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Abstract 
In recent years, the acceptance and use of intelligent robots and other kinds of intelligent systems have 
begun to gain more and more attention also in information systems research. Here, many studies have 
found the perceived intelligence of robots to act as one critical antecedent for their acceptance and 
use, but few studies have focused on the antecedents of perceived intelligence itself. In this study, we 
aimed to address this gap in prior research by examining the effects of individual intelligence dimen-
sions on the overall intelligence perception of robots in the work context. In addition, we also exam-
ined the potential differences in these effects as well as in the individual intelligence dimensions and 
overall intelligence perception themselves between three common types of robots: physical robots, 
software robots, and chatbots. These examinations were based on online survey data from 1,080 pre-
sent or prior users of robots at work. In summary, we found that adaptability, personality, autonomy, 
and multifunctionality act as the most influential antecedents of perceived intelligence in the case of 
all three types of robots. In addition, we also found that software robots and chatbots perform better 
than physical robots in most individual intelligence dimensions and in overall intelligence perception. 
Keywords: Perceived Intelligence, Intelligence Dimensions, Physical Robots, Software Robots, Chat-
bots, Work Context. 
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1 Introduction 
During the next few decades, the rapid diffusion of intelligent robots and other kinds of intelligent sys-
tems will revolutionise our lives not only at home but also at work (Servoz, 2019). On one hand, this 
diffusion is likely to result in substantial job replacement and retraining, as it has been predicted that 
about 14% of current jobs may be completely automated and about 32% of them are likely to change 
considerably in the future (OECD, 2022). On the other hand, the diffusion is likely to promote produc-
tivity (Servoz, 2019) and may also provide more human-centred benefits, such as more meaningful 
work (Smids et al., 2020). However, in order for such revolutions to take place, these technologies 
must first be adopted by their potential users, which is why it is not surprising that the acceptance and 
use of intelligent robots and other kinds of intelligent systems have begun to gain attention also in in-
formation systems (IS) research. Here, most prior studies have focused on the antecedents of their ac-
ceptance and use, highlighting especially the role of perceived intelligence as a critical factor. For ex-
ample, perceived intelligence has been found to positively affect factors like the perceived usefulness 
and perceived ease of use of these technologies (Moussawi et al., 2021, 2022) as well as their trust-
worthiness and the trust toward them (W. Kim et al., 2020; H. Kim et al., 2022; Moussawi et al., 2021; 
Moussawi and Benbunan-Fich, 2021), thus also having a positive effect on the intention to adopt (Tus-
syadiah and Park, 2018; Pillai and Sivathanu, 2020; Moussawi et al., 2021), use (Blut et al., 2021; 
Chuah, 2021; Moussawi and Benbunan-Fich, 2021; Cai et al., 2022; H. Kim et al., 2022), and continue 
using them (Balakrishnan et al., 2022; Maroufkhani et al., 2022; Moussawi et al., 2022). 
However, whereas many prior studies have focused on perceived intelligence as an antecedent of ac-
ceptance and use, few of them have focused on the antecedents of perceived intelligence itself. This is 
a serious shortcoming because an understanding of such antecedents is considered a critical prerequi-
site for the systematic promotion of perceived intelligence in new product development and marketing 
(Rijsdijk et al., 2007; Rijsdijk and Hultink, 2009; Rokonuzzaman et al., 2022). For example, no prior 
study that we are aware of has examined how individual intelligence dimensions, such as the ability to 
act autonomously or learn, affect the overall intelligence perception of robots. In this study, we aimed 
to address this gap in prior research by examining the effects of individual intelligence dimensions on 
the overall intelligence perception of robots in the work context. Moreover, because these effects may 
vary between different kinds of robots, we also examined the potential differences in the effects as 
well as in the individual intelligence dimensions and overall intelligence perception themselves be-
tween three common types of robots: physical robots, software robots, and chatbots. These examina-
tions were done by utilising data from 1,080 present or prior users of robots at work that was collected 
with an online survey and analysed with structural equation modelling (SEM). As a result, we contrib-
ute to IS literature with a better theoretical understanding of the antecedents and definition of per-
ceived intelligence in the context of using robots at work as well as multiple implications for practice. 
This paper consists of six sections. After this introductory section, we briefly present our research 
model in Section 2. The methodology and results of the paper are reported in Sections 3 and 4, and the 
results are discussed in more detail in Section 5. Finally, the paper concludes with a brief discussion of 
the limitations of the study and some potential paths for future research in Section 6. 

