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Resumo 
 

Todos somos afetados pelo mundo dos investimentos. A forma como o excedente de capital é 

alocado tanto por nós como por fundos de investimentos determina a forma como comemos, 

inovamos e até mesmo como fornecemos educação às crianças. Gestão de portfólio é uma tarefa 

essencial e desafiadora neste processo (Leković, 2021). Envolve gerir um conjunto de ativos 

financeiros com o objetivo de maximizar os retornos por unidade de risco, tendo em 

consideração todas as relações complexas entre fatores macro e microeconómicos, sociais, 

políticos e ambientais.  

 Este estudo pretende avaliar de que forma a técnica de machine learning intitulada de 

Aprendizagem por Reforço Profunda (ARP) consegue melhorar a tarefa de gestão de portfólios. 

Também tem um segundo objetivo de entender se variáveis relacionadas com a performance 

financeira de uma empresa (i.e., vendas, passivos, ativos, fluxos de caixa) melhoram a 

performance do modelo. Após o estado-de-arte ter sido definido com a revisão de literatura, 

utilizou-se o método CRISP-DM da seguinte forma: 1) Entendimento do negócio; 2) 

Entendimento dos dados; 3) Preparação dos dados – dois conjuntos de dados foram preparados, 

um apenas com variáveis de mercado (i.e., preço de fecho, volume transacionado) e o outro 

com variáveis de mercado mais variáveis de performance financeira; 4) Modelagem – usou-se 

os modelos Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) e 

Twin-delayed DDPG (TD3) em ambos os conjuntos de dados; 5) Avaliação. 

 Em média, os modelos apresentaram o mesmo índice sharpe nos dois conjuntos de 

dados – média de 0.35 vs 0.30 para o modelo base, no conjunto de teste. Os modelos ARP 

apresentaram uma melhor performance do que os modelos tradicionais de otimização de 

portfólios e a utilização de variáveis de performance financeira melhoraram a robustez e 

consistência dos modelos. Tais conclusões suportam o uso de modelos ARP e de estratégias de 

investimentos quantamentais na gestão de portfólios. 

 

Key Words: Aprendizagem por Reforço Profunda; Investimentos; Gestão de Portfólio; 

Finanças Quantitativas, Estratégias de Investimentos Quantamentais 
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Abstract 
 

The world of investments affects us all. The way surplus capital is allocated by ourselves or 

investment funds can determine how we eat, innovate and even educate kids. Portfolio 

management is an integral albeit challenging process in this task (Leković, 2021). It entails 

managing a basket of financial assets to maximize the returns per unit of risk, considering all 

the micro and macro economical, societal, political and environmental complex causal 

relations.  

 This study aims to evaluate how a machine learning technique called deep 

reinforcement learning (DRL) can improve the activity of portfolio management. It also has a 

second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash 

flow) improve the model performance. After conducting a literature review to establish the 

current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) 

Data understanding; 3) Data preparation – two datasets were prepared, one with market only 

features (i.e., close price, daily volume traded) and another with market plus fundamental 

features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient 

(DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) 

Evaluation.  

 On average, models had the same sharpe ratio performance in both datasets – average 

sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional 

portfolio optimization techniques and financial fundamental features improved model 

robustness and consistency. Hence, supporting the use of both DRL models and quantamental 

investment strategies in portfolio management. 

 

Key Words: Deep Reinforcement Learning; Investments; Portfolio Management; Quantitative 

Finance; Quantamental Investment Strategies 
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1. Introduction 
 

The main goals of this study can be divided into two categories: First, we assess the current 

state of the art reinforcement learning (RL) methods applied to portfolio management; second, 

we implement a RL algorithm that performs better than the traditional counterpart methods, 

being enhanced through the use of fundamental investment features.  

Investment strategies can range from short-term to long-term approaches. Differences 

between these two strategies can lie not just on the holding period of the financial asset, but 

also in the investor’s mindset and intent (Warren, 2016). For example, according to Warren 

(2016), long-term investing can be defined as a “fundamental, research-oriented investment 

approach that assesses all risks to the business and which has a focused discipline of seeking 

positive returns over the long-term business cycle”. With this statement, the author is defending 

that a long-term investor should be defined by its latitude, intent, capacity for patience, trading 

discretion, investment approach and mindset/attitude (being latitude and intent the main ones). 

