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Abstract—This paper presents a robot navigation system capa-
ble of online self-reconfiguration according to the needs imposed
by the various contexts present in heterogeneous environments.
The ability to cope with heterogeneous environments is key
for a robust deployment of service robots in truly demanding
scenarios. In the proposed system, flexibility is present at the
several layers composing the robot’s navigation system. At the
lowest layer, proper locomotion modes are selected according
to the environment’s local context. At the highest layer, proper
motion and path planning strategies are selected according to
the environment’s global context. While local context is obtained
directly from the robot’s sensory input, global context is inspected
from semantic labels registered off-line on geo-referenced maps.
The proposed system leverages on the well-known Robotics
Operating System (ROS) framework for the implementation
of the major navigation system components. The system was
successfully validated over approximately 1 Km long experiments
on INTROBOT, an all-terrain industrial-grade robot equipped
with four independently steered wheels.

I. INTRODUCTION

Over the years, autonomous robot navigation has been
receiving a considerable amount of attention. This interest
owes to the relevance navigation has in what regards the actual
deployment of robots for the execution of real world tasks.
Navigation in off-road environments [1], urban environments
[2], [3], and other environments, are rather well studied
topics. Typically, these previous studies show that different
environments demand for different navigation strategies. Thus,
a robot operating in heterogeneous environments needs to be
able to determine the current environmental context and then
smoothly switch to the proper navigation strategy accordingly.
This context aware strategy switching process is still an open
problem, to which this paper contributes with a novel solution.

This paper addresses the problem by proposing a navi-
gation system capable of online self-reconfiguration in the
face of context changes. Self-reconfiguration occurs through
the activation, deactivation, and parameterisation of a set of
pre-existing navigation-related modules. To foster scalability
and reusability, the self-configuration process is built on the
well-known Robotics Operating System (ROS) [4], which
provides well-specified interfaces to lookup and interact with
the navigation system’s composing nodes. In the proposed
system, self-reconfiguration is triggered and guided according
to both local and global context information. Local context
information is obtained directly from the robot’s sensory input.
Global context is obtained from a set of semantic labels
registered off-line on geo-referenced maps. Thus, this approach
relies on the increasingly widespread availability of labelled

(a)

Fig. 1. The all-terrain robot, INTROBOT [5], used in the field trials.

satellite imagery and on the increasingly ubiquity of high
throughput communication channels.

In its current state, the proposed system considers two
semantic labels, namely, open space and narrow space. Based
on these two labels, planning and localisation strategies are
selected and parameterised. Moreover, obstacle avoidance pa-
rameters and representations of the robot’s footprint are also
adapted according to the local context. With such flexibility,
the system is able to trade-off, in a context-aware way, between
accuracy of the planned motions and computational cost. As a
result, the complexity of the planner matches the complexity of
the environment, which is key to enable a proper management
of computational and energetic resources.

The use of context to enable the self-reconfiguration of
control systems has recently received some attention. Most
notably, overall scene statistics have been used to predict the
presence of a given environment, which, in turn, triggered
a given set of behaviours [6] or localisation strategies [7].
These solutions require that the robot learns online a visual
classifier prior to a proper self-reconfiguration. Conversely, the
solution presented in this paper considers the use of semantic
maps overlaid on large scale satellite imagery. This allows
the system to respond promptly without expending the cost
of learning. Nevertheless, both approaches are complementary,
rather than mutually exclusive. In addition, by not relying on
distal information (e..g, vision) to determine the global context,
the system is able to operate even in the presence of strong
perceptual aliasing situations.



Although there are also some examples on the use of
overhead imagery in the support of navigation outdoors, these
do not cover the wider problem of selecting proper navigation
strategies. See for instance the case in which overhead imagery
was shown to be useful in the task of learning classifiers for
navigation cost assessment [8]. Another related topic is the one
of topological mapping, in which easily distinguishable regions
of the environment are the pivots of the employed world
representation. By not relying directly in sensory feedback
to infer global context, the system proposed in this paper
is immune to perceptual aliasing, which is a well-known
problem in topological mapping. Rather than an alternative to
topological mapping, the proposed system is complementary.
Concretely, it can provide topological mapping processes with
priors on the global context, thus reducing the complexity of
handling strong perceptual aliasing situations.

