Association for Information Systems

AIS Electronic Library (AISeL)

ICEB 2022 Proceedings (Bangkok, Thailand)

International Conference on Electronic Business (ICEB)

Fall 10-17-2022

Developing and validating a scale to identify the employability skill set vital for the frontline workers: A case of hospitals in Delhi/NCR

Swati Sisodia School of Management, GD Goenka University, Gurugram, India, swati.sisodia@gdgu.org

Neetima Agarwal Symbiosis International University, neetima.agarwal@scmsnodia.ac.in

Follow this and additional works at: https://aisel.aisnet.org/iceb2022

Recommended Citation

Sisodia, Swati and Agarwal, Neetima, "Developing and validating a scale to identify the employability skill set vital for the frontline workers: A case of hospitals in Delhi/NCR" (2022). ICEB 2022 Proceedings (Bangkok, Thailand). 8.

https://aisel.aisnet.org/iceb2022/8

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ICEB 2022 Proceedings (Bangkok, Thailand) by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Developing and validating a scale to identify the employability skill set vital for the frontline workers: A case of hospitals in Delhi/NCR

Swati Sisodia ^{1,*}

Neetima Agarwal²

*Corresponding author

¹ Assistant Professor, School of Management, GD Goenka University, Gurugram, India swati.sisodia@gdgu.org

² Assistant Professor, Symbiosis International University, neetima.agarwal@scmsnodia.ac.in

ABSTRACT

The purpose of this study is to identify those imperative skills required by an oligopolistic industry (healthcare) to provide significant services so as to ensure maximum customer satisfaction. Employability skills are those essential skills which are required in the workplace. Researchers are consistently analyzing it on multiple fronts and domains to help the industry identify the right person for the right job. Unfortunately, there is still a dearth of studies which have precisely recognized the employability skill set for frontline workers in hospitals. In this paper, researchers have successfully developed and validated a scale to measure the employability skill set required by frontline workers in the healthcare industry. Researchers have developed a research scale consisting of nine essential dimensions of skills. For validating the scale, a sample has been collected from 400 respondents, having at least 10 years of experience in the Medical Service Vertical using stratified random sampling. The medical service vertical comprises both front-end and back-end jobs. The skill set varies at each level and as per the key responsibility areas. An employability skill set scale has been developed, encompassing the required soft and technical skills. The study intends a significant positive correlation, which means that any positive variance in one leads to a corresponding affirmative variability in the other. This study will further assist researchers who want to develop tailored training programmes for frontline workers.

Keywords: Employability skills, training, healthcare industry, India, scale, EFA, CFA.

INTRODUCTION

The healthcare industry is at the epicenter of the global pandemic challenge. The entire globe is dependent on healthcare facilities, which include medication, hospitalization, recovery, and vaccination. In most countries, healthcare facilities are under the direct control of the government to ensure the best healthcare amenities for its citizens. With an overall revenue of around US\$ 2.8 trillion, the healthcare firm could be the world's largest sector. (IBEF report, 2019). It is expected to be one of India's primary economic drivers. It is the fourth largest employer in the country, offering employment both in the public and private sectors. (Irshad & Abidi, 2020).

The healthcare sector is mostly a knowledge-based, experience-based, and stable industry. Hospitals, like other businesses, have well-defined vertical and hierarchical structures. The requirements for generic, specialist, and technical abilities vary by level. The prospective skills required at each level should be examined and carefully defined well before the training programme is designed. The Medical Service Vertical (MSV) is made up of Line Services, Supportive Services, and Auxiliary Services.

With the unprecedented importance and growth of the healthcare industry, it has become essential to choose the right skill for the right job. As the medical service vertical includes services such as outpatient, inpatient, emergency, registration, ICU (Intensive-care unit), transport, security, diet services, and radiology, it is paramount that services must be effective and efficient. Most of the research conducted in the past focused on broader aspects of competency and professionalism (Dong et al., 2017). In this study, a novel definition and conceptual skill framework are identified and analyzed, involving multiple stakeholders to reduce the gap between perceived services and actual services. (Dorri, Akbari, & Sedeh, 2016).

The term "employability" is not generic; rather, it implies those skills, competencies, characteristics, and experiences required to achieve higher performance. We are moving from Industry 4.0 to Industry 5.0. The skill set is changing with the organizational structures. The introduction of artificial intelligence in the healthcare industry has made it robust and technology-oriented. Usually, the medical service vertical is a perfect mix of sincerity, punctuality, emotional intelligence, social intelligence, technical intelligence, and critical thinking.

Employability skills are one domain that is less explored when it comes to the Healthcare Industry in India. Exploring the Employability Skill (ES) required by frontline workers at all levels will aid in gaining a better understanding of the diverse skills required by professionals (Eisenbeiss, Van, & Boerner, 2008). It is expected to solve the leading problem of the minimum required skills to get employed in hospitals in India. So, the purpose of the current study is to set up and test an ES scale that could be used in future empirical studies.

This study focuses on pre-requisite skills essential for professionals working in the medical service vertical. Since the medical service vertical comprises various major dimensions such as nursing, emergency, ICU, stores, outpatient, etc., all of these play a significant & effective role in patients' education. It focuses on providing a high quality of care and minimizing medical errors by practicing health preservation and improvement (Dorri et., 2019). Further, this research has been carried out with the objective of carefully analyzing the vital skills, behaviors, and attributes required at the MSV of the healthcare industry.

This study is divided into four sections. Critical literature reviews on employability skills and skill-based training in the healthcare business are discussed in the first segment. The second section represents the research methodology of the study. The third segment includes the analysis and interpretation of the information gathered. The last section discusses the remarks, practical implications, limitations, and future direction.

LIETRATURE REVIEW

Baxter and Young (1982) have demonstrated that businesses need entry-level employees who are reliable and dependable, have fundamental skills such as communication, leadership, problem-solving, analytical and critical-thinking, and a desire to learn and grow, so as to work effectively and efficiently as a part of a team, and have a legitimate demeanor. Employability also implies that individuals who have the abilities to perform the required work may not be able to do so immediately without additional training (Cox & King, 2006). As organizations need to change, employers are looking for workers who can adapt and do a lot of different things. Most of the researchers address the need for employability skills (ES) for a university graduate. There is limited literature available that discusses the need for ES for existing professionals in the healthcare industry (Sheldon et al., 2005; Shrader et al., 2013).