On the latitude side, a long-term investor must have the psychological strength to remain patient 

and demonstrate proper trading discretion throughout any possible market condition (especially 

during major turmoil). On the intent side, that investor must also demonstrate that he/she has a 

strategy, investment approach, philosophy, processes, motivation and mindset that favors 

wealth generation in the long-term. 

Moving to the short-term side of investment approaches, Venkataramani and Kayal 

(2021) state that short-term investors’ primary focus is to predict the market price changes of 

the corresponding financial assets. Thus, their decisions are inherently more dependent on daily 

price fluctuations. The authors also mention that “share prices trace a random walk and are 

difficult to predict”. One of the most useful short-term strategies is market timing, which 

heavily relies on predicting those challenging to predict prices as precisely as possible. 

Venkataramani and Kayal (2021) also mention that short-term market timing strategies can 

produce significant returns. Still, the investor needs to possess the required capabilities and 

resources to leverage these strategies – explaining why high-frequency traders can gain a lot 

with these strategies, while retail investors don’t. 

Independently of the type of strategy, when the investment activity starts to entail 

managing a basket of financial assets, it is now entering the realm of portfolio management. 

Portfolio management is the process of selecting and managing a group of financial instruments 

- such as stocks, bonds and derivative instruments – aiming at maximizing the return on 
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investment while minimizing the risk/volatility (Soleymani & Paquet, 2021). Modern portfolio 

theory suggests that risk-averse investors maximize their wealth while minimizing risk 

(Venkataramani & Kayal, 2021). Considering that investors suffer biases such as: 

representativeness, anchoring, availability bias, overconfidence, mental accounting and herd 

behaviour, it is essential to formulate investment strategies that help override these human 

biases (Venkataramani & Kayal, 2021).  

According to Jiang and Liang (2017), traditional portfolio management methods can be 

classified into four classes: “Follow-the-Winner”, “Follow-the-Loser”, “Pattern-Matching” and 

“Meta-Learning”. These are either based on prior-constructed financial models, using historical 

patterns under some assumptions on market behaviour, or a combination of various models 

(Jiang & Liang, 2017). 

If we now look into the historical evolution of portfolio management, Lekovic (2021) 

provides a framework that splits this evolution into three main phases: traditional portfolio 

theory (TPT), modern portfolio theory (MPT), and post-modern portfolio theory (PMPT). 

Traditional portfolio theory started to appear at the beginning of the 20th century, and 

the investor’s main focus was performing fundamental analysis of the securities in the portfolio. 

During this time, investors were only starting to apply scientific methods to their research 

process through the study of the company’s financial statements – this was also the period when 

stricter financial statements’ control was put into place for companies that were listed in the 

stock exchange. The other tool that investors used was naïve (simple) diversification, where an 

increase in the number of securities in the portfolio was believed to lead to a decreased risk 

level of the same portfolio (Leković, 2021). 

Then it came Modern Portfolio Theory. “MPT provides a mathematical framework for 

optimizing return and risk ratio, and goes a step further than TPT, since the focus shifts from 

the analysis of individual securities to the analysis of portfolio characteristics.” (Leković, 2021). 

Harry M. Markowitz is one of the main creators of MTP, and this theory states that return is a 

risk function that can be reduced by efficient diversification (through a low correlation between 

returns of portfolio securities) – not naïve diversification, as it was in the case of TPT. This was 

the first time that the trade-off between risk and return was formally quantified. With MTP 

came many useful portfolio management tools such as the sharpe ratio, efficient frontier, CAPM 

(Capital Asset Pricing Model) and ATP (Arbitrage Pricing Theory). But it still had some 

shortcomings that needed to be addressed: it is a static analysis (there are no adjustments to the 

portfolio after the initial decision); the possibility of buying/selling securities in unlimited 

proportions; conversion of correlation coefficients to one during financial crises; assumption 
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that investors have homogeneous expectations; variance was believed to be a reliable risk 

measure; and assuming that the returns on financial assets follow a normal distribution 

(Leković, 2021). 

The last phase is Post-Modern Portfolio Theory. PMPT was built on top of MPT, as a 

way to try to fix its errors and provide better tools to construct optimal portfolios for each 

investor. The main differences are the way that PMPT interprets risk, and treats positive and 

negative variance of returns differently. According to PMPT, each investor has an individual 

minimum acceptable return (MAR), which can be interpreted as the investor’s target return that 

can be used as a benchmark when real performance is being evaluated.  “Unlike MPT that 

associates risk with achieving an average return, PMPT claims that the investment risk should 

be linked to the specific objective of each investor, and that returns above this objective do not 

represent an economic or financial risk. According to PMPT, only volatility below the investor 

target return is considered risk. Return above the target creates uncertainty, which is nothing 

but a risk-free opportunity to achieve unexpectedly high return” (Leković, 2021). 

