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Abstract The protection of critical engineering infrastructures is vital to today’s so-
ciety, not only to ensure the maintenance of their services (e.g., water supply, energy
production, transport), but also to avoid large-scale disasters. Therefore, technical
and financial efforts are being continuously made to improve the safety control of
large civil engineering structures like dams, bridges and nuclear facilities. This con-
trol is based on the measurement of physical quantities that characterize the struc-
tural behavior, such as displacements, strains and stresses. The analysis of monitor-
ing data and its evaluation against physical and mathematical models is the strongest
tool to assess the safety of the structural behavior. Commonly, dam specialists use
multiple linear regression models to analyze the dam response, which is a well-
known approach among dam engineers since the 1950s decade. Nowadays, the data
acquisition paradigm is changing from a manual process, where measurements were
taken with low frequency (e.g., on a weekly basis), to a fully automated process that
allows much higher frequencies. This new paradigm escalates the potential of data
analytics on top of monitoring data, but, on the other hand, increases data quality
issues related to anomalies in the acquisition process. This chapter presents the full
data lifecycle in the safety control of large-scale civil engineering infrastructures
(focused on dams), from the data acquisition process, data processing and storage,
data quality and outlier detection, and data analysis. A strong focus is made on the
use of machine learning techniques for data analysis, where the common multiple
linear regression analysis is compared with deep learning strategies, namely recur-
rent neural networks. Demonstration scenarios are presented based on data obtained
from monitoring systems of concrete dams under operation in Portugal.
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1.1 Introduction

Dam safety is a continuous requirement due to the potential risk in terms of environ-
mental, social and economical disasters. In the International Commission on Large
Dams’ bulletin number 138 [31], it is referred that the assurance of the safety of a
dam or any other retaining structure requires “a series of concomitant, well directed,
and reasonably organized activities. The activities must: (i) be complementary in a
chain of successive actions leading to an assurance of safety, (ii) contain redun-
dancies to a certain extent so as to provide guarantees that go beyond operational
risks”.

Continuous dam safety control must be done at various levels, and must include
an individual assessment (dam body, its foundation, appurtenant works, adjacent
slopes, and downstream zones) and as a whole, in the various areas of dam safety:
environmental, structural and hydraulic/operational. Environmental safety, as the
name suggests, is related to the environmental impacts originated by the dam, both
in terms of maintenance of ecological flows, with direct influence on the fauna and
flora existing upstream and downstream, and in terms of the control of the charac-
teristics and quality of the reservoir water and soil. Hydraulic/operational safety is
related to the exploitation and operation of hydraulic devices, as well as the imple-
mentation of early warning and alert systems for emergency situations. Structural
safety can be understood as the dam’s capacity to satisfy the structural design re-
quirements, avoiding accidents and incidents during the dam’s life. Structural safety
includes all activities, decisions and interventions necessary to ensure the adequate
structural performance of the dam.

Structural safety control is based on making decisions during the different phases
of a dam’s life through safety control activities. Thus, the main aim of structural
safety control is the multiple assessment of the expected dam behavior based on
models and on the measurements of parameters that characterize the dam’s behav-
ior and its condition. The main concern is the assessment of the real and actual dam
behavior, under exploitation conditions, in order to early detect possible malfunc-
tions.

To be effective, dam safety control must be considered as an ongoing process.
The assessment of the dam’s structural behavior and condition through the use of
monitoring systems is a continuous improvement process based on three activities:
monitoring, data analysis and interpretation of the dam’s behavior, and dam safety
assessment and decision-making, as represented in Fig. 1.1.

Monitoring considers the observation of a phenomenon or event, involving vi-
sual inspections and taking measurements to quantify in order to better describe
it. The purpose of the analysis and interpretation activities is to provide the nec-
essary background about dam behavior for a better definition of the requirements
(data selection, type of models, etc.), to enhance the conceptual understanding and
to represent the dam’s behavior through models. Once a model is constructed, the
assessment of the dam’s condition is based on test hypotheses and scenarios using
monitoring data, and the prediction of the structural behaviour in space and time.
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Fig. 1.1: Main activities of structural dam safety control.

The procedure of providing information for the assessment of the dam’s struc-
tural condition and behavior is itself a form of critical thinking and analysis in order
to reduce the degree of uncertainty about the structural behavior. Our ideas about the
actual dam behavior, or even the validity of the hypothesis and models, are put into
question when new evidence that do not match the existing hypothesis are found.

In the design phase of a dam, the intention is to create a structural form which,
together with the foundation and the environment, will most economically [27]: (i)
perform its function satisfactorily without appreciable deterioration during normal
scenarios expected to occur in the dam’s life (ensuring performance and dam safety
conditions) and, (ii) will not fail catastrophically during the most unlikely (but pos-
sible) extreme hazard scenarios which may occur (ensuring dam safety condition).

During the dam’s life, the performance and dam safety conditions are reassessed
for the same scenarios, and for other scenarios ”suggested” by the observed behavior
through the analysis of relevant parameters (such as self weight, water level and
temperature variations, among others), as represented in Fig. 1.2. Typically, these
parameters will describe: the loads or operating conditions to which the system may
be subjected, the materials from which the structure is constructed, the materials
upon which the structure is to be founded, and the structural response of the dam.

The assessment of the structural dam behavior and dam condition must be per-
formed for each dam independently, even for dams of the same type, because of sev-
eral aspects, such as heterogeneities in the dam’s foundation and in the surrounding
areas of the dam, or different loads (as a consequence of environmental or opera-
tional conditions).

Models used for dam safety control should incorporate all information available.
Note, however, that in the point of view of the design, the values for the structural
properties and the loads are assigned and the dam safety condition is assessed based
on the responses obtained through numerical models, whereas, in the point of view
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Fig. 1.2: Some parameters analyzed for the assessment of dam safety and perfor-
mance.

of the safety control, and when there is a large amount of observations of loads and
responses, the structural properties that characterize the model can be determined
and compared with the values of these structural properties effectively observed.

During the dam’s life phases, the models used are updated to take into account the
observed dam behavior through the monitoring systems. This is the case of quantita-
tive interpretation models, whose parameters can be updated based on the measured
dam response over time.

Present and past observations of loads and responses provide a continuous repre-
sentation of the dam state, creating an updated model that accurately represents the
real behavior of each dam. Such data is the most powerful tool to support decision
making by dam specialists, since:

• it supports informed decision making as a data-driven decision support system,
where dam specialists can analyze the actual behavior of each dam;

• it provides historical data about relations between actions/responses, making it
possible to create predictions about the future dam responses, allowing a model-
driven decision support system.

As a consequence, dam safety specialists create behavior prediction models to
represent the expected behavior of each dam. The predicted values are then com-
pared with the real response (values observed by the monitoring system), aiming
to identify deviations from the real behavior to the expected one (considered as the
normal behavior). Identified deviations between the predicted behavior and the ob-
served behavior can mean: (i) structural anomaly; (ii) structural adaptation to new
conditions, which means that the prediction model is outdated; (iii) inadequate pre-
diction. Indeed, it is of most importance to adequately identify deviations that rep-
resent any kind of structural anomaly, reducing as much as possible any deviations
related to outdated or inadequate prediction models.