2 Research Background and Research Model 
When reviewing prior literature on intelligent robots and other kinds of intelligent systems in both IS 
and other relevant disciplines, we found several studies that highlighted especially the role of per-
ceived intelligence as a critical antecedent for their use and acceptance. For example, in the case of 
physical and non-physical service robots, perceived intelligence has been found to positively affect the 
trustworthiness of and the trust toward the robots (W. Kim et al., 2020; H. Kim et al., 2022), rapport-
building between humans and robots (Qiu et al., 2020), the intention to adopt the robots (Tussyadiah 
and Park, 2018), and the intention to use the robots (Chuah, 2021; H. Kim et al., 2022). Of these, the 
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last-mentioned effect has also been confirmed in the meta-analysis by Blut et al. (2021). In turn, in the 
case of chatbots, perceived intelligence has been found to positively affect the intention to adopt the 
bots (Pillai and Sivathanu, 2020), the intention to use the bots (Cai et al., 2022), as well as the attitude 
toward and the intention to continue using the bots (Balakrishnan et al., 2022). Finally, in the case of 
artificial intelligence based virtual assistants, perceived intelligence has been found to positively affect 
their perceived usefulness (Moussawi et al., 2021, 2022), their perceived ease of use (Moussawi et al., 
2021), their perceived enjoyment (Moussawi et al., 2021, 2022), their perceived anthropomorphism 
(Moussawi et al., 2021, 2022; Moussawi and Benbunan-Fich, 2021), the trust toward them (Moussawi 
et al., 2021; Moussawi and Benbunan-Fich, 2021), the evaluations of them (Guha et al., 2022), the 
satisfaction with them and with their use (Marikyan et al., 2022; Moussawi et al., 2022), the positive 
disconfirmation of expectations (Moussawi et al., 2022), consumer brand engagement (McLean et al., 
2021), smart-shopping perception (Aw et al., 2022), the attitude toward them and the purchase inten-
tion through them (Balakrishnan and Dwivedi, 2021), the intention to adopt them (Moussawi et al., 
2021), the intention to use them (Moussawi and Benbunan-Fich, 2021), and the intention to continue 
using them (Maroufkhani et al., 2022; Moussawi et al., 2022). 
However, in all the aforementioned studies, perceived intelligence has been operationalised as a sim-
ple unidimensional construct that has typically been measured by using the perceived intelligence di-
mension of the Godspeed scale (a commonly used scale for measuring user perceptions in human–
robot interaction research) by Bartneck et al. (2009). In contrast, few prior studies have employed 
more complex multidimensional operationalisations. One exception to this is the study by Lee and 
Shin (2018) that examined how individual intelligence dimensions affected overall intelligence per-
ception in the context of smartphone use by consumers. However, due to contextual differences, the 
generalisability of its findings to the context of using robots at work can be seen as questionable. For 
identifying the individual intelligence dimensions, the study by Lee and Shin (2018) used the taxono-
my by Rijsdijk and Hultink (2003, 2009; Rijsdijk et al., 2007) that was developed for the context of 
intelligent or smart products. It defines seven individual intelligence dimensions: (1) autonomy (i.e., 
the extent to which a product is able to operate in an independent and goal-directed way without the 
interference of the user), (2) adaptability (i.e., the ability of a product to improve the match between 
its functioning and its environment), (3) reactivity (i.e., the ability of a product to react to changes in 
its environment), (4) multifunctionality (i.e., the ability of a single product to fulfil multiple functions), 
(5) ability to cooperate (i.e., the ability of a product to collaborate with other products in order to 
achieve a common goal), (6) humanlike interaction (i.e., the degree to which a product communicates 
and interacts with the user in a natural, human way), and (7) personality (i.e., the ability of a product 
to show the properties of a credible character). Together, these dimensions form the overall intelli-
gence perception of a product, meaning that the better the product performs in each dimension, the 
more intelligent it is perceived to be. In theory, all the dimensions are assumed to be distinct from each 
other, meaning that performing well in one dimension does not necessarily correlate with performing 
well in the other dimensions. However, in practice, as noted by Rijsdijk et al. (2007), such correlations 
may still occur because the information technology (IT) that is used to promote the intelligence of a 
product in one dimension can often be utilised to promote its intelligence also in the other dimensions. 
Over the years, also other similar taxonomies have been proposed. One example of these is the taxon-
omy by Rokonuzzaman et al. (2022), which is an application of the original taxonomy by Rijsdijk and 
Hultink (2003, 2009; Rijsdijk et al., 2007) to the context of the Internet of Things (IoT) for measuring 
the Smartness of a Thing (SoT). It defines ten individual intelligence dimensions: (1) ability to coop-
erate, (2) autonomy, (3) environmental agility, (4) learning, (5) novelty, (6) personality, (7) real-time 
information processing, (8) two-way communication, (9) upgradability, and (10) visual appeal. As can 
be seen, many of these dimensions are identical to the dimensions of the original taxonomy, whereas 
others are novel and intended to cover the somewhat broader concept of smartness by Rokonuzzaman 
et al. (2022) in comparison to the narrower concept of intelligence in the original taxonomy. Although 
not so widely used, other examples of similar taxonomies are the ones by Maass and Varshney (2008), 
Porter and Heppelmann (2014), Dawid et al. (2017), as well as Novak and Hoffman (2019). 
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In this study, we based our research model on the original taxonomy by Rijsdijk and Hultink (2003, 
2009; Rijsdijk et al., 2007), which we used to identify the individual intelligence dimensions that af-
fect the overall perceived intelligence of robots, as illustrated in Figure 1. The reason for selecting this 
taxonomy over the others was based on the generic nature of its dimensions in comparison to the more 
context-specific nature of the dimensions of other similar taxonomies, which promotes its applicability 
from the context of intelligent products also to the context of intelligent robots. In fact, Rijsdijk and 
Hultink (2003, 2009) as well as Rijsdijk et al. (2007) themselves demonstrated this applicability in 
their studies by using robotic vacuum cleaners, robotic lawnmowers, as well as humanoid and animal 
robots as examples of intelligent products. So, in a sense, many intelligent robots, although not all, can 
also be seen as intelligent products. More specifically, we included in our research model six individu-
al intelligence dimensions that we define as follows: (1) autonomy (i.e., the extent to which a robot is 
able to operate in an independent and goal-directed way without the interference of the user), (2) 
adaptability (i.e., the ability of a robot to improve the match between its functioning and its environ-
ment), (3) reactivity (i.e., the ability of a robot to react to changes in its environment), (4) multifunc-
tionality (i.e., the ability of a single robot to fulfil multiple functions), (5) ability to cooperate (i.e., the 
ability of a robot to collaborate with other systems in order to achieve a common goal), and (6) per-
sonality (i.e., the ability of a robot to show the properties of a credible character). Of these, the first 
five dimensions are the same ones that were also included in the study by Lee and Shin (2018) and can 
be seen to be highly applicable not only to the context of intelligent products but also to the context of 
intelligent robots. For example, it makes sense to assess practically all types of robots in each of these 
five dimensions, and robots that perform better in these dimensions can be assumed to be perceived as 
more intelligent by their users. In addition to them, we also included the personality dimension due to 
the observed strong correlations between perceived intelligence and perceived anthropomorphism in 
several prior studies on the acceptance and use of intelligent systems (e.g., Moussawi et al., 2021, 
2022; Moussawi and Benbunan-Fich, 2021). However, we excluded the humanlike interaction dimen-
sion for three reasons. First, it can be seen to overlap with the personality dimension because a robot 
that is perceived as better in humanlike interaction is also likely to be perceived as having a more hu-
manlike personality. Second, it can be seen as somewhat less generic in comparison to the other di-
mensions because, whereas it makes sense to assess practically all types of robots in the autonomy, 
adaptability, reactivity, multifunctionality, ability to cooperate, and personality dimensions, it only 
makes sense to assess a robot in the humanlike interaction dimension if it actually interacts with hu-
mans in some substantial way. This is not the case with all types of robots, such as many industrial 
robots that are working in factories. Third, humanlike interaction was also assessed as the least im-
portant individual intelligence dimension in terms of overall intelligence perception in the study by 
Rijsdijk et al. (2007) based on interviews with multiple intelligent product experts. 

