7 a 0.0042

The concentration of fatty acids was expressed as g kg−1, considering 1 kg the sum of the areas of all FAME identi-
fied. C12:0 = lauric acid; C14:0 = myristic acid; C15:0 = pentadecanoic acid; C16:0 = palmitic acid; C16:1 = palmi-
toleic acid; C17:0 = heptadecanoic acid; C17:1 = heptadecenoic acid; C18:0 = stearic acid; C18:1n7 = cis-vaccenic
acid; C18:1n9 = oleic acid; C18:2n6 = linoleic acid; C18:3n3 = α-linolenic acid; C20:0 = arachidic acid;
C20:1n9 = eicosenoic acid; C20:2n6 = eicosadienoic acid; C22:0 = behenic acid; C22:1n9 = docosenoic acid;
C22:2n6 = docosadienoic acid; C24:0 = lignoceric acid. RMSE: root-mean-square error. Mean values followed by
different letters within the same row differ significantly (p ≤ 0.05).

Fatty acid classes, fatty acid ratios, and the atherogenic (AI) and thrombogenic (TI)
nutritional indices are shown in Table 4. The Ecotype G showed the significantly highest
value of SFAs. MUFAs resulted as higher in Luxor, Lublanc, and Multitalia than the
remaining genotypes. Volos showed the highest value of PUFAs, both n6 and n3-PUFAs,
and the lowest SFAs and MUFAs. Ecotype G also showed the highest SFA/UFA ratio,
while Volos, Lublanc, and Multitalia showed the lowest one. Volos showed also the lowest
n3/n6 ratio. With regard to the nutritional indices, strictly related to the fatty acid profile,
Luxor showed the best AI; Luxor and Ecotype G showed the best TI; Lublanc showed the
best HH but the lowest PI. The remaining genotypes showed significantly higher and not
statistically different PI values.

3.6. Total Phenolic Content and Antioxidant Activity

Total phenolic content, antioxidant properties, and phenolic compounds in the six
white lupin genotypes are shown in Table 5. Ecotypes G and F had the significantly highest
TPC and ABST•+ content. DPPH• was also the highest in Ecotype F, while the remaining
genotypes were not significantly different. Multitalia exhibited the highest content of
both phenolic compounds, Apigenin 1 and 2. Apigenin 2 was also at the highest levels in
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both Ecotypes F and G, and in Luxor. However, Apigenin 1 was the lowest in these latter
three genotypes.

Table 4. Fatty acid classes (g kg−1, as fed), ratios, and quality indices in the six genotypes of Lupinus
albus L. (n = 18).

Genotype
RMSE

Volos Luxor Lublanc Multitalia Ecotype F Ecotype G

SFA 149 d 163 c 142 e 141 e 172 b 178 a 0.0236
MUFA 541 b 578 a 571 a 574 a 533 b 531 b 0.0928
PUFA 310 a 260 c 287 b 285 b 295 ab 291 ab 0.0891

SFA/UFA 0.18 c 0.20 b 0.17 c 0.17 c 0.21 ab 0.22 a 0.0006
n3-PUFA 91 a 82 b 90 ab 90 ab 90 ab 89 ab 0.0361
n6-PUFA 219 a 177 c 198 b 195 b 205 b 201 b 0.0547

n3/n6 0.41 c 0.47 a 0.45 ab 0.46 a 0.44 b 0.45 ab 0.0009
AI 0.10 bc 0.11 a 0.08 d 0.09 cd 0.10 b 0.10 b 0.0004
TI 0.14 c 0.18 a 0.14 c 0.14 c 0.16 b 0.17 a 0.0003

H/H 9.95 c 8.64 e 11.27 a 11.01 b 9.89 c 9.50 d 0.0092
PI 40.05 a 34.20 b 37.66 a 37.54 a 38.48 a 37.95 a 0.1246

The concentration of fatty acids was expressed as g kg−1, considering 1 kg as the sum of the areas of all FAME
identified. SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids;
SFA/UFA = saturated/unsaturated fatty acid ratio; n3 = n3-polyunsaturated fatty acids; n6 = n6-polyunsaturated
fatty acids; n3/n6 = n3/n6-polyunsaturated fatty acid ratio; AI = Atherogenic index; TI = thrombogenic index;
H/H = hypocholesterolemic/hypercholesterolemic ratio; PI = peroxidation index. RMSE: root-mean-square error.
Mean values followed by different letters within the same row differ significantly (p ≤ 0.05).

Table 5. Total phenolic content, antioxidant properties, and phenolic compounds in the six genotypes
of Lupinus albus L. (n = 18).