Employability skills (ES), as per Munro (2007), include the capacity to improve the effectiveness of work in an organization as well as strong verbal communication and critical thinking skills, which have been the foundations of both academic and professional success. Bennett et al. (2000) contended that ES includes not only the traits of prospective employees but also the basic criteria and the individual needs to be assessed for employment. These competencies are required to do work efficiently and make a significant contribution to an organization's sustainability. ES's are an assemblage of skills that assist in fostering an individual's aptitude to perform efficiently and effectively in the workplace (Singh et al., 2013). Employability skills are sometimes referred to as "transferable skills" or "generic skills."

According to Clarke (2007), basic abilities such as cognitive, resource, interpersonal, systemic, and technological skills, as well as personal attributes, are all included in employability skills. Moreover, ESs are a set of important characteristics ingrained in each person in order to create a skilled and competent workforce (Kazilan et al., 2009). This is similar to people who have strong traits such as a high degree of self-innovation, efficiency, ability, and competitiveness, as well as a strong sense of commitment and ingenuity in dealing with worldwide challenges. The need for skill-based training for front-line workers in hospitals in India Competent employees are the backbone of all the service industries, as they are the people working both at the front end and the back end of the organization. As a result, in order to compete in a competitive world, healthcare service providers must improve their strategy by providing high-quality, low-cost care services to their patients. (Francis et al., 2006; Kotler & Keller, 2007).

Human capital development is a critical method for sustaining such a competitive edge. (Frei, 2008). In hospitals, human resource practitioners are facing challenges such as recruiting, up skilling, and retaining skilled manpower (Arasli et al., 2006). Front-line workers (FLWs) are designated as the face of the health industry. These are front desk agents, security guards, floor attendants, emergency unit staff, store department, etc. All the employees working at the front play a decisive role in the brand building of the organization because they are engaged in face-to-face dealings with the patients, thereby providing additional value and assuring service industry sustainability (Karatepe & Ehsani, 2012). As a result, one of the most essential snags in the service business is attracting and retaining these types of personnel for a long time. (Chebat et al., 2002; Babakus et al., 2003; Alexandrov et al., 2007). There has been limited research conducted in the past that explains the challenges faced by human resource management (HRM), such as rapid technological change and dynamic work culture, predominantly in the health-care sector. The healthcare industry is a live example of such encounters. Researchers have identified that HRM practitioners face copious challenges, especially in acquiring and retaining key talent, up skilling them, augmenting performance, and budding the mindset of the workforce as the organization intensifies in magnitude and capacity (Kotter & Sathe, 1978; Barringer, Jones, & Neubaum, 2005; Budhwar et al., 2006).

In order to ensure quality, care, and safety, human resources are a crucial and critical factor of healthcare service performance. (Bartram & Dowling, 2013). There are many ideas introduced in past research to increase the efficiency of frontline workers. Firstly, healthcare outcomes are extremely complex as they face continuous pressure to become efficient, innovative, and deliver quality healthcare services. Secondly, as frontline workers are the front faces of hospitals, it is indeterminate and difficult to measure the quality. Thirdly, healthcare outcomes are public-oriented. Hospitals cannot, in most circumstances, be arbitrated on the basis of effectiveness and brand image. Finally, healthcare organizations are predominantly multiplex due to their dual lines of responsibility and accountability: professional and administrative (Agarwal, Garg, & Pareek, 2011). Earlier, there was no concept of formal training in the workplace. But nowadays, training is referred to as a building block and regarded as a tool for human resource development (NSDC report 2019). Over the past few years, healthcare providers have faced several issues related to soft skills training for their frontline workers. Employability skills are not necessarily developed

at university. However, they are highly valued at the time of placement and during the course of work (Ray et al., 2013). A study was conducted at 36 universities providing healthcare education, where students were asked to analyze their skills. They felt that it was necessary to attain a high level of skills for learning, teamwork, problem-solving, communication, and ICT skills (Moore et al., 2018; Roberts et al., 2016).

Most of the researchers (Taylor, 2005; Manser et al., 2009; Suresh & Kodikal, 2015; Williamson et al., 2016) suggest that effective human resource utilization is important to evaluate skills at each hierarchical level. Professional quality and perceived satisfaction vary across the levels of a healthcare organization (Sinclair et al., 2016). Various leadership styles are visible in the healthcare industry, viz. formal, i.e. transformational, transactional and empowering, and informal. It means that leadership is distributed in the healthcare industry.

Classroom training, according to Pineda (2010), Mora et al. (2011), Mehaj-Kosumi (2013), & Vij et al. (2014), focuses on skills such as communication, teamwork, and problem-solving. The stimulation-based training programme designed and developed by the healthcare organization must cover skills such as interpersonal, self-management, and planning and organizing (Balakrishnan et al., 2018). Training activities should be focused on the development of employees rather than as an investment plan. The training programme should be designed on a periodical basis for incessant up-gradation of skills amongst individuals (Izumi et al., 2010; Vogel, 2016; Kneafsey et al., 2016). A qualified and trained workforce would be advantageous in the health sector for inter-disciplinary interactions, coordination across the hierarchy, effective and efficient management of resources, logistics, and supply chain (Sharma & Zodpey, 2011).

Measuring the intangible quality of health care services has become a duty of managers and hospital administrators. One parameter is patient satisfaction, which is a complex phenomenon that is also linked to patient expectations towards the facilities and allied services of hospitals (V.K. Singh, 2018). Patient satisfaction has evolved as well as knowledge of the results in the healthcare sector, which is also an imperative indicator for the quality of healthcare services and surveys. Patient satisfaction is one of the World Health Organization's (WHO) nine key indicators for measuring and quantifying the delivery of health services (Abid Hussian, 2019).

The hospitals intend to be endowed with the best medical facilities and management services for smooth operational activities. It is scurried by a staff consisting of doctors, nurses, paramedics, administrative, housekeeping, and much more (Surg, 2014). All the administrative staff of the hospitals are accountable and responsible for their tasks. Patients who are contented and impressed by the frontline staff will eventually develop trust in the services provided by the hospitals. The aptitude of the inpatient and outpatient departments is another important factor that often affects the success of the hospital (Tabish, 2011). Promoters frequently overlook the fact that these services are extremely profitable in terms of brand image building.

RESEARCH METHODOLGY

Rationale and Objectives of the Study

The healthcare industry is considered a prodigious industry, both in terms of revenue and employment generation. It is a highrisk industry in which professionals have to practice zero negligence. The role of training has assumed paramount consequence in such a risk-driven industry. The rationale behind this research effort must be spelled out clearly. This will enable the readers to comprehend the importance and relevance of ES and training needs in the medical service vertical of hospitals. Everyone proclaims that human assets prove to be the paramount asset. On the other hand, there is a need to up-skill the employees to survive in the changing environment. Hospitals need to identify the skills required by their employees by performing for the detailed analysis, an employability skill set is created after conducting an intensive literature review, primary data collection, expert drawing, and using statistical tools. This employability skill set is further divided into 13 skill typologies in both generic skills and technical skills needed by the professionals to work in the medical service vertical. Hence, a research gap is apparent.