 
Figure 1. Research model of the study. 
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3 Methodology 
The data for testing the research model was collected with an online survey that was conducted by us-
ing the LimeSurvey service. The respondents for the survey were recruited by using an online 
crowdsourcing service, which have been deemed a reliable and valid method of collecting data also in 
IS research (Lowry et al., 2016). More specifically, we used the Prolific service, which has been found 
to provide better or at least equal data quality and a more heterogeneous population of participants 
than its alternatives, such as the Amazon Mechanical Turk (MTurk) service (Peer et al., 2017, 2021). 
Because we were interested in using robots at work, we recruited only respondents who were em-
ployed either full-time (≥ 30 h / week) or part-time (< 30 h / week) and resided in the UK, the US, or 
Canada, which are all countries that have been found to have high usage rates of robots at work 
(World Economic Forum, 2020) and which also constitute a homogeneous Anglospheric cultural do-
main. In order to promote data quality, as recommended by Peer et al. (2014) and the guidelines by Jia 
et al. (2017) for using online crowdsourcing services in IS research, we also recruited only respond-
ents who had a minimum approval rate of 98% for their submissions as well as had a minimum of 20 
submissions and a maximum of 10,000 submissions. All the respondents were paid a monetary reward 
for their participation that was above the US federal minimum wage of USD 7.25 per hour. 
The survey consisted of two parts. The first part was a short one-minute screening survey, in which the 
respondents were shown a list of different types of intelligent robots or systems and asked to select the 
ones that they have used at work. The second part was the actual survey, which was targeted at only 
those respondents who had indicated that they had used some type of an intelligent robot or system at 
work. In both surveys, we distinguished between four different types of intelligent robots or systems 
that were defined to the respondents as follows: 

• Physical robots: A physical robot refers to robot technology with a physical embodiment (in con-
trast to software robots, chatbots, etc.). Typically, a physical robot is a programmable machine that 
has a movable physical structure and is capable of executing specific tasks with a varying degree of 
autonomy (e.g., industrial robots, service robots, social robots, and care robots). 

• Software robots: Software robots or software robotics refers to the use of bot programs (except 
chatbots) to automate computer tasks usually performed by people. The term software robotics is 
often used synonymously with the term robotic process automation (RPA). 

• Chatbots: A chatbot is a piece of software that is used to simulate an online chat conversation via 
text or text-to-speech instead of providing direct contact with a human (e.g., a customer service 
person). 

• Virtual assistants (omitted in this study, cf. Section 4): A virtual assistant is a piece of software 
that can perform tasks, which are often based on verbal or written commands, for a user (e.g., Ap-
ple Siri, Amazon Alexa, Microsoft Cortana, and Google Home / Nest). 