Genotype
RMSE

Volos Luxor Lublanc Multitalia Ecotype F Ecotype G

TPC 0.33 d 0.29 d 0.99 bc 0.84 c 1.13 ab 1.20 a 0.0105
DPPH• 0.90 b 0.87 b 0.96 b 1.01 b 1.24 a 1.00 b 0.0073
ABST•+ 2.14 c 1.92 c 10.39 a 8.48 b 10.51 a 11.14 a 0.0822

Apigenin 1 0.17 b 0.14 bc 0.17 b 0.25 a 0.12 c 0.14 bc 0.0026
Apigenin 2 0.04 b 0.05 ab 0.04 b 0.06 a 0.05 ab 0.05 ab 0.0006

TPC = Total phenolic content expressed as gallic acid equivalents (GAE mg g−1 seeds); DPPH• = scavenging
activity expressed as EC50 (concentration of dried extract mg mL−1 solution). ABTS•+ = scavenging activity
expressed as µmol TE (Trolox equivalents) g−1 (seeds). Apigenin 1 and 2 = phenolic compounds expressed as
Apigenin equivalents (mg g−1 seeds). RMSE: root-mean-square error. Mean values followed by different letters
within the same row differ significantly (p ≤ 0.05).

4. Discussion

The growing season was quite favorable for lupin growth, with air temperature al-
ways above the base temperature [51] and rainfalls well distributed throughout the main
phenophases. The life cycle length was within the range reported by López-Bellido et al. [51]
in other similar Mediterranean environments, where 222 days and 173 days were recorded
for autumn and winter sowing, respectively. A shorter crop cycle (153 days) was recorded
in Luxor and Rosetta white lupin varieties by Gresta et al. [33] in a similar environment; an
earlier flowering was also recorded in Luxor.

In addition to the length of the growth cycle (32 days shorter in the earliest Volos
and Lublanc as compared to the latest maturity group, ecotypes F and G), it is worth men-
tioning that local ecotypes F and G showed about a 30-days-longer vegetative phase (i.e.,
the interval sowing-emergence and emergence-flowering) than the improved genotypes
Lublanc, Multitalia, and Luxor and even 50 days longer than that of Volos. However, the
reproductive phase (i.e., the interval flowering-seed setting and seed setting-maturation)
was approximately 10–20 days shorter in ecotypes F and G as compared to the improved
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white lupin genotypes. The longest vegetative phase resulted also in the tallest plants.
Indeed, a positive regression was observed between the plant height and the length of the
vegetative phase (R2 = 0.85), while a negative regression emerged between the plant height
and the length of the reproductive phase (R2 = 0.91). Plant height resulted in agreement
with values obtained by Gresta et al. [33], in which Luxor reached a height of 94 cm.

Seed yield was outstanding in two out of the six genotypes (Lublanc and Multitalia)
and the thousand-seed weight (r = 0.69, p ≤ 0.001) and, secondarily, the number of seeds
per pod (r = 0.41, p ≤ 0.05) markedly influenced yield formation. Although seed yield
and growth stages were not significantly correlated, the thousand-seed weight was nega-
tively correlated with the vegetative stage; hence, it can be speculated that the longer the
vegetative stage, the lower the seed yield.

The seed yield of Lublanc was similar to the yield of 3.48 Mg ha−1 of cultivar Mul-
tolupa reported by López-Bellido et al. [52] in the most favorable growing conditions and
with the same plant density. On the other hand, the seed yield of Volos was even lower
than that achieved in most limiting growing conditions [52]. Gresta et al. [33] reported a
slightly higher seed yield (3.7 Mg ha−1) for Luxor and Rosetta white lupins. The seed yield
of the local ecotypes (F and G) was likely affected by the longer vegetative development
that favored biomass accumulation over nutrient translocation to the seed. Nonetheless,
this suggests that there is room for improvement by manipulating the growing cycle of
these locally adapted ecotypes.

With regard to the proximate composition, lupin genotypes showed interesting quality
traits; on average, the high protein content (397 g kg−1, dry matter), the low fiber content
(133 g kg−1, dry matter), and the oil content (116 g kg−1, dry matter) with an interesting
fatty acid profile make lupin seeds a valuable protein and energy source for animal feeding.
The chemical composition appears similar to soybean and of higher value than other
legumes, such as pea (Pisum sativum) and fava bean (Vicia faba var. minor), which are
widely cultivated as soybean alternatives in the Mediterranean countries [53]. Proximate
composition results are within the range reported in the literature for white lupin grown in
the Mediterranean environment [23,34,35]. On the other hand, the oil content was higher
than that observed by Chiofalo et al. [6] in white lupin Luxor and Rosetta grown in a
different Mediterranean area. Among investigated genotypes, Multitalia showed the most
valuable chemical composition in terms of protein and oil content (highest values) and
crude fiber (lowest values). Conversely, Luxor showed the lowest values of protein and oil
and the highest level of crude fiber.