The primary purpose of this research is to develop and test a scale to assess the necessary competencies for professionals working in the MSV in Delhi/NCR hospitals. This study proposes to explore the obligatory skills required by frontline workers across the hierarchical level. So that they can identify their deficient skills and competencies, which are required to survive in a competitive business environment.

Date Source & Sampling Frame

A structured questionnaire has been designed and was further administered to 410 medical service professionals working in Delhi and NCR. A stratified random sampling method was used to acquire the data from healthcare professionals, and they were asked varied questions to identify their employability skill set. At a 95% confidence level and a 5% significance level, a standard formula for calculating sample size was used. According to Krejcie & Morgen (1970), for a target population of 10,700, the sample size must be 384 and above. For the study, the questionnaire was administered to 410 respondents, out of which seven had submitted incomplete forms and three were inclined on extreme sides. Therefore, the researcher has taken a final sample of 400 respondents.

A Sampling Frame to be considered for the Study:

• Private hospitals in Delhi/NCR would be used for the procedure.

- Multi-specialty hospitals with at least 200 patient beds are
- Hospitals with at least 50 employees (excluding doctors) are
- Hospitals with an annual revenue of at least Rs.50 lakh are eligible.
- Respondents with at least 10 years of experience are taken for this study Respondents must be at least diplomaholders and above for this

The above sampling frame was designed, taking a few things into consideration:

Since it was a difficult or impractical task to track down the entire population, the only method available was to sample the population. The sample is the envoy of the target population, thus it becomes imperative to pre-determine how to draw a sample size. Private hospitals are chosen as most of them have well defined hierarchies and often conduct training programmes at various levels, as compared to public hospitals. Moreover, the researcher has considered hospitals with huge infrastructure and revenue as training programmes require investment. The sample size of 400 respondents has been considered for this study. The researcher has distributed the sample as per the proportion given.

ANALYSIS AND INTERPRETATION

The data was analyzed using SPSS 23.0 and AMOS 23.0 versions. Normality and missing values of data were checked before performing an empirical analysis. The normality of data was checked at univariate and multivariate levels. For conducting normality tests, researchers used the MVN (Multivariate Normality) 1.6 version. Univariate normality was conducted using Shapiro-Wilk's and Anderson-Darling's normality tests. Whereas multivariate normality was performed using Mardia's and Henze-Zirkler's tests. Further, to check the normality, researchers used descriptive statistics for skewness and kurtosis.

Univariate, Multivariate Normality Test and Demographic Profiling of the Responding

As skewness is a measure of symmetry, its value must range between-2.0 to +2.0. As kurtosis depicts the end of a tail, its value lies between-3.0 to +3.0. As per the values obtained, they lie within this range, thus suggesting that the data is normally distributed. The outcome of the descriptive statistics is shown in table 1. Other tests like Shapiro-Wilk's and Aderson-Darling's were also conducted to confirm the univariate normality of data. Both the tests support the normality of data at a univariate level since the p-value is significant and less than 0.05 in each case. Thus, the null hypothesis was accepted. Results are shown in Table 2 and Table 3.

	n	Mean	Std.De	Median	Min	Max	25th	75th	Skew	Kurtosis
PP	400	3.694	0.867	3.86	1	5	3.43	4.29	-1.252	1.103
BT	400	3.957	0.806	4	1	5	3.75	4.5	-1.585	2.74
FB	400	3.871	1.028	4	1	5	3.33	4.67	-0.92	-0.061
AU	400	3.38	0.929	3.75	1	5	3	4	-0.841	-0.17
IN	400	2.479	0.825	2.5	1	5	2	3	0.654	0.019
DO	400	2.819	1.183	2.5	1	5	2	3.75	0.202	-1.193
AS	400	3.585	1.132	4	1	5	3	4.33	-0.896	-0.189
ADMI	400	4.04	0.754	4	1.5	5	3.582	4.637	-0.787	0.357
STM	400	3.269	1.02	3.5	1	5	2.5	4	-0.683	-0.798
BA	400	3.953	0.879	4.1	1	5	3.6	4.6	-1.334	1.612
VAS	400	3.672	0.873	3.75	1	5	3.25	4.25	-0.584	0.035
SA	400	2.867	1.043	2.75	1	5	2	3.75	0.242	-0.99
CO	400	4.131	0.567	4.25	1.5	5	4	4.5	-1.51	2.748

	Variable	Statistic	p-value	Normality
1	PP	0.9777	0.4595	YES
2	BT	0.9717	0.2715	YES
3	FB	0.641	0.5542	YES
4	AU	0.823	0.6967	YES
5	IN	0.78	0.5345	YES
5	DO	0.596	0.7811	YES
7	AS	0.906	0.5452	YES
8	ADMIN	0.973	0.6752	YES
9	STM	0.69	0.4531	YES
10	BA	0.997	0.7911	YES
11	VAS	0.69	0.4143	YES

The 22nd International Conference on Electronic Business, Bangkok, Thailand, October 13-17, 2022

12	SA	0.721	0.6274	YES							
13	CO	0.671	0.4321	YES							
Table 3: Anderson-Darling's Normality Test Variable Statistic p-value Normality											
	Variable	p-value	Normality								
1	PP	0.408	0.3352	YES							
2	BT	0.491	0.2102	YES							
3	FB	0.341	0.2222	YES							
4	AU	0.523	0.4567	YES							
5	IN	0.48	0.3561	YES							
6	DO	0.596	0.4671	YES							
7	AS	0.606	0.5231	YES							
8	ADMIN	0.713	0.5341	YES							
9	STM	0.49	0.3811	YES							
10	BA	0.697	0.5912	YES							
11	VAS	0.321	0.2141	YES							
12	SA	0.721	0.6234	YES							
13	CO	0.521	0.4321	YES							

To check the multivariate normality of data, Mardia's and Henze-Zirkler's tests were conducted. Again, it was observed that the p-value was significant and less than 0.05. This supports that data is normally distributed at the multivariate level. Hence, the null hypothesis was accepted. Results are shown in Table 4 and Table 5. It demonstrates that the data is normally distributed both at the uni-variate and multivariate levels. For further analysis, the researcher used statistical software like SPSS 23.0 and AMOS 23.0 to achieve the objectives of the study.

