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Abstract 

Ease of scale is one of the defining characteristics of microservices. However, with scalability 

comes the problem of diversity of services, making it very important to detect anomalies the 

soonest possible. Because it is recent, there are still few studies on the best approaches to 

detecting anomalies in microservices. This paper proposes the Python toolkit, PyOD, as an 

approach for microservice anomaly detection. This toolkit is composed of a set of anomaly 

detection algorithms, including classical LOF (SIGMOD2000) to the latest ECOD 

(TKDE2022). To evaluate the approach, we used two of its algorithms, k Nearest Neighbors 

(kNN) and Histogram-based Outlier Score (HBOS) to detect anomalies such as application 

bugs, CPU exhausted, and network jam on the TraceRCA dataset. This dataset contains logs 

from a real microservices system. The preliminary results show that HBOS algorithm performs 

better than kNN, with Recall and F1-Score of 93% and 89%, respectively, while for kNN these 

metrics were 92% and 85%, respectively. 

Keywords: anomaly detection; PyOD; outliers algorithms; microservices 

 

1. INTRODUCTION 

Microservices architecture has been gaining popularity, so much so that large enterprises have 

adopted this new architecture by migrating to microservices from a monolithic application or 

developing microservices-based applications from scratch. The term "Microservice Architecture" 

has sprung up over the last few years to describe a particular way of designing software applications 

as suites of independently deployable services (Fowler & Lewis, 2014). Instead of building a single 

hudge, monolithic application, the idea is to split an application into a set of smaller and 

interconnected services (Richardson, 2016). Meanwhile, services tend to increase quickly and 

become more complex, so it is essential to detect and diagnose possible failures promptly. 

Accordingly to Cao, Cao and Zhang (2019), although there are a lot of anomalies types in 

microservice, these can be classified in  Request Exception, Runtime Exception, Timeout Exception 

and Other Exception. Other Exception include Security exception and Version Exception. Within 

the Runtime Exception category there are more anomalies than in the other categories. 
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Some investigations to detect anomalies in microservices have already been conducted, primarily 

using techniques such as log analysis and monitoring, trace comparison, statistical methods, and 

clustering-based techniques. However, such approaches, are not directed to using dedicated 

programming languages and libraries for anomaly detection. This paper uses PyOD, an open-source 

Python toolbox for performing scalable outlier detection on multivariate data Zhao, Nasrullah and 

Li (2019). PyOD provides access to more than 40 detection algorithms, including probabilistic and 

proximity-based models. Through its wide range of algorithms, we choose k Nearest Neighbors 

(kNN) and Histogram-based Outlier Score (HBOS) to predict anomalies in our dataset and compare 

the results. 

2. MICROSERVICE ARCHITECTURE 

(Fowler & Lewis, 2014), define this architecture as an approach to developing a single application 

as a suite of small services, each running in its own process and communicating with lightweight 

mechanisms, often an HTTP resource API. According to IBM Cloud Education (2021), 

microservices are widely used and benefit many industries worldwide. These benefits include faster 

delivery, improved scalability, more flexibility in technology choice, and greater autonomy. Twitter, 

Netflix, Apple, and eBay are examples of organizations from various domains that take advantage 

of these benefits to adopt microservices-based approaches. 

Instead of a single monolithic unit, applications built using microservices are made up of 

autonomous, loosely coupled services, in other words, loosely dependent on each other. An example 

of this architectural style is shown in figure 1. As pointed out by Newman (2015), when services are 

loosely coupled, a change to one service should not require a modification of another. The whole 

point of a microservice is to make a change to one service and deploy it without needing to change 

any other part of the system. The concept of microservices is also often accompanied by the 

definition of the Single Responsibility Principle, coined by Robert C. Martin. Furthermore, 

according to Newman (2015), the principle states "Gather together those things that change for the 

same reason and separate those things that change for different reasons.", reinforcing the idea of 

autonomous and independent services. 
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Figure 1 - Microservices architecture style. Source (Anita Bueherle, 2016) 

Although different authors have presented different definitions for Microservices Architecture, some 

characteristics predominate in all of them. Based on the insights of Newman (2015), Bruce and 

Pereira (2019), and Fowler and Lewis (2014), we can conclude that these characteristics could be 

summarized in the following: 

▪ Componentization via services - services are independent and focused on doing a task well, 

following the Single Responsibility Principle. 