To validate the proposed system, field trials were con-
ducted with an industrial-grade robot, the INTROBOT1 (see
Fig. 1). INTROBOT is a 0.8m × 1.5m × 0.7m all-terrain
robot equipped with four independently steered wheels and its
sensor package includes a tilting 2-D laser scanner, a stereo
vision head, an inertial measurement unit (IMU), and a GPS
device. Throughout the 895m long field trials, the proposed
system showed to be able to self-reconfigure in such a way
that collision-free and goal-directed smooth transition between
environments was ensured.

The paper is organised as follows. Section II presents the
proposed system. Then, experimental results are presented in
Section III. Finally, conclusions and future research avenues
are drawn in Section IV.

II. SELF-RECONFIGURABLE NAVIGATION SYSTEM

The goal of making the navigation system self-
reconfigurable is to allow picking the set of navigation, lo-
calisation, and control components best suited to the situation
at hand. This proposal builds on the observation that no single
component is able to cover the wide set of situations a robot
may face. This section starts by describing the set of state-
of-the-art components that are to be selected online by the
system, according to the context. Then, the section ends with
the description of the context aware selection mechanism itself.

A key enabler for the proposed system was the emergence
of meta operating systems for robotic controllers, such as the
Robotics Operating System (ROS) [4]. With ROS, a robot’s
control system is defined as a dynamic graph of nodes that
interact via well-specified messages. Moreover, ROS being a
product of community development, it provides a set of state-
of-the-art components as ROS nodes. This paper exploits the
dynamic nature of ROS graphs in order to include in a seamless
way context aware adaptation of the control system. In this
work, the control system is assumed to have at its disposal ROS
nodes for robot localisation, map building, SLAM, obstacle
avoidance, motion control, motion planning, and path planning
(see Fig. 2). In this context, self-reconfiguration means setting
a ROS graph with the nodes and, respective connectivity, that
better suits the needs of the current context.

For the sake of completeness, an overview of the consid-
ered nodes is provided next.

1http://www.introbot.pt/

Fig. 2. Overview of the different nodes and interactions within the navigation
system. Each bracket contains a category of nodes. Red arrows represent data
exchange via ROS messages. Black arrows represent low-level sensor/actuator
messages. Dark red arrows represent parameterisation messages.

A. Obstacle Avoidance ROS Node

Obstacle avoidance holds the specific ability of taking the
robot towards a given goal location without colliding against
any obstacle, i.e., according to the local context observed
from the robot’s onboard distal sensors (e.g., laser scanner).
In the proposed system, this is attained with the trajectory
roll out method [9]. In short, it finds the set of feasible arc
trajectories, given the robot’s kino-dynamic constraints and
obstacles distribution. From the feasible trajectories, one is
selected based on an objective function that trade-offs speed,
distance to obstacles, bearing with respect to the goal location,
among other.

In the proposed system, the original trajectory roll
out method was adapted in order to allow online self-
reconfiguration of the robot’s footprint representation and
locomotion capabilities (see Fig. 3). This is important because
INTROBOT is able to execute four different locomotion modes
[5], such as moving with a double Ackerman geometry or
turning around its geometric centre in place.

To properly reconfigure the locomotion capabilities of the
robot, an hysteresis-based cost of changing among locomotion
modes has been included in the aforementioned objective
function. The goal is to reduce motion time and energy
consumption when the local context induces an oscillatory be-
haviour. For instance, the presence of noise in the localisation
process may take the robot to intermittently consider to be too
far or too close from the desired path to be followed. As a
result, without the presence of the hysteresis, the robot would
spend time and energy by intermittently switching between
an Ackerman-based locomotion mode (when aligned with the
path) and a turning in place locomotion mode (when unaligned
with the path).