Table 4: Mardia's	Multivariate	Normality Test

g1p	:	0.09114042
chi.skew	:	0.7595035
p.value.skew	:	0.9437932
g2p	:	8.105738
z.kurtosis	:	0.09346006
p.value.kurt	:	0.9255381
chi.small.skew	:	0.8379339
p.value.small	:	0.9332914

Table 5: Henze-Zirkler's Multivariate Normality Test	t
--	---

HZ	: 0.2856007		
p-value	e: 0.9146336		
Source	The authors		
Source			

Table 6, which exhibits the demographical representation of the respondents considered for the study, it shows that most of the respondents lie between the 35 to 42 age group and are employed either at the middle or lower level in the organization. They have more than 10 years of experience, which assisted the researcher in gathering feasible and reliable responses.

Characteristic		Number	Percentage (%)
Gender		1	
Male		286	71.5
Female		114	28.5
	Total	400	100

		Table 6:	Demogra	phic '	Traits	of Res	pondents
--	--	----------	---------	--------	--------	--------	----------

21-28		71	17.75
28-35		126	31.5
35-42		165	41.25
Above 42		38	9.5
	Total	400	100
Highest Degree Earned			
Post-Graduation		62	15.5
Graduation		233	58.25
Others (diploma holders, etc.)		105	26.25
	Total	400	100
Experience			
Above 3-5 years		74	18.5
5-8 years		116	29
8-11 years		138	34.5
Above 11 years		72	18
	Total	400	100
Organizational Level			
Top Level		22	5.5
Middle Level		143	35.75
Lower Level		235	58.75
	Total	400	100

Exploratory and Confirmatory Factor Analysis

The researcher used SPSS 23.0 to perform EFA (Exploratory Factor Analysis). Both the varimax rotation and the promax rotation are used to identify a minimum number of factors showing a maximum portion of the variance. As shown in Table 8, 54 items measured on a Likert-scale were converged onto 13 factors. Moreover, to assess the suitability of the data, the Kaiser-Meyer-Olkin (KMO) and Bartlett's Test of Sphericity were used. It is also useful for evaluating factorability. The estimated value of KMO is greater than 0.07. It shows that the data is sufficient to run EFA and the significant value of Bartlett's Test falls within the ranges, indicating that the co-relational matrix is not an identity matrix (Table 7). (Leech et al., 2005; Tabachnick & Fidell, 2001 & 2007; Raza & Hanif, 2013; Ali, Raza, & Chin-Hong, 2015; Schuster, 2016).

Table 7	: KMO and Bartlett's Test	
Kaiser-Meyer-Olkin Measur	.871	
Bartlett's Test of Sphericity	Approx. Chi-Square	11525.633
	Df	1431
	Sig.	.000

After performing EFA, we got thirteen factor loading indices as depicted in Table 8 All the values of all the variables are higher than 0.65 and are significant too. According to Bowen and Guo (2011), 0.4 is also an acceptable value.

	Table 8: Exploratory Factor Analysis (n=400)												
	ВТ	PP	FB	SA	A AV	/ IN	AS	S BA	A ADI	MN ST	M DO	\mathbf{V}	AS CO
Cronbach alpha	0.897	0.857	0.879	0.892	0.785	0.896	0.72	0.785	0.881	0.886	0.842	0.874	0.715
% of Variance	e 19.3	7.44	6.095	4.658	3.991	3.265	2.818	2.417	2.126	2.269	1.87	1.82	1.285
Cumulative %	19.3	26.74	32.84	37.5	41.49	44.75	47.57	50	52.56	54.38	56.25	58.07	59.36