▪ Autonomy - services are developed around business resources; each service is a separate 

entity that operates and changes independently of the others. 

▪ Resilience and Failure Isolation - applications need to be designed in such a way that they 

can tolerate service failure. 

▪ Decentralized Database Management - each service manages its database, either in different 

instances of the same database technology or in entirely different database systems. 

▪ Many languages, many options - each service can choose the best combination of 

technology for its use cases. 

3. RELATED WORK 

As a background for this work, we considered some academic studies in the area to understand each 

method used.  

Meng et al. (2021) proposed an anomaly detection approach for microservices applications by 

comparing traces. As a dataset, they used Bench4Q to demonstrate the proposed technique and 

validate the approach; they used a microservices-based application called Social Network 

Yashchenko (2016). Cao et al. (2019) used the Conditional Random Field (CRF) based anomaly 

detection method and proved through experiments that the process could accurately find the faults 

in microservice system. The accuracy and the recall rate are relatively high. Barakat (2017) used the 

Kieker framework for performance monitoring and analysis of a microservices-based application 

and determined that some parameters about the performance of services can be visualized. Sun et al. 
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(2021) used the MonitorRank and FSB-RWRANK algorithms to develop service dependency graph 

automatically and thereby monitor microservices indicators and detect possible anomalies. Li et al. 

(2021) detected abnormal traces in microservices using a trace analysis-based approach called 

TraceRCA. They used the Train-Ticket benchmark to perform the experiments and deployed with 

Kubernetes. Wang et al. (2020) proposed an automatic anomaly diagnosis approach for 

microservices-based applications with statistics. They built baselines using Call Trees, and the 

results showed that the approach could accurately locate microservices causing anomalies. 

4. DETECTION OF ANOMALIES IN MICROSERVICES 

In microservices-based systems, anomaly detection is crucial because, as they grow larger, these 

types of systems sometimes become more prone to failure. For Chandola et al. (2009), anomaly 

detection refers to the problem of finding patterns in data that do not conform the expected behavior. 

These nonconforming patterns are often referred to as anomalies, outliers, discordant observations, 

exceptions, aberrations, surprises, peculiarities, or contaminants in different application domains. 

Anomalies in a system can be defined as deviations from normal behavior. Anomalies often indicate 

that a component is failing or is about to fail and should hence be detected as soon as possible 

(Forsberg, 2019). 

Though the focus of this paper is on anomaly detection in microservices, anomaly detection has been 

widely applied in countless application domains such as medical and public health, fraud detection, 

intrusion detection, industrial damage, image processing, sensor networks, robots behavior and 

astronomical data, as stated by Ahmed et al. (2016). The application of anomaly detection in the 

metrics emitted by microservices like CPU and memory utilization, error rate and response time, 

improves its reliability because these metrics provide important information about the components' 

performance, thus allowing to act in time in case some abnormal behavior is identified. To do this, 

it is necessary to know the normal state of the microservice. As per Düllmann (2017), this means 

that the existing data (e.g., response times) is used to learn the normal behavior of an application. 

To decide whether the current situation is an anomaly or not, thresholds can be set. This can happen 

either manually by setting the threshold to a fixed value or can be determined automatically using 

the normal behavior as an indicator. 

5. DATASET 

To train  our model with PyOD, it was used TraceRCA dataset Li et al. (2021), a study data, from 

another research using trace analysis approach. This dataset contains two sets of data: A) and B). 

For this work, we used set B, which contains traces of a large Internet service provider’s production 

microservice system. In addition, set B also includes a file with the faults injected into the 

application. Although our dataset is unsupervised, this fault file will be used only for the purpose of 
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evaluating the solution and not as part of training the model. The dataset file is in csv format and its 

5 features include "timestamp", "latency", "succ", "source" and "target". These features are described 

in Table 1, along with their respective data types. Although the logs exceed 1,000,000 records, for 

testing purposes, random two-day records were used, corresponding to a total of 401.245. It should 

also be noted that the faults injected are of type CPU exhaustion, memory exhaustion, host network 

error, container network error, and database failures. 