6 João Rico, José Barateiro, Juan Mata, António Antunes and Elsa Cardoso

Traditionally, dam specialists use Multiple Linear Regression models [10] to pre-
dict the expected behavior of each dam. Current advances in the machine learning
field, specially on the class of deep learning models, can be seen as a breakthrough
for dam safety if they manage to better predict the dam behavior in time. Based on
this challenge, this chapter proposes the use of Recurrent Neural Networks to model
the behavior of dams, represented by the sensor data generated by the monitoring
system installed at each dam.

The remainder of this chapter is organized as follows:

• Section 1.2 presents the data lifecycle in the safety control of concrete dams, ex-
plaining how the data is captured; what are the main processing and data storage
capabilities that are required for dam safety data; how data quality and outlier
detection can be achieved is this field; how quantitative models can be used in
dam safety and, finally, what is the current state of the art in the usage of machine
learning techniques in the safety control of concrete dams;

• Section 1.3 surveys the use of deep learning for sensor data prediction with a
specific focus on deep learning in time series;

• Section 1.4 presents the research method followed in this chapter to design the
proposal of the usage of deep learning strategies to predict the structural dam
behaviour;

• Section 1.5 details the deep learning methods used to predict the structural dam
behaviour;

• Section 1.6 presents the evaluation of the methods proposed on section 1.5, using
a real case study of the Alto Lindoso dam;

• Section 1.7 details the main conclusions of this chapter.

1.2 The data lifecycle in the safety control of concrete dams

To understand the implications of dam safety data we need to consider its lifecycle.
Figure 1.3 shows the dam safety engineering oversight proposed by M. Ljunggren
and Campbell [48], where the data management lifecycle includes: (i) raw data col-
lection; (ii) processing and data storage; (iii) data analysis.

Based on this structure, this section analyses raw data collection in subsec-
tion 1.2.1, processing and data storage capabilities in subsection 1.2.2, data quality
and outlier detection in subsection 1.2.3, analysis of the structural response with
quantitative interpretation models in subsection 1.2.4 and, finally, subsection 1.2.5
surveys how machine learning techniques are currently being used in dam safety to
support the analysis process.
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Fig. 1.3: Dam Safety Engineering oversight. Retrieved from [48].

1.2.1 Raw data collection

Visual inspections1, tests2 and measurements provided by monitoring systems are
the methods used to maintain an updated knowledge required to exercise safety
control.

Dam safety control begins with the preparation of a monitoring plan, in princi-
ple before the start of construction. The monitoring plan must pay attention to the
hypotheses and critical aspects considered in the project, taking into account the
assessment of potential risks, and the definition of the necessary resources to guar-
antee the safety control and the dam functionality over time, and the timely detection
of any abnormal phenomena. The monitoring plan is established for the entire life
of the dam, however, it must be understood as being dynamic and must be revised
and updated, if necessary.

During construction, the good quality of materials and construction processes
should be ensured. During the first filling of the reservoir, the dam behavior must
be followed with particular attention, not only because it is in this period that a
potential risk is created with the formation of the reservoir (it is the first load test),
but also because experience has shown it to be a critical period of the dam safety (the
dam is subjected to loads that was never subjected). During operation, monitoring
focuses on supporting the analysis and interpretation of the dam behavior. At this
point in the life of the dam, a significant body of information has most likely been

1 Inspections are either of a routine nature, or may follow unusual occurrences, such as earthquakes
or large floods.
2 Laboratory and in situ tests, and long term monitoring are used to measure changes in structural
properties, actions, and their effects and consequences.
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developed about the dam and dam site. The information and data collected during
previous phases of the dam can be used to identify the dam safety issues of current
concern [57].

The assessment of dam condition, through the use of the information provided
by the monitoring system, is achieved by having an up-to-date knowledge of the
dam so that anomalous behavior is detected in sufficient time to allow appropriate
intervention to correct the situation or to avoid serious consequences.

A monitoring system, defined in the monitoring plan, is designed according to the
possible accident and incident scenarios, taking into account aspects related to: (i)
the dam safety and functionality, (ii) characterization of the dam behavior (actions,
structural properties and effects), (iii) accuracy of the instrument concomitant with
the expected range of the physical quantities that will be measured, (iv) reliability
and redundancy, (v) access to the dam (some dams have no access during the winter,
for example).

Monitoring systems must be adequate and reliable. The insurance of good per-
formance and the functionality of the monitoring system throughout all of the dam’s
life phases are main requirements. For these reasons, the use of instruments that can
easily be replaced or repaired without compromising the continuity of the moni-
toring process (both time continuity and in compatibility of the measurements) is
recommended. The redundancy of measurements must be considered to avoid pos-
sible wrong conclusions based on a possible malfunction of a single instrument.
Besides the economic aspects, the instrumentation must take into account practical
aspects. For example, the installation of high precision instruments with short range,
may not be acceptable.

The variables to be measured, the general information about the devices to be
installed, and the procedures to be followed in the installation and maintenance are
also presented in the monitoring plan. The methods used for dam monitoring can be
classified by their purpose [29]:

• Characterization of the structural properties: in situ and laboratory tests of sam-
ples of the materials used in the dam construction, forced vibration tests, and
tests under fast loads or permanent loads over time in cells installed in the dam.

• Monitoring of the actions: the observation of the sequence and techniques used
in the dam construction, water levels, air and water temperatures, earthquakes
(including induced earthquakes by the filling of the reservoir), through the use of
limnimetric scales, thermohygrographs, maximum and minimum thermometers
and seismographs, among others.

• Monitoring of the direct effects of the actions: the pressures in the pores and
cracks, seepage and leakage, and concrete temperatures, through the use of
piezometers, drains, weirs and thermometers.

• Monitoring of the indirect mechanical effects: absolute and relative displace-
ments, joint movements, stresses and strains, through survey methods, and through
the use of direct and inverted pendulums, rod extensometers, jointmeters, stress
meters and strain gauges.
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Instrument measurements are manually collected by human operators, using spe-
cific measuring instruments, or automatically collected by data acquisition units
connected to a network of sensors.

1.2.2 Processing and data storage

After the acquisition process, the data is transformed into engineering quantities
(e.g. relative displacements, seepage) by specific algorithms that use a set of cali-
bration constants. In fact, the term reading does not correspond to raw data, since a
reading is also a transformation from the raw data.

Fig. 1.4: Data transformation workflow for an electrical instrument.

Figure 1.4 illustrates a typical data transformation workflow for an electrical in-
strument (e.g., a Carlson Extensometer). Instruments (transducers3) convert a phys-
ical action (e.g., displacement) into an electrical signal (raw data produced as a volt-
age in mV), which is then converted by a gathering instrument (or by the sensor)
into processed readings (e.g., resistance, relation of resistances). Finally, the read-
ings are converted into engineering quantities (e.g., extension), which is the infor-
mation used to assess the structural behavior of the dam. The dam safety monitoring
information includes, essentially, instrument properties, calibration constants, read-
ings and engineering quantities to quantify the physical actions and the response of
the dam.