 
In the actual survey, in order to avoid response fatigue, the respondents were inquired in detail about 
the use of only one of the aforementioned types of technologies: (1) physical robots, if they had used 
them, (2) software robots, if they had used them and had not used physical robots, (3) chatbots, if they 
had used them and had not used physical or software robots, and (4) virtual assistants, if they had used 
them and had not used physical robots, software robots, or chatbots. In addition, all the respondents 
were asked questions about their demographics, job, as well as hopes and fears related to using robots 
at work. The six individual intelligence dimensions and overall perceived intelligence were measured 
reflectively by four items each. The items for measuring the six individual intelligence dimensions 
were adapted from the studies by Rijsdijk and Hultink (2003, 2009), Rijsdijk et al. (2007), as well as 
Rokonuzzaman et al. (2022), whereas the items for measuring the overall perceived intelligence were 
adapted from the study by Lee and Shin (2018). The items were shown to the respondents in an order 
that was randomised individually for each respondent. The exact wordings of the items are reported in 
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Appendix A. The measurement scale was a standard five-point Likert scale (1 = strongly disagree … 5 
= strongly agree). In order to avoid forced responses, the respondents also had the option not to re-
spond to a specific item, which resulted in a missing value. 
The collected data was analysed with covariance-based structural equation modelling (CB-SEM) by 
using the Mplus version 8.8 software (Muthén and Muthén, 2022) and following the guidelines by Ge-
fen et al. (2011) for SEM in administrative and social science research. As the model estimator, we 
used the MLR option of Mplus, which stands for maximum likelihood estimator robust to non-normal 
data. The potential missing values were handled by using the FIML option of Mplus, which stands for 
full information maximum likelihood and uses all the available data in model estimation. The potential 
differences between different types of robots were examined with multiple group analysis (MGA) by 
following the testing procedure proposed by Steenkamp and Baumgartner (1998) for establishing 
measurement invariance. In it, increasingly strict constraints on parameter equality are added across 
the groups and the fit of the resulting constrained model is compared to the fit of the unconstrained 
model. If the constraints result in no statistically significant deterioration in model fit, then the hypoth-
esis on the specific type of measurement invariance is supported. Configural invariance is tested by 
estimating the model separately in each group while constraining only the simple model structure as 
equal across the groups, whereas metric and scalar invariance are tested by additionally constraining 
the indicator loadings and indicator intercepts as equal across the groups. After this, the differences in 
the model constructs can be tested by examining their estimated mean scores in each group. Of the 
groups, one typically acts as a reference group, in which the construct mean scores are fixed to zero 
and against which the construct mean scores of the other groups are compared. In addition, the differ-
ences in the effects between the model constructs can be tested by constraining the estimated effect 
sizes as equal across the groups. As a statistical test for examining the potential deteriorations in mod-
el fit, we used the χ2 test of difference, in which the value of the test statistic was corrected with the 
Satorra-Bentler (2001) scaling correction factor (SCF) due to the use of MLR as the model estimator. 
However, because the χ2 test of difference is known to suffer from a similar sensitivity to sample size 
as the χ2 test of model fit, we also considered the potential changes in the model fit indices, as suggest-
ed by Steenkamp and Baumgartner (1998). 

4 Results 
In total, we received 1,436 responses to the actual survey. However, of them, we had to omit 228 re-
sponses due to the respondents not having used any of the four types of technologies, despite having 
indicated so in the screening survey. In addition, we omitted 54 responses due to an invalid response 
to an attention check item and 12 responses due to a missing value in all the items that measured the 
six individual intelligence dimensions and overall perceived intelligence. Due to the too small number 
of responses from a statistical perspective, we also omitted 62 responses from those who had respond-
ed to the measurement items in the case of virtual assistants. This resulted in a sample size of 1,080 
responses to be used in this study. Of the respondents, 375 (34.7%) had responded to the measurement 
items in the case of physical robots, 474 (43.9%) had responded to the measurement items in the case 
of software robots, and 231 (21.4%) had responded to the measurement items in the case of chatbots. 
The demographics of the sample in terms of the gender, age, country of residence, educational attain-
ment, employment status, and total work experience of the respondents are reported in Table 1, show-
ing the sample to have a good representativeness of the working-age population. Note that the em-
ployment status could also be a combination of two or more options (e.g., employed and student). The 
age of the respondents ranged from 18 to 75 years, with a mean of 35.9 years and a standard deviation 
of 10.5 years, and their mean response time to the survey was about 15 minutes. 
In the following three subsections, we first assess the reliability and validity of the estimated model at 
the both indicator and construct levels, then report the model fit and model estimates, and finally ex-
amine the potential differences between different types of robots. 
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 N %  N % 
Gender   Undergraduate 557 51.6 

Man 529 49.0 Graduate or postgraduate 285 26.4 
Woman 541 50.1 Other or unknown 4 0.4 
Other or unknown 10 0.9 Employment status   

Age   Employed full-time 857 79.4 
18–29 years 337 31.2 Employed part-time 147 13.6 
30–39 years 406 37.6 Self-employed 79 7.3 
40–49 years 192 17.8 Unable to work 1 0.1 
50 years or over 145 13.4 Student 59 5.5 

Country of residence   Total work experience   
UK 721 66.8 Under a year 12 1.1 
US 283 26.2 1–2 years 41 3.8 
Canada 70 6.5 3–5 years 148 13.7 
Other or unknown 6 0.6 6–10 years 227 21.0 

Educational attainment   11–20 years 328 30.4 
Secondary or high school 95 8.8 Over 20 years 323 29.9 
Some post-secondary studies 139 12.9 Unknown 1 0.1 

Table 1. Demographics of the sample (N = 1,080). 