 

 

Feature 

 

Description 

 

Type 

trace_id Id of each single trace String 

timestamp Precise indication of date and time when an request was made Number 

latency The time in seconds it took for the request to be completed. Number  

Succ Indicates whether the request was successful or not Boolean 

source Indicates the source where the request came from String 

target Indicates the target of each request String 

Table 1 - Description of the dataset features 

6. APPROACH 

There are many attempts to solve the anomaly detection problem. The more widely applicable 

approaches are unsupervised algorithms as they do not need labeled training data meeting the 

requirements of practical systems (Amer & Goldstein, 2012). PyOD is an open-source Python 

toolbox for performing scalable outlier detection on multivariate data (Zhao, Nasrullah, & Li, 2019). 

Some benefits of PyOD are that it is scalable, includes more than 40 algorithms, and can detect 

anomalies in multivariate data. As per the authors, since 2017, PyOD has been successfully used in 

various academic research and commercial products, such as (Zhao et al., 2021) and (Zhao, 

Nasrullah, Hryniewicki, et al., 2019). 

A few steps were taken to detect anomalies in the dataset, using PyOD. First, the dataset were 

cleaned and the features, “latency” and “target”, that we consider to be more preditive were prepared 

and converted to a format that the algorithms could understand. Then we predict anomalies using 

detectors and PyOD functions, fit() and predict() to obtain the total number of outliers found in each 

one.  After that, a function was developed specifically for calculating the confusion matrix. The 

purpose of this function is, based on the values predicted by the algorithm, to calculate True Positive, 

False Positive, True Negative and False Negative. For that, considering our dataset, the validation 

dataset (fault list) and the confusion matrix concepts, we established that to be : 

True Positive - the "timestamp" of the prediction dataset must be between the time interval in which 

the fault was injected; the value returned by the predict() function must be equal to 1, which 

corresponds to outlier; and the " target " must be equal to the "ground_truth". 
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True Negative - the timestamp of the prediction dataset must be between the time interval in which 

the fault was injected; the value returned by the predict() function must be equal to 0; and the “target” 

must be equal to ground_truth. 

False Positive - the timestamp of the prediction dataset must be outside the time range in which the 

fault was injected; and the value returned by the predict() function must be equal to 1. 

False Negative - the timestamp of the prediction dataset must be outside the time range in which 

the fault was injected; and the value returned by the predict() function must be 0. 

The pseudocode for this function is represented in table 1. 

 

DEFINE FUNCTION getConfusionMatrix(faults, predicted):     

 

    SET truePositive TO [] 

    SET trueNegative TO [] 

    SET falsePositive TO [] 

    SET falseNegative TO [] 

    SET predicted TO predicted.assign(date_time TO lambda x: df['timestamp'])     

 

    FOR i, act IN faults.iterrows():  

 

        SET minTime TO datetime.datetime.strptime(act.time_preliminary,'%Y-%m-%d %H:%M:%S+08:00') 

        SET maxTime TO minTime + timedelta(minutes=5) 

 

 

        truePositive.append(predicted.loc[(predicted.date_time  >= minTime) & (predicted.date_time <= maxTime) 

& (predicted.outliers EQUALS 1) & (predicted.target EQUALS act.ground_truth)]) 

 

        trueNegative.append(predicted.loc[predicted.outliers EQUALS 0]) 

 

        falsePositive.append(predicted.loc[(predicted.date_time < minTime) | (predicted.date_time > maxTime) & 

(predicted.outliers EQUALS 1)]) 

 

        falseNegative.append(predicted.loc[(predicted.date_time < minTime) | (predicted.date_time > maxTime) & 

(predicted.outliers EQUALS 0)]) 

 

 

 

    ELSE:  

 

        SET truePositive TO list(filter(lambda dfTP: not dfTP.empty, truePositive))         

        SET trueNegative TO list(filter(lambda dfTN: not dfTN.empty, trueNegative)) 

        SET falsePositive TO list(filter(lambda dfFP: not dfFP.empty, falsePositive)) 

        SET falseNegative TO list(filter(lambda dfFN: not dfFN.empty, falseNegative)) 

 

    RETURN 
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Table 2 - Function to get Confusion Matrix 

Ultimately, the result returned by the function, made it possible to calculate recall and F1 Score and 

determine which of the 2 algorithms had the best performance. 