Since dams can be in-service for several decades or even a century, past data
collected during the construction and exploitation phases is critical to support the
assessment of current structural safety. As a consequence, the data lifecycle in the
safety control of concrete dams must be seen as a long-term cycle where data must

3 A transducer is a device that converts any type of energy into another.
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be preserved. Data management of such long cycles is usually known as digital
preservation, where current efforts are often built upon the Open Archival Infor-
mation System (OAIS) reference model [32], which addresses fundamental issues
surrounding trust and provides the basis of a certification standard for digital repos-
itories [67, 33].

The OAIS model provides a high level model designed to support static processes
and static information types for longterm preservation. Figure 1.5 shows the high-
level functional entities of OAIS in relation to its contextual environment, which is
comprised of producers, consumers, and management. Content enters the archive
through the Ingest function in the form of a Submission Information Package (SIP).
It is processed and passed onto Archival Storage as an Archival Information Pack-
age (AIP). For access, a Dissemination Information Package (DIP) is created upon
the request of a Consumer. These primary functions are managed, supported and
controlled by Preservation Planning, Data Management, and Administration. The
OAIS also defines a conceptual information model describing the structure of the
information packages handled within the archive during ingest, archival storage,
and access.

Fig. 1.5: OAIS functional model. Retrieved from [32].

The OAIS focus on the ”inner walls” of an archive, ensuring that data captured
during the dam entire lifecycle is accessible for analysis and reuse, dealing with the
data storage requirement for dam safety data.

Due to the properties and value of dam safety data, specially the one generated
by sensors that can not be recovered or repeated in case of loss, dam owners and
national authorities must use long-term repositories that ensure adequate manage-
ment of dam safety data and long term preservation to support access to data during
the entire data lifecycle in the safety control of dams, which can encompass several
decades or even a century of observations.
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1.2.3 Data quality assessment and outlier detection

Data quality is focal when talking about dam safety engineering. As seen in Fig.
1.3, dam’s data quality is impacted by every single process in the cycle, however,
in the reverse direction, data quality directly impacts data analysis and dam safety
assessment. The effects of bad data quality will only be observed in the final stages
of the cycle, with the greater risk of not being detected at all and misinforming dam
safety experts.

To correctly analyze the behavior of a dam, measurements of physical quantities,
collected by the dam monitoring system, should be representative of the dam real
behavior, i.e., the measurement result (collected value) and the correspondent mea-
surand (real physical value) should have the same value. The real value is always
unknown, however there are ways to determine if the measured value is wrong (e.g.,
domain limits). If a measurements does not correspond to the real physical value
of the quantity measured, the dataset contains errors (dam behavior interpretation is
distorted) and therefore is not of quality [51].

With the advances of technology, automated systems are utilized to monitor
dams, providing an increase of information that beforehand had to be collected man-
ually and with less frequency. However, with this increased amount of information,
the potential for measurement errors also increases. Automated measurements can
be compared with the manual ones (manual measurements) and use them as refer-
ence elements to assess the quality of stored data [52], as seen in Fig 1.6. Estimating
the Probability Density Functions (PDF) can be useful to characterize both the man-
ual and the automated measurements (similar PDF are expected if the sensors are
paired).

Fig. 1.6: Left: Manual Data Aquisition System (MDAS, in red) vs Automatic Data
Acquisition Systems (ADAS, in blue) measurements; Right: MDAS (in red) vs
ADAS (in blue) PDF comparison. Retrieved from [52].

Regarding gross errors, such as outliers, they can be caused by various fac-
tors. Mechanical and instrumental errors (like sensor failure), IT errors (overrides
in databases or data corruption), human errors (manual entries) or even deviations
in the system behavior (if the outlier is caused by this, the information gathered by
detection is very important to the creation of knowledge) [24]. In order to detect out-
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liers, several techniques can be applied from simple 2D scatter-plots or Whiskers-
Box-plot to Machine Learning (ML) algorithms. However, some techniques are
faster and more accurate than others, and a manual outlier detection process does
not suffice in an Automatic Data Acquisition Systems (ADAS) scenario, where ac-
quisition frequency is higher and therefore a larger amount of data is collected and
needs to be pre-processed before it is available to dam safety experts.

Multiple Linear Regressions (MLR) and other predictive algorithms can be used
in outlier detection. After predicting a set of values, incoming measurements can be
labeled as outliers if they are found outside of a certain distance from the expected
value limits (defined by a boundary based on standard deviations) [53, 80]. Other
ML algorithms, like Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), an unsupervised clustering algorithm, can also be useful in this task
[2].

1.2.4 Data analysis and dam safety assessment based on
quantitative interpretation models

Quantitative interpretation models for the prediction of the structural response of
concrete dams, typically used by dam engineers, are based on the estimation of
parameters, and on several simplifying assumptions concerning the behavior of ma-
terials, such as:

i The analyzed effects refer to a period in the life of a concrete dam for which
there are no relevant structural changes.

ii The effects of the normal structural behavior for normal operating conditions
can be represented by two parts: a part of elastic nature (reversible and instan-
taneous, resulting from the variations of the hydrostatic pressure and the tem-
perature) and another part of the inelastic nature (irreversible) such as a time
function.

iii The effects of the hydrostatic pressure, temperature, and time changes can be
evaluated separately.

Quantitative interpretation models are typically obtained through multiple linear
regression (MLR). If the hypotheses that support the MLR models are true, the sep-
aration of effects is valid, which is advantageous to quantify the contribution that
a particular action has on the structural response. The main actions are the hydro-
static pressure variation caused by the variation of the water in the reservoir, the
temperature changes in the dam body that results from the air and water tempera-
ture variations, and other phenomena not reversible in time (mainly due to changes
in the properties of the materials). HST (Hydrostatic, Seasonal, Time) models are
statistical models widely used because they consider that the thermal effect consid-
ered as the sum of sinusoidal functions with an annual period, similar to variations
of air and water temperatures [50]. However, the effect of the real annual wave of
the air temperature variation does not follow a shape similar to a sinusoidal function
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(the winter and summer periods are not well represented by sinusoidal waves, and,
as a consequence, extreme values on the structural response due to the tempera-
ture effect are not accurate). To overcome this drawback, some models use recorded
temperatures, also known as HTT (Hydrostatic, Thermal, Time) models that better
represent the thermal effect on dam behavior (instead of the seasonal function like
HST models). However, the choice of the thermometers (usually devices embedded
in the dam body) to be considered or even the use of air temperature measurements
also have its difficulties.

Table 1.1 shows the main advantages and disadvantages of multiple linear re-
gression models (HST and HTT models) regarding the quantification of the temper-
ature effect. In both types of models the air temperature is not considered because
the structural response presents, in average, a phase offset and a amplitude change
when compared with the annual air temperatures variation.