F12 .817 F13 .761 F14 .805 F15 .698 F16 .572 F17 .792 F21 .792 F22 .830 F23 .674 F24 .674 F31 .867 F32 .758 F33 .863 F41 .840 F42 .864 F43 .847 F44 .702 F52 .706 F53 .638 F64 .702 F55 .638 F61 .868 F62 .898 F63 .846 F64 .676 F71 .633 F72 .645 F73 .620 F74 .638 F64 .676 F73 .623 F74 .633 F75 .633 F74 .642 F75 .633	F11	.757										
P13 .761 P14 .805 P15 .698 P16 .572 P17 .792 P21 .792 P22 .830 P23 .764 P34 .764 P31 .764 P32 .764 P33 .867 P34 .863 P41 .840 P33 .702 P42 .864 P43 .847 P44 .704 P51 .702 P52 .706 P53 .679 P54 .638 P64 .676 P71 .663 P82 .663 P83 .645 P84 .676 P83 .642 P84 .673 P82 .663 P84 .673 P84 .673 P84 .673 P84 .673 P85 .642												
P14 .805 P15 .698 P16 .572 P17 .792 P21 .792 P22 .830 P23 .764 P24 .674 P31 .867 P32 .758 P33 .863 P41 .840 P42 .864 P43 .847 P44 .704 P51 .702 P52 .706 P53 .863 P64 .679 P54 .638 P63 .848 P64 .676 P51 .645 P52 .660 P53 .848 P64 .676 P51 .645 P52 .660 P53 .645 P54 .673 P51 .645 P52 .785 P53 .642 P54 .673 P54 .726												
P15 .698 P16 .572 P17 .792 P21 .792 P22 .830 P23 .764 P24 .674 P33 .867 P34 .758 P35 .863 P41 .840 P42 .864 P43 .847 P44 .704 P54 .702 P54 .704 P54 .638 P62 .898 P63 .847 P54 .638 P62 .898 P63 .848 P64 .636 P61 .868 P62 .898 P63 .848 P64 .660 P73 .626 P64 .633 P64 .633 P64 .633 P64 .633 P64 .782 P64 .782 P74 .828												
11 572 171 792 121 792 122 830 123 764 124 674 124 $.867$ 123 $.863$ 123 $.863$ 123 $.863$ 123 $.863$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 124 $.840$ 125 $.706$ 125 $.706$ 125 $.706$ 126 $.898$ 126 $.848$ 126 $.848$ 126 $.642$ 127 $.785$ 128 $.673$												
17 .792 21 .792 22 .830 23 .764 24 .674 24 .674 23 .758 33 .867 840 .863 841 .840 842 .844 843 .847 844 .704 51 .702 52 .706 53 .638 61 .868 62 .898 63 .843 641 .676 671 .635 672 .626 810 .626 61 .868 62 .898 63 .641 673 .626 810 .642 673 .626 811 .633 642 .673 642 .673 642 .673 642 .673												
P21 .792 P22 .830 P23 .764 P24 .674 F31 .867 F32 .758 P33 .863 F41 .840 F42 .864 F43 .847 F44 .704 F45 .847 F44 .704 F51 .702 F53 .679 F54 .638 F63 .848 F64 .676 F71 .810 F22 .864 F63 .848 F64 .676 F73 .626 F81 .653 F82 .653 F83 .642 F84 .673 F83 .642 F84 .653 F82 .653 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .746 F93 .828 F94 .735 F93 .828 F94 .746 F95 .746												
22 .830 23 .764 24 .674 23 .764 24 .674 23 .758 23 .863 24 .864 25 .702 264 .704 275 .706 263 .877 274 .704 274 .704 275 .706 276 .677 276 .677 276 .638 276 .667 276 .638 276 .638 284 .677 293 .848 294 .676 275 .667 276 .645 277 .645 284 .653 293 .828 294 .782 293 .828 294 .782 291 .746 292 .785 293 .828 294 .782 295 .785 293 .828 294 .735 295 .771 2910 .726		.792										
23 .764 24 .674 231 .674 231 .674 232 .758 233 .863 241 .840 242 .864 243 .847 244 .704 252 .702 253 .702 254 .702 253 .706 254 .638 262 .898 263 .848 264 .676 272 .645 281 .626 281 .626 281 .626 281 .626 281 .626 291 .228 292 .785 293 .828 294 .782 293 .828 294 .782 210 .746 210 .740 211 .735 211 .735 211 .735 211 .735 211 .735 211 .735 211 .735 211 .443												
F24 .674 F31 .867 F32 .758 F33 .863 F41 .840 F42 .864 F43 .847 F44 .704 F51 .702 F52 .706 F53 .706 F54 .638 F61 .868 F62 .898 F64 .676 F73 .645 F74 .626 F83 .642 F64 .676 F73 .626 F84 .673 F92 .785 F93 .828 F94 .782 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F94 .782 F95 .274 F10 .746 F210 .727 F111 .735 F211 .771 F314 .443												
B31												
F32 .758 F33 .863 F41 .840 F42 .864 F43 .847 F44 .704 F54 .706 F53 .679 F64 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .633 F92 .785 F93 .828 F92 .785 F93 .828 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F95 .872 F94 .782 F94 .782 F94 .782 F10 .746 F210 .740 F310 .711							.674					
F33 .863 F41 .840 F42 .864 F43 .847 F44 .704 F51 .702 F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .643 F73 .626 F84 .673 F83 .642 F84 .673 F83 .642 F84 .673 F93 .828 F94 .782 F95 .828 F94 .782 F10 .746 F210 .740 F310 .727 F310 .727 F310 .727 F310 .727 F310 .735 F311 .735 F311 .735 F311 .740 <												
F41 .840 F42 .864 F43 .847 F44 .704 F51 .702 F52 .706 F53 .679 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F81 .653 F82 .663 F83 .642 F91 .828 F92 .785 F93 .828 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F10 .746 F210 .746 F210 .727 F310 .727 F310 .727 F310 .727 F310 .727 F310 .727 F311 .735 F311 .746 F311 .746 F311 .746 F311 .745 F311 <td< td=""><td>F32</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.758</td><td></td><td></td></td<>	F32									.758		
F42 .864 F43 .847 F44 .704 F51 .702 F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .626 F81 .626 F83 .642 F84 .673 F93 .828 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F10 .746 F210 .740 F310 .727 F11 .735 F310 .727 F111 .735 F310 .727 F111 .735 F311 .964 F311 .964	F33									.863		
F43 .847 F44 .704 F51 .702 F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F94 .782 F95 .828 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .746 F312 .746 F314 .745 F315 .745 F316 .745 F317 .745 F318 .745	F41			.840								
F43 .847 F44 .704 F51 .702 F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F94 .782 F95 .828 F94 .782 F93 .828 F94 .782 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .746 F312 .746 F314 .745 F315 .745 F316 .745 F317 .745 F318 .745												
F44 .704 F51 .702 F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F83 .626 F81 .626 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F95 .746 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F312 .964 F313 .964	F42			.864								
F51 .702 F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .660 F82 .660 F83 .642 F94 .73 F95 .828 F92 .785 F93 .828 F94 .782 F95 .746 F91 .828 F92 .785 F93 .828 F94 .782 F910 .746 F100 .746 F100 .746 F100 .746 F11 .735 F11 .735 F11 .735 F11 .746 F11 .746 F11 .746 F11 .746	F43			.847								
F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F212 .735 F313 .964	F44			.704								
F52 .706 F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F212 .735 F313 .964	F51								.702			
F53 .679 F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F83 .626 F84 .653 F82 .660 F83 .642 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .227 F111 .735 F311 .964 F311 .443												
F54 .638 F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F114 .735 F214 .771 F314 .443												
F61 .868 F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F311 .964 F411 .443												
F62 .898 F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F311 .964 F411 .443			.868									
F63 .848 F64 .676 F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F64.676 $F71$.810 $F72$.645 $F73$.626 $F81$.653 $F82$.660 $F83$.642 $F84$.673 $F91$.828 $F92$.785 $F93$.828 $F94$.782 $F10$.746 $F210$.740 $F310$.711 $F410$.897 $F510$.727 $F111$.735 $F211$.711 $F311$.964 $F411$.443												
F71 .810 F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F72 .645 F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443			.070									810
F73 .626 F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F81 .653 F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .711 F311 .964 F411 .443												
F82 .660 F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443											652	.020
F83 .642 F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F84 .673 F91 .828 F92 .785 F93 .828 F94 .782 F10 .746 F210 .740 F310 .711 F410 .897 F510 .727 F11 .735 F211 .771 F312 .964 F411 .443												
F91 .828 F92 .785 F93 .828 F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F410 .443												
F92 .785 F93 .828 F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443					0.00						.6/3	
F93 .828 F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F94 .782 F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F110 .746 F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F210 .740 F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443					.782							
F310 .711 F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F410 .897 F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F510 .727 F111 .735 F211 .771 F311 .964 F411 .443												
F111 .735 F211 .771 F311 .964 F411 .443												
F211.771F311.964F411.443		.727										
F311 .964 F411 .443	F111							.735				
F411 .443	F211							.771				
	F311							.964				
F112 .765	F411							.443				
	F112					.765						

F212	.840	
F312	.809	
F412	.767	
F113		.719
F213		.759
F313		.723
F413		.741

Table 9 the description of skill-base job profiling. The following definitions indicate the skills and their associated characteristics.

