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Abstract: Object detection using a LiDAR sensor provides high accuracy of depth estimation and distance 

measurement. It is reliable and would not be affected by light intensity. However, high-end LiDAR sensors are high in 

cost and require high computational costs. In some applications such as navigation for blind people, sparse LiDAR 

point cloud are more applicable as they can be quickly generated and processed. As opposed to a point cloud generated 

from high-end LiDAR sensors where many algorithms have been developed for object detection, sparse LiDAR point 

clouds still possess large room for improvement. In this research, we present the construction of an autonomous 

mobile robot based on a single actuating LiDAR sensor, with human subjects as the main element to be detected. From 

here, the extracted values are implied on k-NN, Decision Tree and CNN training algorithm. The final result shows 

promising potential with 91% prediction when implemented on the Decision Tree algorithm based on our proposed 

system of a single actuating LiDAR sensor. 
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1. Introduction 

Object detection is an integral part of robotics with various 

applications such as autonomous cars, navigation aids or 

object tracking [1], [2]. There are many types of sensors 

which have been implemented to achieve this purpose 

including cameras, Inertial Measurement Units (IMU), 

Light Detection and Ranging (LiDAR), and ultrasonic or 

sonar sensors [3]–[5].  

Integrating two or more types of sensor to achieve object 

recognition serve to be a promising prospect as the system 

can integrate different types of data to interpret the complex 

perception of the surrounding [6]. Attempts to integrate two 

or more sensors have been done as researchers went on to 

the objectives of both detecting and recognizing obstacles 

within the area [7]–[9]. Autonomous cars, for instance, have 

been equipped with LiDAR sensors as well as a camera for 

navigation purposes [10]. Camera and LiDAR data can be 

merged to achieve object recognition of road lanes [11]. 

DeepLiDAR [9] method, fuses LiDAR data with an image 

for depth prediction in outdoor space.     

Few sensors of the same type can be calibrated to 

provide better data fusion. Multiple LiDAR sensors could 

provide more complete 3D-projected scanning of the 

surroundings as practised by Pereira et al. [6]. They used 
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multiple LiDARs, which are calibrated on an autonomous 

vehicle. These sensors can be placed on both rear sides of 

the vehicle, which will enable the sensors to shoot from a 

wider angle of view. Thus, this method helps the system to 

recognize objects more decisively and efficiently especially, 

when applied to mobile robots which have been a famous 

subject amongst researchers today [12].  

Nevertheless, in a certain scenario having two or more 

types of sensors or even more sensors of the same type is 

less preferable, as it will increase computational cost, and 

power consumption and reduce mobility and portability. 

The calibration of the data is a concern as it would be 

difficult to cater to many sensors at the same time [6]. 

For achieving object recognition using a single unit 

sensor, LiDAR proved to be a suitable option. The sensor 

possesses high accuracy of distance measurement and as 

opposed to the camera, it does not depend on the light 

intensity of the surrounding [3]. Its detection range is also 

comparatively more accurate and reliable when compared 

to stereo methods [9]. Usually associated with high-end 

sensors, at times it is claimed to be high in cost [2] for 

consumers. 

Nonetheless, high-end LiDAR does not apply to all 

situations. There are cases where a simple or lower-end 

sensor suits the purpose of the system. For example in the 

development of robotic navigation aid for visually impaired 

people, the mobile robot or smart cane developed are 

required to be highly compact and lightweight [13].  

Currently, there are numerous object recognition 

algorithms to detect surrounding objects such as buildings, 

pedestrians and vehicles [14]–[21]. Despite this, many 

researchers are still bounded to large hardware requirements 

and high-end sensors.  

To cater for the necessity and requirements of 

individuals such as visually impaired people as stated 

previously, a dependable classifier method which can work 

with sparse LiDAR point cloud data is required. Our 

research proposed the use of a single-unit LiDAR sensor for 

object detection and recognition. To achieve this, we 

developed Clustered Extraction (CE) method for human 

detection on sparse LiDAR point cloud data. Then, we train 

the extracted data with k-Nearest Neighbor (kNN), Decision 

Tree (DT) and Convolutional Neural Network (CNN).  We 

conceive with the proposed state-of-the-art method; a single 

unit LiDAR sensor is adequate to achieve object 

recognition. 