Table 1.1: HST and HTT models - Quantification of the thermal effect through mul-
tiple linear regression

Model Advantages Disadvantages

HST • Simple
• Thermal effect obtained through

sinusoidal functions

• Thermal effect estimated without
knowledge of the air, water or dam
body temperatures evolution

• The prediction approximates the
maximum measured values by de-
fault and the minimum measured
values by excess

HTT • More accurate quantification of
the thermal effect through the
knowledge of the embedded ther-
mometers in the dam body

• Thermometers in the body that
present a phase offset similar to
the structural response under anal-
ysis is required

• Difficulty in the selection of the
thermometers and its adequate
functioning along time

Structural safety control activities are based on the interpretation of the observed
behaviour. Models are used to support the interpretation of the observed struc-
tural behaviour along time. The portion not explained by the model, called residues
(ε = δmeasured −δmodel prediction), is obtained through the difference between the ob-
served behaviour and the model prediction. The interpretation of the residues (and
of their evolution) is equally important since they are related to the measurement
uncertainty and the portion of the structural response that could not be explained by
the used model.
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Formulation by separation of the reversible and irreversible effects in HST
models

HST models consist in approximating the shape of the deterministic indicators
through simple functions which are easier to manipulate [80]. It is considered that
the effects (such as horizontal displacements at the crest of the dam) associated with
a limited time period at a specific point can be approximated by

δHST = δH +δS +δT + k (1.1)

where δHST is the observed structural response; δH is the portion of the structural
response due to the elastic effect of hydrostatic pressure; δS is the elastic portion of
the structural response due to the effect of temperature depending on the thermal
conditions represented by seasonal terms; and δT is the portion of the structural
response due to the effect function of time considered irreversible.

The separation of effects requires the consideration of a constant k due to the fact
that the structural response, measured on the reference date, has a value different
from zero.

The portion of the structural response due to the effect of hydrostatic load, δH ,
is usually represented by polynomials depending on the height of the water in the
reservoir h:

δH (h) = β1h+β2h2 +β3h3 +β4h4. (1.2)

The portion of the structural response due to the effect of the temperature changes
can be considered as a proportional function of the environmental temperature
changes, with a phase shift, depending on the depth into the section. The portion
of the structural response due to temperature changes is considered instantaneous
with respect to the temperature field in the dam body, but it is deferred with respect
to the measured air and water temperatures [62].

Very simple models, like these HST models, usually do not use temperature mea-
surements because it is assumed that the annual thermal effect δS (d) can be repre-
sented by the sum of sinusoidal functions with a one-year period. Thus, the effect
of temperature variations is defined by a linear combination of sinusoidal functions,
which only depend on the day of the year:

δS (d) = β5 sin(d)+β6 cos(d)+β7 sin2 (d)+β8 cos2 (d) (1.3)

where d = 2π· j
365 and j represents the number of days between the beginning of the

year (January 1) until the date of observation (0≤ j ≤ 365).
To represent the time effects, δt , it is usual to consider the functions presented in

Eq. 1.4, where t is the number of days since the beginning of the analysis.

δT (t) = β9t +β10e−t (1.4)
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1.2.5 Data analysis and dam safety assessment based on machine
learning models

Machine learning techniques are used to aid in the interpretation of the observed be-
havior and the structural safety control of dams. Predicted values, obtained through
the use of machine learning models, are compared to the real value of sensor read-
ings, in order to detect any major deviation of response (which can point to possible
structural damage). Studies in the field of research mainly focus on obtaining a
meaningful set of predictors (e.g., water level, air and water temperature, etc), and
a good machine learning method capable of correctly predict the response variable
(e.g., radial displacements, crack openings, etc).

Tatin et al [81] presented the HST-Grad model, a hybrid of the HST model with
the inclusion of air and water thermal variation. The model can be seen as a Multiple
Linear Regression (MLR) where the effects of lag predictors (temperature gradients)
were enough to slightly increase the performance of the previous models for radial
displacement prediction in French dams. HST models can also be used to individ-
ually quantify a specific effect in the dam response due to one of the main actions
(e.g., effect of hydrostatic pressure in crest displacement shown by De Sortis and
Paoliani [10]). In Tatin et al [82], the structure is seen as a group of horizontal lay-
ers that allow the observation of the effect of thermal effect of both water and air
temperature throughout the dam.

Several adaptations from the HST model can be found. The utilization of mea-
sured concrete temperatures instead of the seasonal temperature variation (the HTT
model, as seen in Perner and Obernhuber [62]); the inclusion of an Error Correction
Model (ECM) for increased precision in time-series, proposed by Li et al [41]; the
use of a hybrid with a genetic algorithm, increasing robustness and predictive power
of MLR shown in Stojanovic et al [76]; the Hydrostatic Seasonal State (HSS) model,
proposed by Li et al [42], that represents time-effect deformation as a state equation
proved able to provide a better fitting to radial deformations than the HST model;
and the EFR (EFfet Retard - Delayed effect) model, utilized by Guo et al [18] to
predict pore water pressure by taking in account the delayed hydrostatic effect, are
some examples.

Feed-forward Neural Networks (FNN) proved to be an powerful tool in assessing
concrete dam behavior, as shown by Mata [50]. The FNN model’s prediction for
horizontal displacements, using water level and seasonal temperatures variations,
obtained better results when compared to MLR models. FNNs models can also be
used to predict piezometric water levels in piezometers. Ranković et al [66] compare
FFN with MLR (both trained with three values of water level from previous days of
each measurement) and concludes that FNN provide better prediction of the target
variable. Tayfur et al [83] obtained improved performance, on average, using FNN
when compared with a Finite Element Model (FEM), however this was not the case
in every analyzed dataset. Kang et al [36] utilizes Extreme Learning Machine, a type
of FNN with a single hidden nodes layer, obtaining better results of displacements
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prediction when compared to MLR, backpropagation-trained NNs, and Stepwise
Regression.

Modification to Support Vector Machines (SVM) were used by Cheng and Zheng
[6] in order to create a model able to simulate the non linear mapping between envi-
ronmental and latent variables. The LS-SVM (Least squares SVM) model presented
good performance when predicting uplift pressure and horizontal displacements.
Ranković et al [65] use Support Vector Regression (SVR), an application of SVM
for function estimation, to predict tangential displacements. To predict displace-
ments, Su et al [77] combines SVM with other methods, such as wavelet analysis to
resolve some problems identified with SVM (e.g, kernel function and parameter op-
timization). SVM can also be useful to detect failure, categorized damage states and
predict local responses, as can be seen in the FEM-SVM based hybrid methodology
presented by Hariri-Ardebili and Pourkamali-Anaraki [19].

Principal Component Analysis (PCA) is used by Yu et al [88] to provide data
reduction, noise filtering and multivariate analysis and monitoring. PCA is followed
by a HST model to predict crack size opening. Mata et al [54] makes use of PCA to
obtain a HTT model, where the goal of PCA was to select which thermometers had
more impacting/correlation to the response variable, and therefore should be used
as predictors. This was also done by Prakash et al [63] when obtaining a hydro-
static, seasonal, temperature, and time (HSTT) model. PCA was utilized as a data
reduction tool before using HSTT to predict the dam responses (displacement and
strain).