Fig. 3. INTROBOT’s four locomotion modes [5].

B. Motion and Path Planning ROS Nodes

Obstacle avoidance alone, being a local method, does not
ensure progression towards the final goal. To circumvent the
myopic nature of local methods, the output of a motion planner
or of a path planner is usually used to bias the local method
towards the goal location. This way, cul-de-sac situations and
others are properly handled. While motion planning allows
explicitly accounting for the kino-dynamic properties of the
robot in the planning process, path planning abstracts robot
motion as linear trajectories between waypoints. Depending
on the situation, one may be better suited than the other;
that is, the speed-accuracy trade-off must be solved according
to the context. For instance, a path planner usually suffices
for producing fast motion outdoors. Conversely, a robot that
needs to pass through a door may need a fine motion planning
procedure. The high computational cost of motion planning
is compensated by the fact that when passing through doors
robots are allowed to move slowly.

In this work, two planning strategies are considered. The
first is a path planner known as Nafvn Planner, which is a
Dijkstra algorithm [10]. The second is the SBPL Lattice plan-
ner [11], which introduces fine motion planning skills. This
latter planner propagates a set of linear and nonlinear motion
primitives, which have been customised for the INTROBOT.

The modules for obstacle avoidance, motion planning, and
path planning are available to the system as separate ROS
nodes.

C. Localisation ROS Nodes

Depending on the situation, the navigation goal must be
specified differently. For instance, in open outdoor areas,
global positioning systems are usually adequate, thus allowing
the user to specify a GPS position as final destination for the
robot. Conversely, indoors and narrow outdoor areas hinder a
clear sky view and, as a result, of a reliable GPS signal. As a
consequence, localisation is typically defined with respect to
a local map’s frame of reference. In this case, localisation is
often done by matching observations with the map itself.

In this work, GPS, IMU, and wheel odometry are fused
with an Extended Kalman Filter (EKF) for localising the
robot in open outdoor spaces. To build a local occupancy
grid from laser readouts, used for obstacle avoidance purposes,

a second EKF is used. The second EKF only accounts for
motion information, so that the global positioning error does
not influence the registration of laser scans on the local map.
The laser scanner is assumed to be fixed horizontally, thus
sensing a 2D horizontal plane aligned with the robot’s motion.

For indoor and outdoor narrow spaces, a Monte Carlo lo-
calisation process [12] is used. This process uses particle filters
to track multiply localisation hypotheses, given horizontal laser
scans, and a generated offline occupancy grid. The map was
generated offline with a SLAM algorithm [13] while tele-
operating the robot in the environment. To allow a smooth
transition between the two localisation methods, a common
metric frame of reference is set.

The modules for localisation in open spaces and localisa-
tion in narrow spaces are available to the system as separate
ROS nodes.

D. Context-Aware Graph of Nodes

This section describes how the previously described state-
of-the-art components, abstracted as ROS nodes, are selected
according to the context, thus enabling operation in hetero-
geneous environments. The selection is done by a selector
node that is able to change the graph of nodes according
to context-related messages provided by a context extraction
node. Changing the graph of nodes means adjusting its con-
nectivity, which, in turn, may require initiating and terminating
nodes.

The context extraction node casts messages with the current
context, given a set of a priori geo-referenced semantic map
of the environment, and the current robot’s position in world
coordinates. Currently, the semantic map is generated offline
by a human operator using a Web-based control centre based
on Google Maps API 2. This control centre provides the user
with a set of tools for path specification, labelling regions in
the environment, and register local occupancy grids (generated
offline with SLAM) as overlays of the satellite imagery, i.e.,
making them geo-referenced. The same interface serves the
purpose of remote monitoring the robot’s operation and setting
the robot’s navigation goal, which is defined as a set of geo-
referenced waypoints. To facilitate computations, the selector
node transforms all GPS coordinates into Universal Transverse
Mercator (UTM) coordinates, thus enabling the use of a
Cartesian coordinate system. Asynchronous communications
between robot and control centre are maintained via a shared
folder in a file sharing server, which avoids the complexity
of establishing and maintaining peer-to-peer communication
channels.