4.1 Model reliability and validity 
Construct reliabilities were assessed by using the composite reliabilities (CR) of the constructs (For-
nell and Larcker, 1981), which are commonly expected to be greater than or equal to 0.7 (Nunally and 
Bernstein, 1994). The CR of each construct is reported in the first column of Table 2, showing that all 
the constructs met this criterion. In turn, construct validities were assessed by examining the conver-
gent and discriminant validities of the constructs by using the two criteria proposed by Fornell and 
Larcker (1981). They are both based on the average variance extracted (AVE) of the constructs, which 
refers to the average proportion of variance that a construct explains in its indicators. In order to have 
acceptable convergent validity, the first criterion expects each construct to have an AVE of at least 
0.5. This means that, on average, each construct should explain at least half of the variance in its indi-
cators. The AVE of each construct is reported in the second column of Table 2, showing that all the 
constructs met this criterion. In turn, in order to have acceptable discriminant validity, the second cri-
terion expects each construct to have a square root of AVE greater than or equal to its absolute correla-
tions with the other model constructs. This means that, on average, each construct should share at least 
an equal proportion of variance with its indicators to what it shares with these other model constructs. 
The square root of AVE of each construct (the on-diagonal cells) and the construct intercorrelations 
(the off-diagonal cells) are reported in the remaining columns of Table 2, showing that this criterion 
was also met by all the constructs. 
Finally, indicator reliabilities and validities were assessed by using the standardised loadings of the 
indicators, which are reported in Appendix A together with the means and standard deviations (SD) of 
the indicator scores as well as the percentages of missing values in the indicators. In the typical case of 
each indicator loading on only one construct, the standardised loading of each indicator is commonly 
expected to be statistically significant and greater than or equal to 0.707 (Fornell and Larcker, 1981). 
This is equivalent to the standardised residual of each indicator being less than or equal to 0.5, mean-
ing that at least half of the variance in each indicator is explained by the construct on which it loads. 
As can be seen, all the indicators met this criterion. In addition, the percentages of missing values were 
very modest, with 990 out of the 1,080 respondents (91.7%) actually having no missing values at all. 
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Construct CR AVE AUT ADA REA MF ATC PER PI 
Autonomy (AUT) 0.900 0.692 0.832       
Adaptability (ADA) 0.903 0.701 0.719 0.837      
Reactivity (REA) 0.898 0.687 0.665 0.712 0.829     
Multifunctionality (MF) 0.898 0.687 0.382 0.499 0.443 0.829    
Ability to cooperate (ATC) 0.892 0.674 0.333 0.444 0.437 0.646 0.821   
Personality (PER) 0.915 0.730 0.623 0.571 0.562 0.366 0.248 0.854  
Perceived intelligence (PI) 0.867 0.620 0.683 0.736 0.604 0.542 0.429 0.633 0.787 

Table 2. Composite reliabilities, average variances extracted, and construct intercorrelations. 

4.2 Model fit and model estimates 
The results of model estimation in terms of model fit, the standardised effect sizes and their statistical 
significance, as well as the proportion of explained variance (R2) in overall perceived intelligence are 
reported in the first column of Table 3. Model fit was assessed by using the χ2 test of model fit and 
four model fit indices recommended in recent methodological literature (Hu and Bentler, 1999): the 
comparative fit index (CFI), the Tucker-Lewis index (TLI), the root mean square error of approxima-
tion (RMSEA), and the standardised root mean square residual (SRMR). Of them, the χ2 test of model 
fit rejected the null hypothesis of the model fitting the data, which is common in the case of large 
samples (Bentler and Bonett, 1980). In contrast, the values of the four model fit indices all clearly met 
the cut-off criteria recommended by Hu and Bentler (1999): CFI ≥ 0.95, TLI ≥ 0.95, RMSEA ≤ 0.06, 
and SRMR ≤ 0.08. Thus, we consider the overall fit of the model acceptable. We also found no serious 
signs of multicollinearity or common method bias. For example, the variance inflation factor (VIF) 
scores calculated from the factor scores were all clearly less than four (Hair et al., 2018), and the Har-
man’s single factor test (Podsakoff et al., 2003) suggested a very bad model fit (χ2(350) = 7,128.916, p 
< 0.001, CFI = 0.600, TLI = 0.568, RMSEA = 0.134, SRMR = 0.113). 
 

 All robots 
(N = 1,080) 

Physical robots 
(N = 375) 

Software robots 
(N = 474) 

Chatbots 
(N = 231) 

Model fit     
χ2 683.113 541.381 549.505 418.835 
df 329 329 329 329 
p < 0.001 < 0.001 < 0.001 0.001 
CFI 0.979 0.968 0.969 0.978 
TLI 0.976 0.963 0.964 0.974 
RMSEA 0.032 0.041 0.038 0.034 
SRMR 0.031 0.035 0.037 0.038 

Effects     
AUT → PI 0.212*** 0.161* 0.231** 0.281*** 
ADA → PI 0.358*** 0.335*** 0.411*** 0.213* 
REA → PI -0.017 0.063 -0.138* 0.053 
MF → PI 0.187*** 0.166** 0.185** 0.261** 
ATC → PI 0.029 0.012 0.036 0.013 
PER → PI 0.230*** 0.268*** 0.245*** 0.228** 

R2 in PI 65.7% 69.1% 60.1% 72.6% 
Table 3. Model fit and model estimates (*** = p < 0.001, ** = p < 0.01, * = p < 0.05). 
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Of the six individual intelligence dimensions, adaptability, personality, autonomy, and multifunction-
ality were each found to have a positive and statistically significant effect on overall perceived intelli-
gence, whereas the effects of the ability to cooperate and reactivity were found to be statistically not 
significant. Together, the six individual intelligence dimensions were found to explain 65.7% of the 
variance in overall perceived intelligence. 