Unlike ruminants, the use of lupins in the diet of monogastrics could be detrimental
for their performance and production. The lack of endogenous enzymes for degradation of
lupins’ structural carbohydrates in their digestive system can reduce feed intake, digestible
energy, and digestibility of nutrients [10]. However, based on research and commercial
experience, the inclusion of white lupine in the diet of monogastrics, recommended accord-
ing to the species and physiological state, has no negative effects on the digestibility of
nutrients [10].

It is worth mentioning that lupin oil content is low as compared to other crops (soy-
bean, sunflower, etc.) [54]; nonetheless, its fatty acid profile is noteworthy for animal
nutrition [6,34,35]. Among fatty acids, oleic acid (C18: 1n9) was the most represented
(476 g kg−1, on average), making up almost 50% of the total fatty acids identified, and 86%,
on average, of the monounsaturated, with the highest content in Luxor, Lublanc, and Multi-
talia (509 g kg−1, 494 g kg−1, and 493 g kg−1, respectively). Our results are similar to those
reported in white lupin seeds by Uzun et al. [55] (476 g kg−1, on average), Calabrò et al. [34]
(478 g kg−1, on average), and Musco et al. [35] (466 g kg−1, on average), and slightly
higher than those of Chiofalo et al. [6] (449 g kg−1, on average). Furthermore, among
the monounsaturated, the erucic acid, considered an anti-quality factor, showed values
(8–17 g kg−1) much lower than those observed by Bhardwaj et al. [56] (23.6–27.3 g kg−1),
Boschin et al. [23] (39–53 g kg−1), and Volek and Marounek [57] (36.9 g kg−1). Nonetheless,
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it was within the range reported in the literature in different white lupin genotypes grown
in the Mediterranean area [6,34,35].

Alkaloids content in Volos (5.2 mg per 100 g) and Luxor (6.1 mg per 100 g) were much
lower than the limit of toxicity (20 mg per 100 g) for human and animal consumption
released by the health authorities of the United Kingdom, France, and Australia [58], and
Lublanc was close to the upper limit (19.4 mg per 100 g), while Multitalia and Ecotype F
and G had a total content of alkaloids (227, 250, and 201 mg per 100 g, respectively) well
beyond the toxicity limit. Hence, the large difference of alkaloid can be ascribed to the
genotype, which confirms the irreplaceable role of genetic breeding to improve varieties
with low antinutritional factors in lupin species.

With regard to the polyunsaturated fatty acids, the high content of essential fatty
acids (C18:2n6 and C18:3n3) found in seed oil, specifically in Volos, is typical of many
legume species [59]. From this point of view, Luxor and Multitalia resulted in outstand-
ing genotypes, owing to the highest n3/n6 PUFA ratio, which is considered optimal in
animal nutrition and able to positively influence the productive performance, antioxidant
properties, immune response, semen quality, and product quality with health benefits
also for the consumers [60]. Concerning the nutritional indices, literature information is
scarce for atherogenic and thrombogenic indices of white lupin seeds. Both indices give a
measurement of the level of the atherogenicity and of thrombogenicity of a feed/food [41].
In addition, no reference was found for hypocholesterolemic/hypercholesterolemic fatty
acid ratio (H/H), even if the ability of lupin seed oil to lower plasma cholesterol level
as well as to slow down the lipid peroxidation process and to enhance the antioxidant
enzyme activity is widely recognized [61]. The present results showed values within the
range reported in the literature for AI and TI [6,34,35]. Lublanc showed, on average, the
best values (0.08, 0.14, and 11.27, respectively) of all the nutritional indices, making this
genotype very interesting from a nutritional point of view. On the contrary, Luxor showed
the worst values (0.11, 0.18, and 8.64, respectively), making its lipid fraction less suitable
for animal and human nutrition.

The favorable proximate composition, as well as the interesting lipid fraction, has
opened up the possibility of using white lupin seed in livestock nutrition, especially in food
chains aimed at supporting animal health and the quality and safety of the productions.
Zraly et al. [16] obtained a significantly lower content of palmitic acid and a significant
increase in oleic acid and n3-PUFA, as well as in the alpha-linolenic (C18:3n3) acid content
in the meat of pigs fed with white lupin (20% inclusion of genotype Amiga) with a beneficial
effect on human health. In addition, Mieczkowska and Smulikowska [62] have reported
that a diet for broiler chickens containing white lupin Bardo increased the levels of oleic
(C18:1n9) and alpha-linolenic acids in chicken fat tissue and concluded that the white lupin
seed can be used as a source of alpha-linolenic acid in a balanced chicken diet and may
favorably modify the fatty acid composition of carcass lipids and, thus, the health attributes
of broiler meat. Furthermore, Podolian young bulls fed with white lupin Multitalia, as a
soybean substitute, showed a similar fatty acid profile in the meat, confirming white lupin
seed as an alternative protein source to soybean [26]. Finally, Volek and Marounek [57]
have shown an improvement in the AI and TI in the meat of rabbits when sunflower meal
was substituted with white lupin (Amiga) in their diet.