As mentioned, the selector node changes the graph of
nodes as the semantic label of the robot’s current location
changes. Concretely, in narrow spaces, map-based localisation
and motion planning are used, whereas in open spaces GPS-
based localisation and path planning are used. To avoid jitter in
the transition caused by mis-localisation, a probabilistic test is
performed prior to engaging in the actual transition. In addition
to initiate and terminate nodes, the selector node needs also
to perform some preparatory tasks. For example, entering a
narrow space area triggers the loading of the corresponding

2https://developers.google.com/maps/



(a) (b)

(c) (d)

(e) (f)

Fig. 4. Snapshots of the field trials. (a) Snapshot of car passing by the
robot during the narrow-space field trial. (b) Robot’s internal map while
avoiding a pedestrian on the narrow-space field trial (obstacles represented
by green squares). (c) Site of the open-space field trial. (d) Robot’s internal
map while on the open-space field trial filled, with several obstacle false
positives due to tall vegetation (red and green squares). (e) Convergence of
the localisation process during the transition phase between environments.
Particles represented as blue arrows. (f) Robot’s internal map while reaching
the final goal below the balcony (obstacles green squares).

offline generated local occupancy grid and setting the proper
planner’s and obstacle avoidance’s parameters.

III. EXPERIMENTAL RESULTS

This section presents the experimental setup and parame-
terisation used to assess the robustness and efficiency of the
self-reconfigurable navigation system. The tests were carried
out in the facilities of the New University of Lisbon organised
in three different scenarios. Overall, the robot travelled 895 m
at an average speed of 0.5ms−1.

The navigation stack was tested on a Intel(R) Core i7-
2670QM CPU @ 2.20 GHz with 6Gb of RAM, running a
64-bit Linux distribution Ubuntu 11.10 (Oneiric Ocelot). Low
level control is handled by an on-board embedded PC.

A. Autonomous Navigation

This section presents the outdoor field trials used to eval-
uate the performance of the autonomous navigation module
when presented with real world situations. A first test was
carried out on a narrow space around a building. This test
aimed at validating the ability of the navigation system to
take the robot from a given location to another without
recurring to GPS information, i.e., by localising itself based
solely on offline generated maps. The ability of the system
to rely on GPS was validated on a second test performed
on an open environment. In this case the robot was asked
to execute an offline specified route. Finally, the transition

(a)

Fig. 5. Robot’s path (green plot) executed during the narrow-space field
trial, overlaid on the offline generated map. Light grey, dark grey, and black
represent free space, unknown space, and obstacles, respectively. Capital letters
represent key situations in the course of the test. Situations A-B: avoidance
of dynamic obstacles. Situations C-D: due to a slight mis-localisation of the
robot, the path overlays the obstacles present in the off-line generated map.
As the local map is updated the robot is still able to avoid the obstacles
safely. Situation E: obstacles present in the off-line generated map but absent
in execution time. This explains why the robot’s path apparently crosses these
obstacles.

between both modes of navigation was analysed on a third
test. The robot in this case was asked to move from a given
location to another, where the former was located on an open
space and the latter on a confined space. In this case the
robot needed to be able to detect the context change and act
accordingly in its navigation system. All tests were successful,
thus showing that the environment-specific navigation methods
perform appropriately, as well as the mechanism enabling the
transition between them. A detailed description of these three
tests is given next.