Bui et al [5] presents SONFIS (Swarm Optimized Neural Fuzzy Inference Sys-
tem) as a promising tool for modeling horizontal displacements. When compared
to other algorithms, like SVM and Random Forest (RF), SONFIS outperformed the
presented benchmarks by using the PSO (Particle Swarm Optimization) algorithm
to optimize parameters for the neural fuzzy inference system (water level, air tem-
perature and time are used as predictors).

Other regressions besides the HST model can be found in Jung et al [34], where
a Robust Regression Analysis is used with PCA to predict piezometric readings in
time-series data with periodic or dominant variations, and in Xu et al [85], which
combined a genetic algorithm (for predictor variables selection) and a Partial Least
Squares (PLS) regression to predict crack opening in a Chinese dam. Random Forest
Regression (RFR) is used by Dai et al [9] to predict horizontal displacements and
in Li et al [43] to create a uplift pressure model, obtaining better results than SVM.
Li et al [43] also studies 18 different predictors, stating that the model can be used
to extract correlations and rules between the variables (the influence of rainfall was
considered the smallest when compared to the other factors). Boosted Regression
Trees (BRT) are used in Salazar et al [69] to predict radial displacements and leakage
flows. Different predictors were explored, and relative influence of each predictor
was obtained for each target variable. BRT can also be used in a anomaly detection
scenario as seen in Salazar et al [71].

Most of the authors use HST models or adapt it to obtain good predictive mod-
els. However, the diversity of ML algorithms available is increasing daily, and re-
searchers are using them to create better models. PCA, SVM, and NN are some
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algorithms already used by the community (Salehi and Burgueño [72] presents a
survey of ML techniques used in structural engineering) that help increasing predic-
tion performance, and therefore, increasing safety control mechanisms accuracy in
concrete dams. In Salazar et al [68], RF, BRT, NN, SVM and Multivariate Adaptive
Regression Splines (MARS) are utilized to predict radial and tangential displace-
ments and leakage (in a total of 14 different datasets). An extensive comparison
between several machine learning techniques applied to dam behavior prediction is
presented in Salazar et al [70].

1.3 Data analysis and data prediction using deep learning models
- an overview

Deep learning methods [73, 39, 15] are a class of machine learning methods that
learn multiple layers, or levels, of representations by composing simple non-linear
modules at one layer into more abstract representations one layer above. What is
more, this representation learning is done mostly automatically, without a strong
dependence of a human doing manual feature engineering requiring time and ex-
pert domain knowledge - the features are learned from the input data by a general-
purpose learning mechanism. Of course the domain specialist is still fundamental to
interpret and validate the quality of the model within their knowledge expertise. In
recent years, deep learning has achieved state of the art or highly competitive results
in fields such as image recognition [37], natural language understanding [8], drug
discovery [49], recommendation systems [84], and board and video games playing
[56, 74, 75].

Recurrent Neural Networks (RNN) are a class of deep learning models which
have proved effective at solving tasks involving input and/or output sequences
[16, 44, 38]. They process an input sequence one element at a time (possibly a
vector) and maintain an internal ”state vector” that contains information about the
sequence of previous inputs. In principle, a RNN can map from the entire history of
the previous inputs to each output, effectively allowing it to simultaneously capture
dependencies on multiple timescales. RNNs have recently seen a surge in applica-
tion including in such diverse fields as machine translation [79] and natural language
processing [55], urban mobility and traffic prediction [89, 47], speech recognition
[17], clinical diagnosis [45] and DNA sequencing [64].

Given an input sequence (x1,x2, . . . ,xt) where each xt ∈ Rp, p is the number of
input features and t is the number of timesteps, a RNN is defined by the following
recurrent relation:

ht = σ(Wxt +Uht−1 +b), (1.5)
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Fig. 1.7: Graphical representation of the recurrence relations defining a RNN. In
this diagram, the non-linear activation function σ is represented as the hyperbolic
tangent, a common choice. Retrieved from [59].

where W ∈Rn×p, U ∈Rn×n, b∈Rn are matrices representing the hidden state whose
values will be learned during training, and n is the dimension or size of the RNN
cell. The n-dimensional hidden state vectors at time t and t−1 are denoted by ht and
ht−1 respectively, and σ is a non-linear activation function such as the hyperbolic
tangent, the logistic sigmoid or the rectified linear unit [14]. Figure 1.7 shows a
graphical representation of the recurrent relation above, and figure 1.8 depicts two
representations of an RNN, namely (a) a compact (or folded) cell in which outputs
are connected back as inputs, and (b) an unrolled series of cells explicitly showing
each time step. This re-feeding of outputs as inputs and the sharing of the cell’s
parameters across layers (or timesteps) are the main differences from the classical
feedforward neural network.

Fig. 1.8: Two representations of the same RNN model. Left: A compact (or folded)
representation, in which the parameter sharing between different timesteps is ac-
centuated. Right: An unrolled representation of an RNN putting in evidence the
relationship between different elements of the input sequence, the internal state of
the network and the output. Retrieved from [59].

The most common architectures of RNNs are sketched in Figure 1.9 in an un-
rolled representation. For a timeseries prediction problem one will typically use the
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sequence vector to single vector architecture for the one-step prediction (b) or, in
the case of multi-step prediction, one of the two sequence-to-sequence architectures
(d) and (e).

Fig. 1.9: Different kinds of RNN architectures. (a) One-to-one: the traditional feed-
forward neural network; (b) Many-to-one: sequence prediction or classification,
includes one-step time series prediction tasks, such as, for example, financial or
weather forecasting, product recommendations, anomaly detection, sentiment anal-
ysis or DNA sequence classification; (c) One-to-many: sequence generation, includ-
ing for example image labeling; (d) and (e) Many-to-many: sequence to sequence
learning of which some example applications would be sentence translations, multi-
step time series prediction, program execution, text summarization, and text and
music generation. Retrieved from [44].

Despite its representational power, training RNNs has been considered difficult
[4, 78]. When unrolled in time, RNNs resemble a very deep FFN with as many lay-
ers as timesteps. The naive application of backpropagation leads to the problem of
exploding and vanishing gradients. In 1997, Hochreiter and Schidhuber introduced
the Long Short-Term Memory (LSTM) network as a solution to this problem by
adding to the vanilla RNNs a memory cell and a gating mechanism that regulates
the information flow [23, 13]. This gating mechanism (which includes an input,
forget and output gate) is responsible for managing which information persists, for
how long, and when to be read from the memory cell. Because the cell state is up-
dated with an addition operation (and not a sigmoidal transformation as in vanilla
RNNs) it does not suffer from the vanishing gradient problem. Figure 1.10 shows a
depiction of this mechanism, which can be formalized in the following equations:
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ft = σ(Wf xt +U f ht−1 +b f ) (1.6)
it = σ(Wixt +Uiht−1 +bi) (1.7)
c̃t = tanh(Wcxt +Ucht−1 +bc) (1.8)
ct = it � c̃t + ft � ct−1 (1.9)
ot = σ(Woxt +Uoht−1 +bo) (1.10)
ht = ot � tanh(ct) (1.11)

where, ft , it , c̃t ,ct ,ot and ht , represent the outputs of forget gate, input gate, candi-
date state, cell state, output gate and the final cell output, respectively, � represents
the element-wise Hadamard product, and ht can be used as the final output.