To summarize, our main contributions are 

• Genuine data of 100 scans with 500,000 sparse 

LiDAR point clouds with the human subjects 

within varying/different backgrounds 

surrounding 

• Hardware construction proposed consisting of a 

single actuating LiDAR sensor as the detection 

system. 

 

2. Related Works 

 

Generally, the types of classification of LiDAR point 

cloud data can be separated into two, namely end-to-end 

learning and non-end-to-end learning [22]. End-to-end 

learning refers to the classification which directly takes raw 

lidar point cloud data as its input. It customarily requires a 

larger amount of data for training and thus requires a higher 

computational cost [22]. The example of the end-to-end 

classification includes PointNet [23] and PointNet++ [24]. 

Non-end-to-end classification, on the other hand filters 

the raw point cloud data by only extracting meaningful 

features from it, arranging it into a set of input data and then 

finally implies said data on the neural network or deep 

learning. Example of lidar classifier which belongs to the 

non-end-to-end type is VoxNet [25]and SEGCloud [26]. 

Obstacle recognition using a single LiDAR sensor 

usually implies high-end and costly equipment. An attempt 

at end-to-end classifier extraction from RMB is proposed in 

[27]. The author developed a complete pipeline to 

distinguish outdoor 3-D urban objects. It segments the input 

point cloud into 4 stages of the region, from the ground, 

followed by low foreground, high foreground and sparse 

area. The object detection task was done using a rotating 

multi-beam (RMB), which can be a tough challenge 

because of the low and strongly inhomogeneous 

measurement density [27], [28] instigate the study of pitch 

angle effects in rotating multibeam measurement to look for 

kinematic configuration for full sphere field of view. 

However, both methods are done on high-end and bulkier 

Velodyne sensors. 
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SARPNET [29] detects objects through shape attention 

regional proposal network, while the author of [30] 

proposes road surface detection through terrestrial LiDAR 

data. [31] performs ground filtering of roadside LiDAR 

using a channel-based filtering algorithm. Another 

researcher implements roadside LiDAR data integration 

with revolution and rotation-based methods [32]. 

Compared to the classification algorithm which works 

with high-end LiDAR or fusion of LiDAR with other 

sensors, the classification method for sparse point cloud 

data can be said to be imperceptible. Muresan et. al [33]  

proposed a real-time object detection using sparse 4-layer 

LiDAR. The method combines an elevation grid and polar 

histogram to detect the obstacle. However, the method has 

not been compared with other benchmark sparse detection 

algorithms. Another sparse LiDar point cloud classifier uses 

3DCNN [34] aimed to be affordable for the consumer’s 

vehicle. The author proposed a novel voxel representation 

which can be calculated from a sparse point cloud. 

Nevertheless, the utilization of multi-frame information has 

yet to be proven. Xie et al. [35] suggested classification 

base and joint sparse representation in kernel space. 

Ground, buildings and trees are among the classified 

elements in their extensive work. 

Table 1 shows some selected methods of LiDAR-based 

detection methods with different detection objectives and 

varying resolutions of LiDAR data. High-resolution 

datasets are obtained through merging multiple sensors, 

using a higher quality sensor or acquiring readily available 

KITTI dataset benchmark. In comparison to the 

high-resolution point cloud, research work on sparse 

LiDAR data still possesses huge room for improvement and 

exploration. 

Therefore, in this research, we proposed a novel, 

state-of-the-art non-end-to-end classification of sparse 

LiDAR point cloud data. The proposed method is tested 

with a genuine point cloud for evaluation. Instead of 

extracting geometry features such as lines or edges, for 

example, we extracted the number of elements of 

segregated point clouds with a predetermined interval, thus 

forming an isolated cluster of point clouds in each x, y and 

z coordinate. A thorough explanation of said method will be 

discussed in the following part.  