4.3 Differences between different types of robots 
In order to examine the potential differences between different types of robots, we first divided the 
sample into three mutually exclusive and collectively exhaustive groups based on whether a respond-
ent had responded to the measurement items in the case of physical robots (N = 375), software robots 
(N = 474), or chatbots (N = 231). We then estimated the research model separately for each of these 
groups. The results of these estimations are reported in the remaining three columns of Table 3. As can 
be seen, the model fit of these three models remained approximately as good as in the case of the 
model estimated by using the whole sample without the group separation, but there were some differ-
ences in the model estimates. However, before examining these differences closer, we first tested the 
measurement invariance across the groups. The results of these tests are reported in Table 4. As can be 
seen, the tests supported the hypothesis on both configural and full metric invariance but only partial 
scalar invariance. The indicator intercepts that were not found to be invariant across the groups were 
those of REA4 and REA3 in the case of physical robots, which were both found to be slightly lower 
than in the case of software robots and chatbots. This means that the respondents tended to score these 
two items slightly lower in the case of physical robots than in the case of software robots and chatbots, 
regardless of the score of the reactivity construct that they were measuring. However, this partial sca-
lar invariance cannot be considered to compromise the mean score comparisons across the groups in 
the case of any of the constructs because all the constructs were still measured by at least one indicator 
that had both an invariant loading and an invariant intercept across all the compared groups (cf. 
Steenkamp and Baumgartner, 1998). 
 

Invariance χ2 df SCF CFI TLI RMSEA SRMR Δχ2 Δdf p 
Configural 1,511.593 987 1.1697 0.970 0.966 0.038 0.037 – – – 
Full metric 1,559.758 1,029 1.1623 0.970 0.967 0.038 0.039 45.322 42 0.335 
Full scalar 1,641.548 1,071 1.1562 0.968 0.966 0.038 0.040 84.481 42 < 0.001 
Partial scalar (REA4) 1,621.137 1,070 1.1564 0.969 0.967 0.038 0.040 61.266 41 0.022 
Partial scalar (REA3) 1,610.344 1,069 1.1564 0.970 0.968 0.038 0.040 49.068 40 0.154 
Full path 1,619.192 1,081 1.1571 0.970 0.968 0.037 0.041 9.320 12 0.675 

Table 4. Results of measurement invariance tests (non-invariant indicators in parenthesis). 

Finally, we moved on to examine the potential differences in the construct scores and the effects be-
tween the constructs. First, in terms of the differences in the construct scores, the results of the con-
struct mean score comparisons across the groups are reported in a tabular form in Table 5 and a graph-
ical form in Figure 2. In terms of autonomy and adaptability, software robots and chatbots were found 
to have higher scores in comparison to physical robots, but no statistically significant difference was 
found between software robots and chatbots. In contrast, in terms of reactivity, physical robots were 
found to have higher scores in comparison to software robots and chatbots, but, once again, no statisti-
cally significant difference was found between software robots and chatbots. In terms of multifunc-
tionality, software robots were found to have higher scores in comparison to physical robots and chat-
bots, but no statistically significant difference was found between physical robots and chatbots. In 
terms of the ability to cooperate, chatbots were found to have higher scores in comparison to software 
robots, but no statistically significant differences were found between physical and software robots or 
between physical robots and chatbots. In terms of personality, chatbots were found to have higher 
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scores in comparison to physical and software robots, and also software robots were found to have 
higher scores in comparison to physical robots. Finally, in terms of overall perceived intelligence, 
software robots and chatbots were found to have higher scores in comparison to physical robots, but 
no statistically significant difference was found between software robots and chatbots. Second, in 
terms of the differences in the effects between the constructs, the last row in Table 4 reports the results 
of the full path invariance test. It suggested that, overall, there were no statistically significant differ-
ences across the groups in the effects between the constructs. Thus, the small differences in the model 
estimates that can be seen in Table 3 are only due to random variation. 
 

Construct Software robots vs. 
physical robots 

Chatbots vs. 
physical robots 

Chatbots vs. 
software robots 

Autonomy (AUT) 0.387*** 0.470*** 0.083 
Adaptability (ADA) 0.467*** 0.530*** 0.063 
Reactivity (REA) -0.230** -0.216* 0.014 
Multifunctionality (MF) 0.164* -0.017 -0.181* 
Ability to cooperate (ATC) 0.123 -0.084 -0.207** 
Personality (PER) 0.134* 0.539*** 0.405*** 
Perceived intelligence (PI) 0.380*** 0.304** -0.075 

Table 5. Differences in construct mean scores (*** = p < 0.001, ** = p < 0.01, * = p < 0.05). 

 
Figure 2. Differences in construct mean scores (physical robots act as the reference group). 