Fig. 1.10: Graphical representation of the recurrence relations defining a LSTM cell.
Retrieved from [59].

There are several extensions, or deep learning alternatives, to the vanilla RNN
and LSTM architectures and numerous related techniques which we do not pursue
in this work, but which have already shown to be promising approaches to effec-
tively model timeseries prediction tasks. These include attention mechanisms [86],
convolutional neural networks [39, 87], stochastic regularization techniques (such
as dropout [22]), grid LSTMs [35], multimodal learning [58, 60] and probabilistic
methods [12, 90].

1.4 Adopted problem solving process - the Design Science
Research Methodology

The Design Science Research Methodology (DSR) is a problem solving process that
focuses on the relevance of creating and evaluating different artifacts to meet and
solve relevant objectives and problems [20]. As proposed by Peffers et al [61], the
design science research methodology encompasses six steps triggered by possible
research entry points, as represented in Fig. 1.11.
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Fig. 1.11: Design Science Research Methodology . Retrieved from [61].

This chapter follows a DSR methodology and is driven by the relevance of dam
structural safety, being a recognized problem, not only due to the value produced by
these critical infrastructures, but also to the potential catastrophic consequences in
the case of structural failures. As such, the objective of this research is to improve
the support to the decision making process performed by dam safety specialists,
through better prediction models for data captured by sensors installed on dams.
To accomplish this objective, methods based on prediction models that use recur-
rent neural networks (namely Long Short Term-Memory networks) are presented on
section 1.5, demonstrated and evaluated on a real case study provided by the Alto
Lindoso dam on section 1.6. Note that the evaluation of the proposed method is per-
formed based on the results of the multiple linear regression, which is the traditional
method used by dam specialists and, as a consequence, is used as the baseline for
this study.

1.5 Proposed methodology - adding value to the interpretation of
the monitored dam behaviour through the use of deep
learning models

HST models based on MLR methods are widely used and allow a big picture of
the structural dam behaviour, but a portion of the measured behaviour is not ex-
plained. To overcome this drawback, the model proposed aims to take advantage of
the knowledge of :

• the multiple linear regression models (HST models in this case study), commonly
used, through the use of the predicted values obtained by the model.

• the evolution of the air temperature, represented by mean (Tair,mean), the 10-
quantile (Tair,10Q) and the 90-quantile (Tair,90Q) of the air temperature. It is ex-
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pected that the LSTM neural network model will be able to identify the structural
response pattern (phase offset and amplitude change) due to the air temperature
effect, which the MLR model is not able to.

• the reservoir water level evolution along time. For example, an increase of the
reservoir water level tend to increase the uplift pressures in the dam foundation,
and indirectly, the evolution, along time, of the observed displacement measured
in the dam body.

Based on the referred before, two strategies to take advantage of property of
LSTM models in processing sequential data could be adopted: i) the use of a LSTM
to model the structural behaviour or ii) the use of a LSTM model to model the part
of the structural response that is not explained by the MLR model.

1. The use of LSTM to model the structural behaviour. In this case, the main in-
puts of the LSTM model are the predicted values obtained from the MLR model
δMLR, to represent the overall pattern regarding to the hydrostatic, thermal and
irreversible effects; Tair,mean, Tair,10Q, Tair,90Q and h4 to represent the ”missing
component” related reversible effect; and t or e−t to represent the ”missing com-
ponent” related to the irreversible effects along time. The output is the observed
structural behaviour, δ .

2. The use of a LSTM model to model the part of the structural response that is
not explained by the MLR. In this case, the main inputs of the LSTM model
are Tair,mean, Tair,10Q and Tair,90Q and h4. The output is the observed structural
behaviour not explained by the MLR model, δ − δMLR, eq. 1.12. Besides the
information related to a possible anomalous phenomena, the residuals εMLR =
δ − δMLR contain information related to errors (measurements and model) and
other unknown effects.

The last strategy was adopted because the innovation based on the proposal is
clear for both academy and future stakeholders and final users. Knowledge devel-
oped along years is used (taking into account that worldwide countries have different
levels of knowledge and practices regarding the dam safety activities) and improved
based on the use of LSTM models4.

In this way, we model the part of the structural response not explained by the
MLR,

δ = δMLR + εMLR (1.12)

The unexplained pattern (εMLR = δ −δMLR) of the structural behaviour (obtained
from the MLR model, eq. 1.12) will be explained by the LSTM model taking ad-
vantage of the knowledge of the MLR models (designed as δLST M|MLR), as follows

δ −δMLR = δLST M|MLR + εLST M|MLR (1.13)

4 New developments must take into account that dam safety is a continuous requirement due to the
potential risk in terms of environmental, social and economical disasters.
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Finally, the predicted value for the structural behaviour is obtained by summing
both δMLR and δLST M|MLR, being the εLST M|MLR the new residuals, as in

δ = δMLR +δLST M|MLR + εLST M|MLR. (1.14)

The model we propose is a single layer LSTM that takes as input a sequence of
N xt input vectors from xT−N to xT to predict the value of δ −δMLR at time T. Each
input vector xt has as components the values of Tair,mean, Tair,10Q, Tair,90Q and h4 at
time t. In general, this model can be easily expanded by adding other input features
as new components of xt .

The hyperparameters of the LSTM are chosen through a validation set approach.
These hyperparameters include the size of LSTM cell, the number of timesteps of
each input sequence, the loss function, the optimization method and the batch size.
To carry out this approach one splits the available dataset into three disjoint sets: the
training, the validation and the test set. Holding out the test set, one trains the LSTM
model on the training set optimizing the loss function for different combinations of
the hyperparameters. The error of each of the resulting models is evaluated on the
validation set, and one which achieves the best compromise between a low value
of the validation error and computational cost (for example, more timesteps and a
larger value of the size of the LSTM cell correspond to longer training and inference
times).

1.6 Demonstration and evaluation - assessment and
interpretation of the monitored structural behaviour of a
concrete dam during its operation phase

1.6.1 The case study - the Alto Lindoso dam

The Alto Lindoso dam, depicted in Fig. 1.12, is a double curvature concrete dam
whose construction finished in 1992 in a symmetrical valley of the Lima river, in
the north of Portugal. The dam is 110 m high, the crest elevation is 339.0 m, and
the total crest length is 297 m. The thickness of the central block is 4 meters at
the crest and 21 meters at the base. There are three internal horizontal inspection
galleries (GV1, GV2 and GV3) across the dam and a drainage gallery (GGD) close
to the foundation [11]. The dam is founded in a good quality granitic rock mass, but
with some heterogeneity. The rock mass deformability was characterised through
mechanical “in situ” and laboratory tests, and geophysical tests for the determination
of propagation velocities of longitudinal waves were performed, before and after the
foundation treatment [11].

The dam body was built between April 1987 and July 1990. The injection of
contraction joints was carried out between March and May 1991. The reservoir first
filling was initiated in January 1992, with the reservoir water elevation at 234 m, and
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Fig. 1.12: Alto Lindoso dam.

the retention water level with the reservoir water elevation at 338.0 m was achieved
in April 1994.