However, considering the alkaloid content, among the examined lupin species, only
Volos, Luxor, and Lublanc with a mean value of 0.1 g kg−1 could represent a good ingredient
for feed. As known, pigs appear more sensitive to alkaloids compared to poultry and
ruminants, showing a delay in gastric emptying and a reduction in feed intake [63]. As
the alkaloid content of recent varieties of sweet lupin ranges from 0.1 to 0.4 g kg−1, with a
mean content of 0.2 g kg−1, poor pig performance due to alkaloids in sweet lupin varieties
is unlikely [63].

In the present study, the peroxidation index (PI) was significantly influenced by
the genotype effect. The PI expresses a measure of the peroxidation susceptibility and
peroxidative lipid damage, which is reflected by the different PUFA content. Unfortunately,
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no data on this index were found in the literature. Luxor showed the lowest value and,
therefore, a high oil stability, whereas Volos had the highest value and, therefore, a low oil
stability, in relation to its lower and higher PUFA content, respectively.

With regard to the different content of phenolic compounds, the present findings agree
with Oomah et al. [64] who described a dominant effect of genotype on total phenolics.
The concentration and the proportions of polyphenolic compounds in plants are affected
by many factors, such as soil type, sun exposure, air temperature and rainfall, ripeness at
the time of harvest, processing, and storage [65]. This might explain the different range of
values obtained in our samples when compared with values found in the literature.

The antioxidant activity of lupin seed is similar [20] or lower to other grain legumes [66].
To date, it has not been determined whether this activity is affected by lupin genotype or
environmental conditions [67]. Our results highlight an effect of genotypes on antioxidant
properties of lupin seeds grown in the same environmental conditions, confirming what
has been reported by Wang et al. [66].

The most abundant phenolic compounds detected in lupin seeds belong to the sub-
classes of phenolic acids, flavones, and isoflavones [30]. In this study, two Apigenin
glycosides were identified, a group of flavones already observed in various species of
lupin seeds [30,68]. Apigenin 1 and 2 derivatives showed the highest values in Multitalia.
However, this genotype did not show the highest antioxidant activity; this agrees with the
observations of Karamać et al. [67], who reported that the antioxidant capacities of lupin
seeds are not strictly correlated with the content of the di-C-glycosides of Apigenin. On
the whole, the contents of Apigenin-6,8-di-C-beta-glucopyranoside in the six genotypes of
lupin seeds resulted in a higher range (13–27 mg 100 g−1, dry matter) than that reported by
Khan et al. [31] in white lupin seed (12–14 mg 100 g−1, dry matter). It is worth emphasizing
the presence of Apigenin−6,8-di-C-glucoside in lupin seeds, because this type of flavone
glycoside is not often found in dietary plants [67]. However, recent studies have shown a
wide variety of beneficial health effects from Apigenin derivatives, including antioxidant,
anti-inflammatory, hypoglycemic, and hypocholesterolemic activities [69,70].

5. Conclusions

This study proved the potential of white lupin as an alternative winter legume crop
for Mediterranean environments. However, genotype selection remains a fundamental
issue for introducing this crop into existing rainfed cropping systems.

At present, only Volos, Luxor, and Lublanc can be recommended as protein feed for
animal nutrition, due to the low antinutritional factors. In addition, these varieties resulted
also well balanced from a chemical and nutritional point of view, except for Volos, also
from a productive point of view.

Although Multitalia and local ecotypes (F and G) are characterized by interesting
productive traits (pod number per plant, seeds per pod, thousand-seed weight, and grain
yield), along with seed nutritional and antioxidant values, the high content of alkaloids
negatively affect their use in animal nutrition. They could be considered a good material to
be investigated in future breeding programs to reduce alkaloid content.

Overall, white lupin can be recommended as an alternative to soybean and an emerg-
ing Mediterranean legume crop; nonetheless, further investigations on current genotypes
and further landraces on agronomic traits, phenolic patrimony, antioxidant potential, and
biological activities, along with low antinutritional factors, will be key to its use in the
livestock sector and to tackling sustainability challenges.
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