 

 

 

 

 

 

Method Dataset Detected 

object 

Remark Ref 

3DCNN Sparse Pedestrian  Have not 

been tested 

on 

multi-frame 

information 

[34] 

Novel 

object 

detection 

pipeline 

Sparse Vehicle  Room for 

improvemen

t robustness 

of object 

tracking 

[33] 

Revolutio

n-rotation 

High 

Resolution 

Roadside 

elements 

Difficult for 

integration 

[32] 
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Table 1. Table of comparison for LiDAR-based object detection method. 

 

3. Construction of Hardware 

In this experiment, we have selected is Garmin LiDAR Lite 

V3 as the detection sensor, with a distance measurement 

capacity of 40 meters and resolution of 1cm within 

+/-2.5cm accuracy. Two FS5109M servo motors with 

10kg.cm torque capacity is connected via 2 brackets in 

order to enable the lidar sensor to rotate on the horizontal 

and vertical axis. A scanning degree of at least 130  is 

required to resemble a human’s point of view [36]. Arduino 

Uno is used for the microcontroller (Arduino Nano can also 

be used for its replacement). L298N motor driver is selected 

to control the two tires of the mobile robot.  

The system is made capable of wireless 

communication, via Arduino XBee embedded RF module. 

Through RF communication, data transfer up to 30 meters 

range within the indoor environment and 90 meters of 

outdoor line-of-sight is achieved. The RF data rate is 

250,000 bps, enough for our LiDAR sensor data 

transmission. XBee RF module enables real-time wireless 

updates for control and monitoring purposes [37]. The list 

of items used is shown below: 

• Lidar Lite V3 

• Arduino 

Nano/Uno 

• FS5109 Servo 

Motor x 2 

• Acrylic sheet 

frame 

• LiPo 

Rechargeable 

Battery 2200mah 

• Servo Bracket 

• L298N Motor 

Driver  

• Capacitor 

• Tyre x 2 

• Connecting wires 

• Arduino XBee 

• DC motor x 2 

 

 

Figure 1 below shows the figures of important 

hardware items used during the prototype development. 

                   

(a)                   (b) 

   

       (c)               (d)                                          

Fig 1. Items used include (a) LiDAR Lite V3 sensors, (b) 

L298N Motor Driver (c) actuating LiDAR with 2 servo 

motors and (d) XBee Module. 

based 

method 

(Multiple 

LiDAR 

sensors) 

SARPNE

T 

High 

Resolution 

(KITTI 

Dataset) 

Car/ cyclist Inconsistent 

pedestrian 

detection 

[29] 

Novel 

two-layer 

grid 

structure 

Decent 

resolution 

(Velodyne 

HDL-64) 

Vehicle/ 

pedestrian 

Utilize both 

deep 

learning-bas

ed object 

and 

contextual 

scene 

analysis 

[27] 
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The system was first tested without implementing it on 

the mobile robot. The LiDAR sensor is attached to servo 

sensors, with 7 foundation features extracted from the 

LiDAR sensor. Object angle, x-axis reading, y-axis reading, 

z-axis reading, distance, yaw angle and pitch angle are the 

characteristics obtained from the scanning LiDAR. From 

here, other features are derived to finally achieve object 

recognition. 

Features extraction is done on Arduino Integrated 

Development Environment (IDE) connected to the CPU. 

The CPU specifications include an Intel (R) Core (TM) 

i7-5500U CPU @ 2.40GHz, 8Gb RAM and a 64-bit 

operating system. The systems are tested within both an 

indoor environment (laboratory) and an outdoor 

environment. Figure 2 shows the detection systems which 

include the LiDAR sensor, servo motor, Arduino and 

processing unit. The detection system is initially tested with 

i2c communication connecting the wire to the CPU. 