5 Discussion and Conclusion 
In this study, we examined how individual intelligence dimensions affect the overall intelligence per-
ception of robots in the work context. Moreover, we also examined the potential differences in these 
effects as well as in the individual intelligence dimensions and overall intelligence perception them-
selves between three common types of robots: physical robots, software robots, and chatbots. All in 
all, we made three main findings. 
First, we found that the overall perceived intelligence of robots in the work context is affected most 
strongly by their adaptability, followed by their personality, autonomy, and multifunctionality. Each of 
these four individual intelligence dimensions was found to have a positive and statistically significant 
effect on the overall perceived intelligence of robots. In contrast, the effects of the ability to cooperate 
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and reactivity were found to be statistically not significant. These findings are partly in accordance but 
partly in conflict with the prior findings by Lee and Shin (2018) in the context of smartphone use by 
consumers, which suggested that only multifunctionality and adaptability have a positive and statisti-
cally significant effect on the overall perceived intelligence of smartphones, whereas the effects of 
reactivity, the ability to cooperate, and autonomy are statistically not significant. Thus, there seem to 
be some substantial differences between this context and the context of using robots at work in terms 
of how the individual intelligence dimensions affect the overall intelligence perception. Of the find-
ings, especially the positive and statistically significant effects of adaptability and autonomy on the 
overall perceived intelligence of robots cannot be considered surprising because these were assessed 
as the most important individual intelligence dimensions in terms of overall intelligence perception 
also in the study by Rijsdijk et al. (2007) based on interviews with multiple intelligent product experts, 
many of whom considered these as “the ultimate intelligence”. In addition, they are both central 
themes in artificial intelligence (AI), on which also the intelligence of intelligent robots is based (Rus-
sell and Norvig, 2022). Similarly, we do not consider the positive and statistically significant effects of 
multifunctionality and personality on the overall perceived intelligence of robots to be surprising. On 
one hand, being competent in not only one but multiple things is likely to promote the perception of 
general instead of only domain-specific intelligence. On the other hand, perceived intelligence has 
been found to correlate strongly with perceived anthropomorphism in several prior studies on the ac-
ceptance and use of intelligent systems (e.g., Moussawi et al., 2021, 2022; Moussawi and Benbunan-
Fich, 2021). In contrast, the statistically not significant effects of the ability to cooperate and reactivity 
on the overall perceived intelligence of robots can be considered somewhat more surprising. They may 
both be explained by the ever-higher expectations that users place on the intelligence of robots. For 
example, due to the widespread diffusion of IoT technologies, the ability of a robot to connect to as 
well as communicate and cooperate with other systems may already be seen as a standard feature of 
many modern robots rather than any special sign of intelligence. Similarly, many users may expect a 
robot to be not only reactive but also adaptive in order for it to be perceived as intelligent. As ex-
plained by Rijsdijk et al. (2007), reactivity refers to very straightforward and reflexive responses to 
environmental stimuli that remain constant over time. Instead, adaptability involves more sophisticat-
ed gathering, storing, and processing of information in order to build an internal model of the envi-
ronment that is then used for learning and adapting the responses to the external stimuli over time. 
Second, we found no differences in the aforementioned effects between different types of robots, 
meaning that users seem to form their overall intelligence perception based on the individual intelli-
gence dimensions similarly in the case of physical robots, software robots, and chatbots alike. Thus, 
the differences in the aforementioned effects can be characterised more as between-context differences 
(i.e., differences between the context of using robots at work and other contexts) than within-context 
differences (i.e., differences within the context of using robots at work). In contrast, third, we found 
differences in the individual intelligence dimensions and overall intelligence perception themselves 
between different types of robots. In general, both software robots and chatbots seemed to be per-
ceived as at least equally or more intelligent than physical robots in the case of all the individual intel-
ligence dimensions except for reactivity, in the case of which physical robots were perceived as more 
intelligent than both software robots and chatbots. The most substantial differences were found in au-
tonomy, adaptability, and personality. As a result, also the overall perceived intelligence of both soft-
ware robots and chatbots was found to be higher in comparison to physical robots. However, between 
software robots and chatbots, the differences were found to be less substantial, which is likely ex-
plained by their commonalities (e.g., being both non-physical instead of physical) in comparison to 
physical robots. Here, the only differences were that chatbots were perceived to be slightly less multi-
functional and less able to cooperate, but to have a more humanlike personality. Of these, especially 
the difference in personality is by no means surprising because chatbots typically communicate with 
users in a very humanlike manner and may be represented by humanlike avatars, which obviously of-
fers them more opportunities for building humanlike personalities. This is also reflected by the interest 
that several prior studies have shown in chatbot personalities (e.g., Shumanov and Johnson, 2021). 
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From a theoretical perspective, the aforementioned findings promote our understanding of the per-
ceived intelligence of robots by suggesting how individual intelligence dimensions affect the for-
mation of overall intelligence perception in the work context. On one hand, this understanding can be 
seen to offer us new insights into the antecedents of perceived intelligence. On the other hand, it can 
also be seen to offer us building blocks for a more precise definition of the concept of perceived intel-
ligence itself. As exemplified by Legg and Hutter (2007), intelligence is a very ambiguous concept for 
which dozens of different definitions have been suggested. Many of these definitions are based on a 
list of abilities associated with intelligence, but this list varies widely from one definition to another. 
Our study suggests that in the context of intelligent robots, and more specifically in the context of us-
ing intelligent robots at work, the most precise definition for perceived intelligence would seem to be 
the ability of a robot to be adaptable, autonomous, and multifunctional as well as to have a humanlike 
personality. This more precise definition enables future studies to move on from the simple unidimen-
sional operationalisations of perceived intelligence that have been used in most prior studies (cf. Sec-
tion 2), to more complex multidimensional operationalisations that may further promote our under-
standing of the phenomenon in question. 
In turn, from a practical perspective, the findings of the study offer the organisations that have already 
taken or are thinking about taking robots into use valuable insights into promoting their perceived in-
telligence. Such promotional actions can be considered important from at least two perspectives. On 
one hand, from an organisation-centred perspective, the higher perceived intelligence of robots is like-
ly to accelerate their diffusion in the organisations, as illustrated by the positive effects of perceived 
intelligence on adoption, use, and use continuance intentions (cf. Section 2), thus also resulting in 
productivity improvements. On the other hand, from a human-centred perspective, the higher per-
ceived intelligence of robots is likely to improve human–robot interaction among the employees of the 
organisations, as illustrated by the positive effects of perceived intelligence on factors like perceived 
usefulness, perceived ease of use, and perceived enjoyment (cf. Section 2), thus augmenting the bene-
fits (e.g., more meaningful work – cf. Smids et al., 2020) and mitigating the hindrances (e.g., tech-
nostress or robostress – cf. Tarafdar et al., 2007; Ragu-Nathan et al., 2008; Vänni et al., 2019) that 
may result from human–robot collaboration. What the promotional actions should concretely be obvi-
ously depends a lot on the robot or context in question, such as whether the robot in question is an in-
dustrial robot that is working in a factory or a service robot that is working in close cooperation with 
humans. However, our findings suggest that, in the case of all robots and contexts, the main focus of 
the promotional actions should be on adaptability, personality, autonomy, and multifunctionality be-
cause these individual intelligence dimensions were found as the most influential in affecting the over-
all intelligence perception of robots. Thus, promoting employee perceptions on these four dimensions 
should be paid special attention during the whole lifespan of the robots, not only when designing and 
developing the robots but also when introducing them to their end-users because the acceptance and 
use of all technological innovations are ultimately determined not only by their internal technical char-
acteristics but also by external social cues, such as the communication concerning them (Rogers, 
2003). In addition, our findings suggest that the promotional actions are needed most urgently in the 
case of physical robots, which were found to lag behind software robots and chatbots in most of the 
individual intelligence dimensions and in the overall intelligence perception. However, in the case of 
all types of robots, there seems to be plenty of room for improvement, as it is suggested by the mean 
values of the measurement items reported in Appendix A. According to these, the respondents found 
robots to perform worse than moderately in all the individual intelligence dimensions except for the 
ability to cooperate and multifunctionality as well as particularly badly in personality. 