1) Navigation in Narrow Environments: In the narrow
space navigation scenario, the robot needs to navigate on a
sidewalk around a building present on a normal urban setting.
The building is surrounded by trees, grass patches, and parking
lots. In the frontal face of the building, a staircase and a ramp
can be found. The back of the building faces dirt patches with
light vegetation. Due to the presence of the tall and close-by
walls, the navigation setup in this case is based on a Monte
Carlo localisation process, i.e., based on a priori learned maps.

Throughout the run, several goals were set for the robot to
pursue. Most of them were random, whereas other were picked
in order to compel the robot to perform specific behaviours,
such as circumnavigating the building.

From ten goals provided to the robot, only one was not
successfully reached because the robot’s power source develop
a glitch mid-run. When restarted an incorrect initial position
estimate was made leading to slight mis-localisation that
influenced the final pose in the next intermediate goal.

Fig. 5 depicts the path executed by the robot throughout
the trial. Overall, the robot moved, on average, at 0.5ms−1,
covering 396 m.

Let us now look into some of the key moments of the trial.
Initially, the robot was placed below a balcony, where despite
the closeness of the walls, it was able to move safely in the
environment. While moving towards its goals, the robot had
to often navigate around unexpected obstacles, such as people.
To ensure safety, the obstacles present in the robot’s internal



(a)

Fig. 6. Offline waypoint path (red plot) and actual robot’s path (blue
plot) executed during the open-space field trial, overlaid on the satellite
aerial imagery. Capital letters represent key situations in the course of the
test. Situation A: path deviation due to obstacle false positives generated by
dense vegetation. Situation B: avoidance of a dynamic obstacle. Situation C:
waypoints missed due to the presence of dense vegetation inducing obstacle
false positives. Situation D: path deviation due to presence of dismantled steel
fences in the desired path.

map of the environment were inflated. The outcome of this
inflation were paths further from walls and other obstacles. In
one situation, the inflation of the obstacles took the robot to the
road. Note that the robot, in its current state, has no semantic
information regarding roads and sidewalks and, so, it is unable
to distinguish both in the path planning process. Although this
is not a problem as the robot is still able to perceive any
potential obstacle, it could be avoided with a smaller inflation.
See for instance that it was able to detect a passing car (see
Fig. 4(a)) and a pedestrian (see Fig. 4(b)). While the car did
not cross the robot’s desired path the pedestrian did triggering
an avoidance behaviour.

2) Navigation in Open Environments: In the second field
trial, the robot was asked to move in an open space. Concretely,
the robot was requested to follow a path generated by the
offline path design tool. The objective was to simulate a
real world application of surveillance or recon in an off-road
environment. The area chosen for this second trial is a rough
dirt clearing with small elevations and with about 6300m2,
filled with small concrete objects, large patches of ground
and medium height vegetation and also some dismantled steel
fences.

The absence of structure hampers the use of off-line gen-
erated maps. However, as a clear view of the sky is available,
GPS can be used to provide global localisation information.
Local maps are nevertheless created by the robot in order to
help in the obstacle avoidance behaviour (see Fig 6).

The path followed by the robot despite successful, has
some differences from the ideal route, caused by different
factors. First, the satellite imagery is somewhat outdated,

(a)

(b)

Fig. 7. Environments-transition field trial. (a) Semantic map used in the
trial. (b) Offline waypoint path (red plot) and actual robot’s path (blue plot)
executed throughout the trial, overlaid on satellite imagery. Letter A represents
the robot’s transition from open space to narrow space. The blue overlay
represents the area of the environment labelled as narrow space. The remainder
of the map is labelled as open space.

which causes the operator to select a route that cannot be
tracked by the robot. Dense vegetation growth and debris show
up as unexpected obstacles that need to be avoided by the
navigation stack (see Fig. 4(c) and Fig. 4(d)). To avoid that
the presence of an obstacle induces the robot to be indefinitely
pursuing an unreachable waypoint, this was taken as reached
as soon as the robot was 10 m distant from it. In turn, this
behaviour took the robot to skip certain goals, as it occurred
at approximately half of the run, which also explains another
detour from the expected path. These challenges show the
ability of the navigation stack to produce creative solutions
as exceptions emerge. That is, in challenging environments,
robustness is a much more relevant feature than behavioural
optimality.