In 2008, an analysis of the structural dam behaviour, carried out by the Por-
tuguese National Laboratory for Civil Engineering, concluded that the Alto Lindoso
dam presented, globally, satisfactory structural dam behaviour [40].

In accordance with best technical practices, the monitoring system of the Alto
Lindoso dam aims at the evaluation of the loads; the characterisation of the geo-
logical, thermal and hydraulic properties of the materials; and the evaluation of the
structural response [46].

The monitoring system of the Alto Lindoso dam consists of several devices
which make it possible to measure quantities such as: concrete and air tempera-
tures, reservoir water level, seepage and leakage, displacements in the dam and in
its foundation, joint movements, strains and stresses in the concrete, and pressures,
among others.

The system used for the measurement of the reservoir water level comprises a
high precision pressure meter with a quartz pressure cell, which provides a record
of the water height over time, and a level scale. The air temperature and humidity are
measured in an automated weather station placed on the right bank, approximately
50 m apart from the dam crest.

The concrete temperature is measured in 70 electrical resistance thermometers
distributed across the dam thickness in 16 sections of several blocks. The location of
the thermometers was defined taking into account the remaining electrical resistance
devices (strain gauges, embedded jointmeters and stress gauges) that also allow for
the measurement of the concrete temperature.

Displacements are measured using an integrated system that includes five pen-
dulums, 18 rod extensometers (Fig. 1.13) and geodetic observations. The relative
movements between blocks are measured by superficial and embedded jointmeters.

The deformation of the concrete is measured with electrical strain gauges ar-
ranged in groups, distributed in radial sections, allowing the determination of the
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Fig. 1.13: Pendulum and rod extensometer distribution in the Alto Lindoso dam.

stress state through the knowledge of the deformation state and of the deformabil-
ity law of the concrete. Stress gauges, which allow for the direct measurement of
normal stress components, were also placed.

The quantities of drained and infiltrated water are measured individually, in
drains of the drainage system installed in the dam foundation and in weirs that
differentiate the total quantity of water that flows in the drainage gallery in several
zones of the dam. The drainage system comprises a set of 52 drains, distributed over
the drainage gallery with two drains per block, except for the central blocks 11/12
to 13/14 and block 18/19 where four drains were executed. All the water extracted
from drains and leakages is collected in three weirs. Weir named Bica 1 collects the
water from blocks 1/2 to 9/10 on the left bank, while weir named Bica 2 collects
water from blocks 14/15 to 21/22, on the right bank. Finally, weir named Bica 3
receives all the water that flows in the drainage gallery.

The measurement of the uplift pressure in the foundation is performed by a piezo-
metric network that comprises 23 piezometers. The pressures within the concrete are
observed by two groups of three pressure gauges embedded in the concrete in two
sections (at levels 310 m and 236 m) in the central block (block 11-12).

In the recent past, an automated data acquisition system was installed but it is
still in a testing phase. ADAS includes the measurement of horizontal displace-
ment along pendulums (telecoordinometers), relative displacements in the foun-
dation (rod extensometers), relative movements between blocks (superficial joint-
meters), discharges (in weirs) and the uplift pressure (piezometers). Figure 1.14
illustrates the location of the ADAS devices of the Alto Lindoso dam. Manual mea-
surement is also possible in these places.
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Fig. 1.14: Location of ADAS devices in the Alto Lindoso dam.

1.6.2 The dataset - horizontal displacements measured by the
pendulum method

As referred before, horizontal displacements in the Alto Lindoso dam, with refer-
ence to a vertical, are measured by the pendulum method. Pendulums are installed
in shafts either built during construction or drilled after. The pendulum method is
based on the position of a steel wire through a vertical line that crosses the dam
body. One extremity of the wire is fixed and defines one of two possible variants for
this method, direct pendulum or inverted pendulum [28, 30, 3].

In the direct pendulum, one end of the wire is fixed on a high point of the dam,
whereas on the opposite end, a weight of approximately 600 N strains the wire. In
this case, displacements obtained in the various access points to the wire are relative
to the fixed high point.

In the inverted pendulum, one end of the wire is fixed in a deep zone of the dam
foundation, out of the zone affected by the main actions. The other end of the wire
its connected to a float. In this case, absolute displacements are obtained.

As a consequence of the geometry of the dam, the horizontal displacements are
obtained by a combination of direct and indirect pendulums.

In specific points near the pendulum, measuring tables are installed, fixed to the
dam, to support the sensitive reading devices which allow for the measurement of
the data raw (distance of the wire to the dam) according to the radial and tangential
components, Fig. 1.15 and 1.16. The most sensitive reading devices are optical in-
struments (e.g. coordinometers or electro-optical coordinometers). Reading instru-
ments accuracy may be greater than 0.1 mm [25] (for example, the coordinometers
used in Portugal presents resolution equal to 0.01 mm), Fig. 1.17. In recent years,
automated systems (such as telecoordinometers with an accuracy equal to 0.01 mm)
have been adopted to measure displacements by the pendulum method [26, 30],
Fig. 1.15.

Figure 1.18 provides an overview of the dataset used to evaluate the LSTM mod-
els for dam safety monitoring and prediction. This dataset provides data back to
the year 1992 to the present. The first grid represents the daily evolution of wa-



Title Suppressed Due to Excessive Length 27

Fig. 1.15: Pendulum, measuring table and automated system for horizontal displace-
ment measurements.

Fig. 1.16: Measuring table. Fig. 1.17: Coordinometer.

ter height (in meters), while the second grid represent the average of the daily air
temperature evolution in (°C) and the third grid represents the horizontal radial dis-
placement measured, δmeasured , at the FP3-326.5m, near the crest arch at the block
11-12, through the pendulum method (in millimeters) .

Note that reservoir water height and air temperature represent the main actions to
the dam and can be directly or indirectly used as input features to the model, while
the horizontal radial displacement is the final target for prediction by the proposed
model.
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Fig. 1.18: Evolution of the reservoir water height, air temperature (daily average)
and horizontal radial displacement at the FP3-326.5m for the training, validation
and test periods.

1.6.3 Main results and discussion

In this section we present, evaluate and comment on the LSTM|MLR model put
forward in Section 1.5 and designed to predict δ − δMLR, that is, the difference
between the values of δ , the horizontal radial displacement in the crest of the Alto
Lindoso dam and the predicted values of the MLR model, at timestep t. We will
refer to this model interchangeably as LSTM|MLR or LSTM.

The LSTM model evaluated in this section is built on top of MLR model, as
described above in section 1.5. The inputs of the MLR model are: the reservoir
water height standardized, h, to the fourth power (h4) to represent the effect of the
hydrostatic pressure; and the effect of the temperature was considered through the
implementation of both the sine (sin(d)) and the cosine (cos(d)) of annual period,
where d = 2π· j

365 and j represent the day of the year, between 01 January and 31
December (0≤ j≤ 365. the time effect did not seem to have a significant importance
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in the period examined by this study. The MLR model can be represented in equation
form in the following way:

δMLR =−3.73×h4−4.22× sin(d)−2.75× cos(d)−4.30, (1.15)

where the notation of Eq. 1.1, 1.2 and 1.3 was followed. Fig. 1.19 shows the mea-
sured displacements δ and the predictions of the MLR model.