 

  

        (a)                      (b)                                                            

Fig 2. LiDAR sensor calibration with servo motors. Fig 2 

(a) LiDAR sensor with 2 servo motors & Fig (b) LiDAR 

sensors with Arduino for features extraction. 

Following the initial test, the detection system is then 

attached to the mobile robot as shown in Figure 3 below. 

Two tires with additional DC motors are connected to the 

detection system. A supporting third wheel is needed for 

stability. With the mobile robot platform, the Li-Po battery 

is necessary for the external power supply. XBee RF 

module is attached for wireless data transmission with a 

detection range of over 30 meters communication distance. 

  

  

Fig 3. First mobile robot prototype with LiDAR sensor for 

object recognition. 

The system is tested for human scanning, as the human 

subject moves from 1 meter distance towards 5 meters 

distance. The visualization of LiDAR point cloud data is 

displayed via MeshLab software as shown in Figure 4 

below. The human subjects are also increased from 1 

human to 5 humans periodically. 

  

   

(a)                      (b) 

   

(c)                     (d) 

 

(e) 

Fig 4. Visualization of LiDAR scanning in the presence of a 

human subject. The human is situated in Fig 4(a) 1m, Fig 

4(b) 2m, Fig 4(b) 3m, Fig 4(c) 4m, and Fig 4(d) 5m 

respectively from the LiDAR sensor, represented on a 

single plane.  
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The features extracted are then trained with machine 

learning algorithms for detection and recognition purposes. 

Detailed results of the test and experiments are discussed in 

chapter four of the paper. The second prototype implied 

hardware improvement and calibration with the TurtleBot. 

The detection system is now integrated with the TurtleBot 

model, implementing an upgraded microcontroller of 

Raspberry Pi 3. The system for navigation depends on 

Robot Operating System (ROS) software which enables the 

navigation and mapping through Simultaneous Localization 

and Mapping (SLAM).  Figure 5 shows the TurtleBot with 

LiDAR sensors as its detection system.   

 

 

Fig 5. TurtleBot with LiDAR-based sensor 

The mobile robot navigation system has been 

experimented within an approximately 5m  2m 

workspace. Mobile robots are required to move towards a 

conflicting destination without communication and collision 

with each other. The time taken to complete the route, 

scanning of the surrounding, a number of collisions, type of 

obstacles and the number of pathing alterations are recorded 

for result analysis. 

Figure 6 shows the navigation test conducted on the 

mobile robots. The result shows the robot to arrive towards 

the destination within 1 minute and 30 seconds, with a single 

dynamic obstacle, no sudden stop and 6 path alterations 

recorded. The dynamic obstacle and conflicting destination 

points are selected as it resembles the uncertaint influence of 

the real world surrounding [38]. 

   

       (a)             (b)              (c)                                

Fig  6. Mobile robot navigation shows Fig 6 (a) initial 

point, Fig 6 (b) meeting path and (c) destination point. 

4. Human Recognition 
 

Two experiments were done to verify the performance of 

the proposed method. The first experiment was comparing 

the classification trained by different machine learning 

algorithms with varying parameters. The second experiment 

is to compute precision, recall and F_1-score and to 

compare it with other classifiers. 

For the extraction through the CE method, we 

initialize the classifier training on k-NN, Decision Tree 

method and CNN. The training algorithms are fixed with 

varying parameters to determine which parameter will yield 

the best results for the classification task. The experiment 

was done on an Intel(R) Core (TM) i7-5500U CPU @ 

2.40GHz, 8Gb RAM and a 64-bit operating system. The 

results of the training and testing accuracy of the simulation 

are represented in Table 2. 
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Table 2. Result of training algorithm for k-NN, DT and CNN. 