Factors	Description
Fire-brand	This skill requires an unconventional thinking. They are usually assertive in their dealings and believe in an explicit transaction of information. They develop a strong network using both verbal and nonverbal techniques.
People-Person	These skills deal with active and empathic listening which helps in building greater persuasion. Individuals with these abilities are proficent in speaking and excel at relating materials, demonstrating their ability to think clearly and handle any situation.
Auditor	This competence is primarily concerned with understanding of how to operate complex software such as Microsoft Office. It also deals with the effective knowledge of writing emails and operating internet for various reasons.
Fireball	This skill in particular is like a proxy setting which maintains data integrity of various levels. Individuals with this kind of expertise ensures that information is retrieved, retained, and transferred without the use of malware or Trojans.
Autopilot	Individuals possessing such skill set, allows people to maintain a high level of timeliness, etiquette, and loyalty. These people believe in taking accountability on the task allocated to them. They believe in continuous learning based on their and other peoples experiences.
Dove	People with this skill believe in moving in a specific direction. They believe in having role clarity which gives them satisfaction while working. They are adaptable to new roles and believe in responsibility sharing with their colleagues.
Initiator	Individual possessing such competencies are leaders which have an ability to successfully drive their team. They achieve elevated corporation from their team. They are participative in nature and believe in sharing knowledge with the team.
Buoyant	Individuals which have this trait are optimistic & enthusiastic. They are sensitive to other people's emotions and believe in looking after others. This skill is about handling patients tactfully and encouraging them by building a great rapport.
Amenable	People who have this competence make excellent mentors because they take ownership of their responsibilities, especially in times of crisis. They act as a peacemaker and mediate the conflict. These people are known for handling contingent's situation.
Magnetic	These people believe in stimulating change by counseling others. They don't resist change; instead, they demonstrate a higher level of cultural and linguistic adaptation. This in turn makes them socially interactive.
Value-added Seller	These sellers are intelligent and believe in collaborating to reach to a solution. They begin by diagnosing the issue and checking firsthand facts in a systematic manner. Their curiosity empowers them to handle the complex situation.
Assiduous	These are the individuals who have a higher level of self-assurance. Their ace in skills like time management, anger management, abiding by the laws and believes that it is the responsibility of an individual to elbow grease their self-improvement on a timely basis.
Administrator	These are task oriented people and have sharp-set for numbers and records. They are concerned in the allocation of inventories and equipment, as well as financial resources.
Stimulator	This is the defense, which enable people to prioritized work and proactively plan the things before an event occurs. This skill is possessed by those who are extremely motivated and believe in constant growth.
Band-Aid	It is a quick healing skill and comes into operation as the reaction to any situation. People with this competence work in emergency situations, deploying contingency plans successfully.

Table 9: Description of attributes

Starry-eyed	They are the visionaries who believe in making decisions based on critical analysis of a
	situation. They are the logic holders and believe in facts and figures.
Cogent	These are the people who are consistent, credible and inflectional. They persuade people to
	accept an argument or a reason by clearly expressing it and believe in performing deductive
	reasoning using instances either from law or other credible sources.

After extracting factors from EFA, the researcher performed CFA using AMOS 23.0 version to test the covariance structure of all latent variables. First, the research instrument was checked with Cronbach Alpha to secure reasonable item coefficients. In addition, to assess convergent validity, measures such as average shared variance (ASV) and maximum shared variance (MSV) were estimated. Furthermore, for each latent variable, composite reliability (CR) and McDonald Construct Reliability (MaxR(H)) were estimated because they are more consistent forms of reliability than Cronbach coefficient alpha.(Hancock & Mueller, 2011; Lin & Lee, 2005; Molina, Llorens Montes, & Ruiz-Moreno, 2007; Raza, Qazi, & Umer, 2016).

Table 10 shows the composite reliability (CR) and average shared variance (AVE) of all the thirteen latent variables. It indicates that the value of CR is greater than 0.70 and the value of AVE is greater than 0.50 for all the latent variables. It demonstrates respectable construct reliability and convergent validity (Byrne, 2010). Moreover, discernment validity between all the latent variables is also established (Table 10) (Fornell & Larcker, 1981). Confirmatory Factor Analysis (CFA) approaches to scale reliability estimation and with formative indicators (Raykov & Marcoulides, 2006). It is also used in the process of scale development to examine the latent structure of a questionnaire. The higher-order factor analysis is conducted to analyze the conceptual amount of interrelationships among the factors in the initial stage using standardized estimates.

						,	Fable 1	0: Vali	dity an	d Relia	ability						
	CR	AVE	MSV	MaxR	BT	pp	FB	SA	AV	IN	AS	BA	ADIM	STM	DO	VAS	С
				(H)									N				
BT	0.735	0.684	0.510	0.863	0.696												
pp	0.898	0.564	0.318	0.934	-0.021	0.751											
FB	0.888	0.615	0.438	0.958	-0.030	0.381	0.785										
SA	0.897	0.688	0.241	0.899	-0.023	-0.12	5-0.15	3 0.829									
AV	0.829	0.676	0.556	0.876	-0.022	0.269	0.278	-0.397	0.822								
IN	0.883	0.653	0.547	0.900	-0.102	0.159	0.216	-0.046	50.008	0.808							
AS	0.874	0.636	0.484	0.383	0.030	0.024	-0.289	90.076	-0.027	-0.078	3 0.797						
BA	0.858	0.602	0.373	0.888	0.021	0.280	0.502	-0.290	0.506	0.134	-0.195	5 0.776					
ADIN	1 0.846	0.579	0.499	0.986	0.062	0.290	0.515	-0.347	0.446	0.112	-0.153	30.577	0.761				
Ν																	
STM	0.783	0.776	0.241	0.886	-0.059	-0.17	1-0.21	70.491	-0.317	0.003	0.107	-0.373	-0.402	0.690			
DO	0.879	0.709	0.318	0.988	-0.017	0.564	0.425	-0.138	30.207	0.110	-0.120	0.273	0.251	-0.168	3 0.842		
VAS	0.785	0.678	0.438	0.793	0.003	0.314	0.662	-0.335	50.468	0.130	-0.224	10.538	0.632	-0.362	20.430	0.691	L
CO	0.783	0.675	0.413	0.884	0.037	-0.054	40.032	-0.032	2-0.015	0.069	-0.093	30.014	0.067	-0.113	8 0.013	0.055	í

Figure 1 shows the measurement model, which is comprised of fifty-four indicator variables and thirteen latent variables. It was found that all the indicators are significantly related to latent variables.