Fig. 1.19: Measured displacements (δmeasured) and MLR model (δMLR) fit on the
training set (1994 to 2015) and evaluated of the prediction set (2015-2018).

For both the MLR and the LSTM model, the dataset was split into three disjoint
sets: training, validation and test set. In the case of the MLR model, there are no
hyperparameters to choose with a validation approach, and we have denoted the
union of the validation and test sets as prediction set, as depicted in Fig. 1.19. The
test set corresponds to the period of the last year of data, and the validation set to
period of two years before the test set. Accordingly, the prediction set corresponds
to the last three years of data. Fig. 1.20 shows the residues of the MLR model (the
differences between the measured value of the displacement and the prediction of
the MLR model) which are the quantity to be learned by the LSTM model.

The inputs to the LSTM model are: i) the time series related to hydrostatic effect,
based on h4, and ii) the temperature effect through the use of the average, the 10th
and the 90th percentile of the air temperature recorded during the time period of 15
days immediately before each time-step.

As mentioned in section 1.5, the hyperparameters for the LSTM model were
chosen via a validation set approach. Each model consisted of an LSTM cell of di-
mension 32. The training was carried using the Python deep learning library Keras
[7] with Tensorflow [1] as a backend, a batch size of 4, ’Rmsprop’ [21] as an op-
timizer and Mean Squared Error (MSE) as a loss function. The models receive a
sequence of 30 time-steps of the inputs (corresponding to 15 months of data). The
MLR model was trained on the dataset with the last 3 years of data held out, and
used as a prediction set. For the LSTM model, the last year of data was used test set.
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Fig. 1.20: Differences between the measured displacements and the MLR predic-
tions (δmeasured−δMLR) and LSTM|MLR model fit to these differences (in orange).

The data corresponding to the period of two years before the last year was used as
validation set to choose the hyperparameters.

Fig. 1.21: Measured displacements, MLR model predictions and MLR +
LSTM|MLR model predictions.

Fig. 1.20 shows the fit of the LSTM model to the residues of the MLR, and in
Fig. 1.21 the predicted values, δMLR + δLST M|MLR, are depicted. These predictions
are shown in greater detail for last three years of data, corresponding to the valida-
tion and the test set, in Fig. 1.22. Collectively these figures illustrate the adequate-
ness of the strategy proposed since the LSTM|MLR can in fact learn the pattern
of the structural behaviour prevailing in the residues of the MLR model (Fig. 1.20)
and provide through the MLR+LSTM|MLR model better predictions of the rele-
vant quantity, namely the displacements, than the baseline MLR model (Fig. 1.21
and 1.21).

We have plotted the predicted values of the MLR model and of the MLR +
LSMT|MLR model against the measured values in Fig. 1.23. Again, comparing the
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Fig. 1.22: Measured displacements, MLR model predictions and MLR +
LSTM|MLR model predictions in the Validation and Test sets.

Fig. 1.23: Left: Predicted values δMLR versus measured displacements δ , Right:
Predicted values δMLR +δLST M|MLR versus measured displacements δ .

two plots it is clear that the MLR+LSTM|MLR model is a model which provides
a better prediction, since the cloud of points depicted is denser and closer to the
identity line.

Table 1.2 presents the main performance parameters such as the mean squared
error (MSE), the mean absolute error (MAE), the standard deviation of the errors
(SD), and the maximum absolute error for each of the models for the training dataset
(period between April 1994 and August 2015), the validation set (period between
August 2015 and June 2017) the test dataset (period between July 2017 and June
2018). The last row of Table 1.2 shows the gain between the two models in the
different error metrics. The MLR+LSTM|MLR model has a gain in every metric
ranging from 27% (for the MaxAE of the validation set) to 68% (for the MSE of the
test set).
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Table 1.2: Performance parameters obtained from the MLR model and from the new
MLR+LSTM|MLR model

Training set Validation set Test set
Model MSE MAE SD MaxAE MSE MAE SD MaxAE MSE MAE SD MaxAE

(mm2) (mm) (mm) (mm) (mm2) (mm) (mm) (mm) (mm2) (mm) (mm) (mm)
δMLR 2.08 1.15 0.87 4.81 3.48 1.53 1.07 4.27 4.29 1.67 1.23 4.26
δMLR +
δLST M|MLR

0.72 0.66 0.54 3.10 1.66 1.03 0.77 3.12 1.36 0.97 0.66 2.57

Gain (%) 65 43 39 35 52 33 28 27 68 42 46 40

The results presented in this section, demonstrate the added value of the LSTM|MLR
model for the monitoring of dam safety. This model is capable of learning the pat-
tern of residues obtained from the MLR model by capturing the non-linearities and
the sequential, long-term effects. The remaining error of the MLR+LSTM|MLR
model corresponds to measurement errors and other smaller errors not explained
by this model. It is also expected that with more data, such as higher frequency of
data collection or longer observation time, these results would improve since the
LSTM model would be better able to capture the non-linearities and long-term de-
pendencies. The gain of the MLR+LSTM|MLR model is particularly significant
since monitoring of dam safety is focused on the analysis of the residues.

1.7 Final remarks

Current societies strongly depend on civil engineering infrastructures that support
basic services, such as water supply, energy production and transport. As a con-
sequence, structural safety problems can produce catastrophic consequences, espe-
cially if we consider critical infrastructures such as large dams, bridges or nuclear
facilities. In order to manage structural safety risks, large civil engineering struc-
tures are continuously monitored by several sensors to provide accurate models of
the current state of each structure.

This chapter analyzed the main activities of the safety control of concrete dams,
explaining the common data lifecycle since the dam construction until its decommis-
sioning, and surveying the current state of the art with regard to the use of machine
learning techniques to aid the decision making process during the structural safety
control of concrete dams.

Taking advantage of advances in deep learning, namely in the field of time-series
prediction, this chapter proposed prediction methods based on recurrent neural net-
works with gains approximately near to 30% regarding to maximum absolute error.
The design of these methods followed the design science research methodology and
were evaluated in the real case study of Alto Lindoso dam located in the North of
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Portugal. The evaluation results showed an improvement when compared to tradi-
tional baseline method based on multiple linear regressions.

The contribution of the deep learning based approach to the analysis and interpre-
tation of the monitoring data for dam safety control is not limited to the proposed
methodologies. It is considered that the benefits of deep learning over traditional
machine learning approaches illustrate the potential improvement that these models
can provide to the analysis of the monitoring data and to the interpretation of struc-
tural dam behavior. They clearly illustrate the benefits in the knowledge extraction
from the information embedded in the monitoring data.

This chapter demonstrated how recurrent neural networks can be used to support
decision making of dam specialists for concrete dam safety control. The improved
results are promising and motivate detailed exploitation (e.g., additional input fea-
tures, distinct target predictions) to create improved models for significant moni-
toring systems, improving the capability to anticipate structural safety problems in
large civil engineering structures.
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