In this trial, the robot travelled 221 m with an average speed
of 0.7ms−1. As for the previous trial, in this one, dynamic
obstacles were also present in the run.

3) Transition Between Narrow and Open Environments:
The previous sections described a set of experiments that
allows us to show the ability of the system to navigate in
narrow and in open environments. The navigation system was
set differently for each case. Not only the localisation processes
were different, but the navigation algorithms differed as well.
This section presents experimental results showing that the
robot is able to self-reconfigure its navigation system in order
to adapt to context changes based on the off-line generated
semantic map depicted in Fig-7(a). That is, depending on the
configuration of space, i.e., narrow vs. open, the system auto-
matically changes both localisation and navigation processes
(see previous sections).

To validate the model, the robot was initiated on a open-



labelled area and asked to follow a set of waypoints, being
the last ones in a narrow-labelled area. In fact, the final goal
in this trial is the same as the initial position of the robot in
the narrow-space trial, i.e., underneath the building’s balcony.
As expected, the robot moved along the open area using GPS
information, crossed the road, and entered the narrow-labelled
region (see Fig 7(b)). At that point, the robot recognises the
context change and triggers a map-based navigation process,
i.e., discards the GPS information for its localisation. Using
this localisation method, the robot is able to navigate near the
building and reach its goal underneath the building’s balcony.

As aforementioned, after crossing the road the robot en-
tered in the narrow space area. At that point, the robot started
the transition phase, which includes starting the map-based
localisation method and changing some of the navigation
parameters. One of the most important stages of the transition
phase is the first estimate of the robot’s position in the map.
This is seamlessly handled by the Monte Carlo localisation
process, which tracks multiple localisation hypotheses while
sensory evidence on the most likely location is progressively
integrated. In the method employed, each localisation hy-
pothesis is represented by a particle and the full distribution
represented by a set of particles. Fig. 4(e,f) illustrates these
particles converging on a solution as sensory feedback is
generated. The outcome is an accurate localisation of the robot
in the offline generated map, which, in turn, allows the robot
to accurately navigate in the confined environment where the
goal is located.

As in the previous experiments, the robot encountered
dynamic obstacles along its course. As expected the robot
slowed down in the presence of these obstacles in order to
maintain safety.

IV. CONCLUSIONS

A self-reconfigurable navigation system designed for au-
tonomous robots operating in heterogeneous environments was
presented. Self-reconfigurability is attained by relying in the
use of contextual information and in the use of a well-defined
control system architecture. Contextual information is obtained
from offline generated semantic maps. Currently, these maps
are prepared by a human operator, but in the future these are
expected to be automatically generated and made available as
internet services. The proper abstraction level required from
the control system architecture is obtained from an extensive
use of the well-known Robotics Operating System (ROS).

The developed system has been deployed in an industrial-
grade all-terrain robot, the INTROBOT. Experiments showed
the benefits of using a context-aware self-reconfigurable navi-
gation system when dealing with heterogeneous environments.
This is particularly important to ensure smooth transitions
between different environments. Hence, the proposed system
contributes to bring robots from labs to real world applications.

The successful use of the system provides additional ev-
idence on the benefits of considering ROS as a backbone of
the robot’s control system. The well-defined specification pro-
vided by ROS enables the development of vertical supervisory
systems, as the one herein proposed. Furthermore, with the
advance of ROS-like architectures, the feasibility of general
purpose learning-based supervisory systems become a reality.

Besides developing the system towards a general purpose
context-aware supervisory node, we also expect to improve the
INTROBOT’s navigation stack in several ways. For instance,
we expect to include visual odometry [14] for improved motion
estimation in off-road environments. Based on [15], we expect
to include GPS-IMU information, when available, to bias the
map-based localisation process.
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