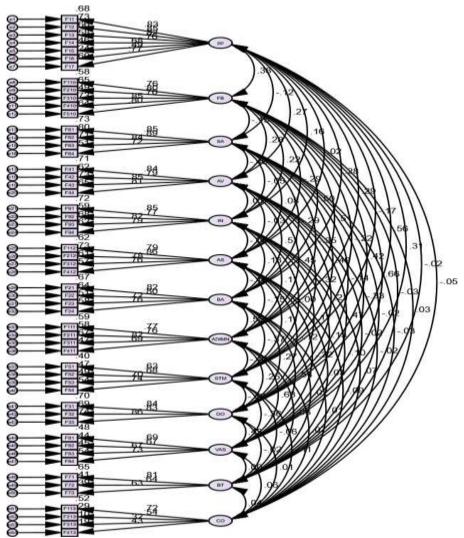


Figure 1: Confirmatory Factor Analysis (Measurement Model)

Moreover, the values of relative Chi-square, comparative fit index, squared root of the average, Tucker-Lewis index, and root mean square error of approximation were within an acceptable range. As a result, all of the obtained values indicate a satisfactory model fit with acceptable factor loadings, indicating the effective CFA. Table 11.

Table 11: Model Diagnostics

Chi-square (x^2) 1777.530Degree of freedom (df)1299P-value0.000CMIN/DF1.368CFI (comparative fit index)0.955TLI (Tucker-Lewis index)0.951RMSEA (root mean square error of approximation)0.030RMR (squared root of the average)0.053

RESULT AND DISCUSSION

The result reveals that all the thirteen factors extracted are mapped against the variables identified from the literature. Communication, ICT (Information Communication Technology), team-work, planning & organizing, conceptual & analytical, critical & problem solving, all these are the broader aspects of employability skills which are the true representatives of buoyant, people-person, fireball, starry-aid, auditor, initiator, assiduous, band-aid, administrator, stimulator, dove, value-added seller, and cogent.

Thirteen factors have respectable factor loadings (more than 0.75) that allow the researcher to make such an inference. Dove, People-person, Auditor, and Fireball should be considered as a major part of their content development in recruitment, selection, and training programs, as they showcase maximum loadings, demonstrating their significant contribution in up-skilling the frontline workforce for better patient satisfaction and the overall brand image of the hospitals. The model diagnostics also reveal a satisfactory model fit in terms of chi-square, CFI, TLI, RMSA, and Squared Root of the Average, confirming the effectiveness of CFA. This indicates that the model is both valid and steady. Furthermore, the outcome reveals that the measurement scale utilized is robust and can be used for future research. The R-square values were likewise within acceptable limits, indicating that the scale could be used for test-retest analysis. Correlation analysis revealed considerable significant associations between the diverse dimensions of employability skills previously studied (Table 12). There was no statistically significant or negative relationship discovered in either of the correlations. This means that a change in one dimension for the better has a good effect on the other.

Table 12: Correlations

Pearson Correlation	people person	Buoyant	Fireball	Auditor	Initiator	Dove	Assiduous	Administrator	Stimulator	Band aid	Value added seller	Starry aid	Cogent
People Person	1											,	
Buoyant	.234**	1											
Fireball	.487**	.237**	1										
Auditor	.236**	.452**	.181**	1									
Initiator	.136**	.304**	.136**	.260**	1								
Dove	.106*	.268**	.121*	.365**	.412**	1							
Assiduous	.006	.041	.009	.002	.065	.018	1						
Administrator	.259**	.438**	.358**	.387**	.274**	.284**	.023	1					
Stimulator	.150**	.110*	.100*	.004	.004	.051	.095	.105*	1				
Band aid	.340**	.430**	.375**	.255**	.175**	.137**	0.0004	.550**	.201**	1			
Value added seller	.250**	.504**	.223**	.402**	.326**	.314**	.075	.539**	.090	.458**	1		
Starry aid	.018	.163**	.105*	.019	.084	.061	.014	.186**	.073	.253**	.128*	1	
Cogent	.034	.014	.013	.008	.148**	.056	.006	.074	.060	.052	.075	.045	

*. Correlation is significant at the 0.05 level (2-tailed).

CONCLUSION

The main noteworthy takeaway of this study is that the researcher extricates an encyclopedic list of employability skills sets needed for frontline workers in hospitals in Delhi/NCR. It shows that versatile employees contribute more to the growth and prosperity of an organization. Various attributes such as dove, people-person, auditor, fireball, cogent, and value-added seller exhibit maximum contribution in enhancing hospitals' productivity and effectiveness, patients' satisfaction, and quality services. Each positive variation in one of the variables induces a corresponding positive variation in the other. Human resource practitioners, academics, and researchers will benefit from this research.

MANAGERIAL IMPLICATIONS

This study is a significant step towards understanding the minimum skills required by frontline workers to get employed in hospitals. The study is helpful to both employees and human resource practitioners in the healthcare industry. Employees can identify and work on their shortcomings. Consequently, this will assist human resource professionals to check the trainability of the workforce before designing a training program. Managers can use these parameters when recruiting and selecting employees, analyzing training needs, and deciding on a compensation package. This will help them curb the problem of recruiting the right candidates for the right job and other retention issues.

LIMITATIONS

There are several limitations to the study. Firstly, the researcher only considers one vertical of the healthcare industry; therefore, this study cannot be generalized to the entire industrial and non-industrial service sector. Medical Training, Medical Education, and Medical Research are the other major verticals that offer a lot of potential for training and development. This study is limited to the private multi-specialty hospitals located in Delhi and NCR. Due to sample limits, the study excludes government, semi-government, defense, and charitable hospitals. The study's conclusions are based on what the people who took part in the study thought, which mostly had to do with typical human flaws.

REFERENCES

- Agarwal, A., Garg, S., & Pareek, U. (2011). Strengthening human resource practices in healthcare in India: The road ahead. Journal, Indian Academy of Clinical Medicine, 12(1), 39.
- Arasli, H., Bavik, A. & Ekiz, H.E. (2006). The effects of nepotism on human resource management: the case of three, four and five star hotels in Northern Cyprus'. International Journal of Sociology and Social Policy, 26, (7/8), 295–308.
- Balakrishnan, A., Thunga, G., Nair, S., Kunhikatta, S., & Khera, K. (2018). Bridging the gap between industry and academia in pharmaceutical education. Indian J Pharm Edu Res, 52, 7-10.
- Barringer, B.R., Jones, F.F., & Neubaum, D.O. (2005). 'A Quantitative Content Analysis of the Characteristics of Rapid-Growth Firms and Their Founders. Journal of Business Venturing, 20, 663–687.