6 Limitations and Future Research 
This study can be considered to have three main limitations. First, the study targeted only US, UK, and 
Canadian residents, which limits the generalisability of its findings to other countries and cultures. 
Second, the study focused on the use of robots only in the work context. Although this context has 
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acted as one of the main drivers for the diffusion of intelligent robots, intelligent robots are obviously 
also being used in non-work contexts, making it important to expand the examination to also these 
other contexts. Third, although the six individual intelligence dimensions in our research model were 
able to explain about two-thirds of the variance in the overall perceived intelligence of robots, one-
third of this variance remained unexplained. Thus, in order to further promote the proportion of ex-
plained variance, it is important to expand the set of the examined individual intelligence dimensions, 
for example, by considering the use of also other taxonomies than the taxonomy by Rijsdijk and 
Hultink (2003, 2009; Rijsdijk et al., 2007) that we used in this study. 
We see that one important path for future research is to address the aforementioned limitations by rep-
licating the present study in other countries and cultures as well as in contexts other than the work con-
text, while also potentially identifying additional individual intelligence dimensions that may affect 
the overall intelligence perception of robots. In addition, future research may benefit from less quanti-
tative and more qualitative studies that provide more in-depth information on the specific use contexts 
of robots. Such studies may be particularly helpful in more thoroughly explaining some of the findings 
of this study, such as the differences found in the individual intelligence dimensions and overall intel-
ligence perception between different types of robots. They may also offer further insights on concrete 
actions that could be taken to promote the individual intelligence dimensions that were found as the 
most influential in affecting the overall intelligence perception of robots in this study. 
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Appendix A 
When thinking about the [physical robots / software robots / chatbots / virtual assistants] that you [use 
/ have used] at work, to what extent do you agree or disagree with the following statements? 
 

Item Wording Mean SD Missing Loading 
AUT1 They make decisions by themselves. 2.315 1.269 1.8% 0.826*** 
AUT2 They determine by themselves how to do things. 2.288 1.233 1.4% 0.834*** 
AUT3 They determine by themselves what to do. 2.296 1.249 1.3% 0.828*** 
AUT4 They decide things independently. 2.231 1.217 2.0% 0.839*** 
ADA1 They have an ability to learn. 2.746 1.328 1.9% 0.864*** 
ADA2 They learn from experience. 2.587 1.329 1.9% 0.860*** 
ADA3 They improve themselves over time. 2.682 1.327 1.8% 0.890*** 
ADA4 They deliver better and better performance over time. 3.008 1.268 0.7% 0.724*** 
REA1 They observe their environment. 2.457 1.300 2.6% 0.847*** 
REA2 They keep an eye on their environment. 2.431 1.299 2.8% 0.820*** 
REA3 They react to changes in the environment. 2.555 1.292 2.1% 0.837*** 
REA4 They adapt their behaviour to the environment. 2.517 1.284 2.1% 0.811*** 
MF1 They have multiple functions. 3.613 1.191 0.1% 0.841*** 
MF2 They perform multiple functionalities. 3.543 1.222 0.4% 0.856*** 
MF3 They fulfil multiple functional needs. 3.511 1.166 0.7% 0.789*** 
MF4 They can do a lot of different things. 3.407 1.241 0.6% 0.828*** 
ATC1 They can cooperate with other systems. 3.715 1.148 0.7% 0.847*** 
ATC2 They can work in cooperation with other systems. 3.715 1.141 0.7% 0.817*** 
ATC3 They can connect or be connected with other systems. 3.804 1.139 1.1% 0.796*** 
ATC4 They can communicate with other systems. 3.708 1.152 0.7% 0.824*** 
PER1 They have humanlike personalities. 1.766 1.049 2.0% 0.876*** 
PER2 They have human properties. 1.901 1.101 1.5% 0.808*** 
PER3 They behave like human beings. 1.841 1.078 1.9% 0.867*** 
PER4 They are like people. 1.702 0.978 1.9% 0.864*** 
PI1 They are intelligent. 2.781 1.396 1.3% 0.889*** 
PI2 They are smart. 2.891 1.369 1.4% 0.874*** 
PI3 They are clever. 2.734 1.380 1.5% 0.851*** 
PI4 They are savvy. 2.437 1.310 2.2% 0.760*** 

*** = p < 0.001 
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