Training Parameter Value Accuracy (/%) Time  

(s) 

 

k-NN 

 

k 

3 78.26 0.013 

6 73.91 0.016 

10 69.56 0.011 

 

DT 

 

Max Depth 

1 91 0.004 

3 91 0.007 

5 83 0.007 

 

CNN 

No of Layer 53.44 53.44 281 

67.00 67.00 334 

63.67 63.67 365 

The parameters in the columns in Table 1 are chosen to 

identify the best configuration. For k-NN, the varying 

parameter to be adjusted is the value of k; where k = 3, 6 

and 10. Whereas for the Decision Tree algorithm, we set the 

maximum depth value to be 1, 3 and 5 respectively. And 

finally, for CNN which is emerging nowadays in numerous 

classification problems [39], [40], we set the number of 

hidden layers to be 3, 4 and 5. The batch size is set at 10, 

with the number of epochs set at 1000, an activation 

function of Rectified Linear Units (ReLUs) and Softmax 

function respectively.  

Based on the result, the DT algorithm with a 

maximum depth of 3 recorded the highest testing accuracy 

with 91%. This is obviously better than k-NN with an 

accuracy average of 73.91% and CNN with an average 

accuracy of 61.37%. In terms of the time of execution, the 

DT algorithm also took the shortest time of completion, 

followed by k-NN and CNN by a distant margin. Figure 2 

shows the tree plot architecture of our DT algorithm. 

 

Fig 7. Tree plot of DT architecture. 

 

The Attribute Selection Measure (ASM) or the 

splitting rule used is the Gini Index, with the “best” split for 

the splitter parameter. The “gini” score shows the Gini ratio, 

which measures the impurity of the nodes. A fully grown 

decision tree without maximum depth tends to overfit the 

training data. Hence, as the acquired accuracy from Table 1 

suggests, we select the maximum depth to be at the value of 

3. There are 4 internal nodes and 6 leaf nodes, with values 

of zmax, xmax and ymax considered as the decision rule for 

data splitting. 
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As the CE method trained with a DT algorithm shows 

the most promising result, we analyse its performance in 

terms of precision, recall and F_1 score. The number of 

human and non-human clusters are balanced. Table 2 shows 

the precision, recall and F-1 score of the DT algorithm 

based on selected test set data. There is a balance number of 

random samples taken from human and non-human subjects 

as can be seen in the “Support” column below. 

 

Table 3. Precision, Recall and F-1 score of human detection 

 Precision Recall F1-score Support 

Non-Human 88% 88% 87% 12 

Human 82% 82% 87% 11 

Micro Average 87% 87% 87% 23 

Macro Average 87% 87% 87% 23 

Weighted Average 87% 87% 87% 23 

 

Based on Table 3, the test set data it can be seen that the 

detection of human and non-human object clusters are in 

balance as good scores of precisions, recall and F_1 score 

are achieved. Precision measures positive predictive values 

and recall indicate the sensitivity of the predictions. With a 

score of 82% and 87% for the human and non-human 

classes respectively, the classification shows decent 

precision and recall. An excellent F_1 score of 87% shows a 

harmonic means balance between precision and recall, 

taking into account both false positives and false negatives. 

Consistent macro and micro averages were recorded at a 

score of 87%. Macro-average shows the performance 

overall across the sets of data and micro-average represents 

evaluation when the dataset varies in size. This proves that 

the system represents good performance across all sets of 

data 

 

5. Conclusion 

In this paper, we propose a novel non-end-to-end classifier 

for sparse LiDAR point cloud human detection. As shown 

in Table 1, research done on sparse LiDAR data still has 

room for enhancement and improvement in terms of 

multi-frame implementation. For our research, we gather 

authentic point clouds from 100 scenes with human and 

non-human presences. The data are collected within indoor 

and outdoor, day and night surroundings, and different 

backgrounds for better simulating different scenarios of the 

surrounding. We also analyse the performance of our 

method with varying algorithms to improve the 

performance of human detection. The result shows 

promising state-of-the-art achievement within sparse 

LiDAR point cloud data.  

For future research, distance measurement and position 

tracking can be implemented on the human detection 

method. Additional elements or subjects for detection can 

also be added to further test and improve the reliability of 

the system. 
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