- Bartram, T., & Dowling, P.J. (2013). An International Perspective on Human Resource Management and Performance in the Health Care Sector: Toward a Research Agenda. The International Journal of Human Resource Management, 24, 3031–3037.
- Bennett, N., Dunne, E., & Carré, C. (2000). Skills Development in Higher Education and Employment. Taylor & Francis, Inc., 7625 Empire Dr., Florence, KY 41042.
- Budhwar, P.S., Varma, A., Singh, V., & Dhar, R. (2006). HRM Systems of Indian Call Centres: An Exploratory Study. The International Journal of Human Resource Management, 17, 881–897.
- Clarke, M. (2007). Where to from here? Evaluating employability during career transition. Journal of Management & Organization, 13(3), 196-211.
- Cox, S. & King D. (2006). Skills sets: An approach to embed employability in course design. Journal of Education and Training, 48(4), 262-274.
- Dong, Y., Bartol, K. M., Zhang, Z. X., & Li, C. (2017). Enhancing employee creativity via individual skill development and team knowledge sharing: Influences of dual-focused transformational leadership. Journal of Organizational Behavior, 38(3), 439-458.
- Dorri, S., Akbari, M., & Sedeh, M. D. (2016). Kirkpatrick evaluation model for in-service training on cardiopulmonary resuscitation. Iranian journal of nursing and midwifery research, 21(5), 493.
- Dorri, S., Farahani, M. A., Maserat, E., & Haghani, H. (2019). Effect of role-playing on learning outcome of nursing students based on the Kirkpatrick evaluation model. Journal of Education and Health Promotion, 8.
- Eisenbeiss, S. A., Van Knippenberg, D., & Boerner, S. (2008). Transformational leadership and team innovation: Integrating team climate principles. Journal of Applied Psychology, 93, 1438–1446.
- Hussain, A., Asif, M., Jameel, A., Hwang, J., Sahito, N., & Kanwel, S. (2019). Promoting OPD patient satisfaction through different healthcare determinants: A study of public sector hospitals. International Journal of Environmental Research and Public Health, 16(19), 3719.
- Kazilan, F., Hamzah, R. & Bakar, A.R. (2009). Employability skills among the students of technical and vocational training centers in Malaysia. European Journal of Social Sciences, 9 (1), 147-160.
- Kneafsey, R., Brown, S., Sein, K., Chamley, C., & Parsons, J. (2016). A qualitative study of key stakeholders' perspectives on compassion in healthcare and the development of a framework for compassionate interpersonal relations. Journal of clinical nursing, 25(1-2), 70-79.
- Kotter, J., & Sathe, V. (1978). Problems of Human Resource Management in Rapidly Growing Companies. California Management Review, Winter, 29 36.
- Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30, 607–610.
- Manser, T. (2009). Teamwork and patient safety in dynamic domains of healthcare: A review of the literature. Acta Anaesthesiologica Scandinavica, 53(2), 143–151.
- Mehaj-Kosumi, F. (2013). The Training Process of Civil Servants Employees in Ministry of Economic Development in Kosovo: Effect of Training through the Prism of Participants and Interpretation of Employee Questionnaire Survey. Acta Universitatis Danubius. Economica, 9(2).
- Mora, M., O'Connor, R., Raisinghani, M., & Macías-Luévano, J. (2011). An IT service engineering and management framework (ITS-EMF). International Journal of Service Science, Management, Engineering, and Technology, 2(2), 1-15.
- Munro, J. (2007), "Fostering internationally referenced vocational knowledge: a challenge for international curricula", Journal of Research in International Education, Vol. 6 No. 1, pp. 67-93.
- Pineda, P. (2010). Evaluation of training in organisations: a proposal for an integrated model. Journal of European Industrial Training, 34(7), 673-693.
- Ray, S. L., Wong, C., White, D., & Heaslip, K. (2013). Compassion satisfaction, compassion fatigue, work life conditions, and burnout among frontline mental health care professionals. Traumatology, 19(4), 255–267.
- Roberts, J. P., Fisher, T. R., Trowbridge, M. J., & Bent, C. (2016). A design thinking framework for healthcare management and innovation. In Healthcare, 4(1), 11-14.
- Sharma, K., & Zodpey, S. (2011). Demand and supply analysis of human resource capacity for hospital management in India. Journal of Health Management, 13(2), 155-176.
- Sheldon, L. K. (2005). Communication in oncology care: the effectiveness of skills training workshops for healthcare providers. Clinical journal of oncology nursing, 9(3), 305.
- Shrader, S., Kern, D., Zoller, J., & Blue, A. (2013). Interprofessional teamwork skills as predictors of clinical outcomes in a simulated healthcare setting. Journal of Allied Health, 42(1), 1-6.
- Sinclair, S., Torres, M. B., Raffin-Bouchal, S., Hack, T. F., McClement, S., Hagen, N. A., & Chochinov, H. M. (2016). Compassion training in healthcare: what are patients' perspectives on training healthcare providers?. BMC medical education, 16(1), 169.
- Singh, P., Thambusamy, R., Ramly, A., Abdullah, I.H. & Mahmud, Z. (2013). Perception differential between employers and instructors on the importance of employability skills. Procedia-Social and Behavioral Sciences, 90, 616-625.
- Suresh, S., & Kodikal, R. (2015). Managerial skills and job satisfaction: a study among nurses in healthcare sector. ZENITH International Journal of Business Economics & Management Research, 5(6), 287-299.
- Surg Lt Cdr Athar Mohd, B. A. (2014). Patient satisfaction with services of the outpatient department. Medical Journal Armed Forces India, 70 (4), 237-242.

- Tabish, D. S. (2011). Outpatient Services in a Hospital. In D. S. Tabish, Planning, Organisation & Management of Hospitals & Nursing Homes. JayPee Brothers Medical Publishers.
- Taylor, P. J., Russ-Eft, D. F., & Chan, D. W. (2005). A meta-analytic review of behavior modeling training. Journal of applied psychology, 90(4), 692.
- Vij, P., & Sharma, M. (2014). The effect of human capital management practices on employee positive behavioural outcomes. International Journal of Management Practice, 7(3), 204-221.

Vogel, D. (2016). Adults use of ICT in healthcare: The persuasive impact of children. Procedia Computer Science, 98, 236-242. WHO. (2017).Retrieved from https://www.who.int/gho/publications/world_health_statistics/2017/en/

Williamson, S. N., Paulsen-Becejac, L., Tong, K., Minette, R., & Forbes-Burford, J. (2020). Embedding graduate employability skills into health and social care course-a scoping review. World Journal of Advance Healthcare Research, 4(1), 147-164.