6.1. ALGORITHMS USED 

The choice of algorithm to detect anomalies depends on a few factors. Some of these factors may be 

the type of dataset to be used, the number of features in the dataset, and whether the data is supervised 

or unsupervised. We evaluate our dataset with the following 2 algorithms, considering the 

characteristics of our dataset, which is considerable, multivariate, and unsupervised: 

kth Nearest Neighbor (kNN) - The k-nearest neighbors algorithm, or kNN, is one of the simplest 

machine learning algorithms. Usually, k is a small, odd number - sometimes only 1. The larger k is, 

the more accurate the classification will be, but the longer it takes to perform the classification (KNN, 

2019). According to Chandola et al. (2009), in this algorithm, the anomaly score of a data instance 

is defined as its distance to its kth nearest neighbor in a given data set. 

Histogram-based Outlier Score (HBOS) – According to Goldstein & Dengel (2012), although this 

algorithm is only a combination of univariate methods unable to model dependencies between 

features, its fast computation is charming for large data sets. This is perfectly fitting for detecting 

anomalies in microservices that usually produce large numbers of logs and have many parameters 

to consider. Additionally, for every single feature (dimension), a univariate histogram is constructed 

first. If the feature comprises categorical data, a simple counting of the values of each category is 

performed, and the relative frequency (height of the histogram) is computed. For numerical features, 

two different methods can be used: (1) Static bin-width histograms or (2) dynamic bin-width 

histograms. 

7. PRELIMINARY RESULTS 

To compare the performance of our algorithms, it was necessary the use some metrics. From the 

literature review, it was possible to verify that recall and F1-score are among the most used metrics, 

to evaluate the performance of algorithms. Thus, we determined the confusion matrix and calculated 

those metrics to find the best algorithm. 

Confusion Matrix 

The confusion matrix provides more knowledge about the performance of our model by providing 

the information on correctly, or incorrectly classified classes through which we can identify errors 

(Tanouz et al., 2021). As mentioned in chapter 6, a function was developed to return the confusion 

matrix. The result is essentially the values of True Positive, False Positive, True Negative and False 

Negative, which was then used to calculate the following metrics: 
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Precision: number of classified correct outputs, we can say exactness of model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall: the measure of our model correctly identifying True Positives 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

F1 score: Average of Precision and Recall. 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The results, as presented in table 5 show that HBOS performs slightly better than KNN, with Recall 

and F1-Score of 93% and 89%, respectively, while for kNN these metrics were 92% and 85%, 

respectively. 

ALGORITHMS RECALL F1 - SCORE 

kNN 92% 85% 

HBOS 93% 89% 

Table 2 - Performance of the algorithms 
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8. CONCLUSION AND FUTURE WORK 

The PyOD library, which provides access to over 40 algorithms for both supervised and 

unsupervised data, was used in TraceRCA dataset for anomaly detection. This work contributes 

significantly to the research community in an area that is still new - anomaly detection in 

microservices, This area, enables researchers to make further comparisons with other algorithms 

based on the results obtained using this library. The main point of PyOD is that, regardless of the 

dataset's characteristics, it is possible to choose among the various algorithms available to see which 

one fits best. After the prediction process, with "latency" and "target" as a feature, metrics were 

calculated to see which algorithm performed best. 

For future works, we aim to expand the application of the algorithms to the entire dataset since 

usually, thousands of logs are produced per second in microservice systems. Furthermore, to achieve 

more precise results, we intend to evaluate other microservices dataset and aggregate more metrics. 

We also intend to do further investigations with new developments aimed at identifying the root 

cause of the anomalies.  
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