Due to technological advancements that allowed for the massive availability of data and 

the surge of tools to analyze it, big data analytics and machine learning fields started to emerge 

and progress rapidly (Hu & Lin, 2019). And as these fields tackle complex problems, the use 

of machine learning and, more specifically, deep reinforcement learning for portfolio 

optimization problems started to be applied and studied by the scientific community (i.e., 

Aboussalah & Lee, 2020; Betancourt & Chen, 2021; Ren et al., 2021; Tsantekidis et al., 2021). 

Aboussalah and Lee (2020), as an example case, refer to this type of new strategy as 

“automated data-driven investments”, relying on machine learning agents that through 

consistent and systematic trading techniques, provide an alternative to more traditional trading 

strategies developed on the bases of microeconomic theories. Some major flaw of these 

conventional techniques and even of some machine learning algorithms is that they need to 

create either rigid assumptions (i.e., returns follow a normal distribution) or simplify the world 

in which the trading agent is trained (i.e., limiting the number of actions that the trader can take 

at a specific time period). Meaning that when the algorithm is tested in the real environment, 

its performance is subpar due to the higher level of complexities that the model/algorithm/agent 

must face in the real world. And after the authors acknowledged this issue, they proposed a new 

reinforcement learning algorithm that can improve the agents’ performance level. For this 

specific case, the new algorithm presented was called Stacked Deep Dynamic Recurrent 

Reinforcement Learning (SDDRRL), and solved the major constraints shown above: it can 

perform multiple continuous actions for a diverse set of assets whilst abiding the portfolio 
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constraints – this also allows the model to perform better in noisy environments; and since it 

uses deep learning, there’s no need to formulate strong assumptions. This is just one example 

of how an advanced machine learning model, coupled with a good data set, could better tackle 

the issue of optimizing a financial portfolio. 

Moreover, machine learning techniques, such as Deep Neural Networks (i.e., LSTMs), 

that have been employed in trading strategies, rely on the prediction of prices that are seemingly 

impossible to truly predict timely and accurately (Sun et al., 2021; Zhang et al., 2021). With 

Deep Reinforcement Learning (DRL), the process of predicting values can be forgotten and the 

focus of the model can be directly on how to allocate the portfolio assets in the best way possible 

(Gu et al., 2021). Reinforcement Learning (RL) and Deep Learning (DL) have characteristics 

that complement each other – RL has a good capacity for decision-making but has major 

drawbacks in perception, while DL is strong in perception and has weak decision-making 

capacity (Khemlichi et al., 2020). Thus, DRL can be used to solve the problem of optimal 

decision-making in complex environments (Khemlichi et al., 2020).  

Overall, the increasing levels of available data and the continuous improvements in 

machine learning models were also highly felt in the investment world, mainly on the 

quantitative finance side. Yet another example of the benefits these models bring to investments 

is presented by Spiegeleer et al. (2018), where they promote a machine learning framework that 

increases by many folds the speed with which it can calculate the prices of complex financial 

assets. The algorithm is called Gaussian Process Regression (GPR), and through the 

parametrization of the financial assets’ main characteristics, it is able to price options way faster 

in comparison to more traditional and time-consuming techniques (i.e., Monte Carlo 

Simulations). It’s worth noting that with the speed increase (and efficiency gains) comes some 

loss in accuracy, but Spiegeleer et al. (2018) comment on this issue with the following 

statement: “The price we have to pay for this extra speed is some loss of accuracy. However, 

we show that this reduced accuracy is often well within reasonable limits and hence very 

acceptable from a practical point of view”. 

The main goal of this study is to analyze the performance of three Deep Reinforcement 

Learning algorithms on the task of financial portfolio management and compare it against 

benchmarks. Importance is also given to the type of data being used. Throughout the literature 

used for this study, only one author notably mentioned that the limited data and features used 

were a drawback to the machine learning model’s performance (Kang et al., 2018). Therefore, 

this study will also emphasize on how important good features regarding a portfolio company’s 

fundamental performance (not just market related features) can be. This will be achieved by 
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comparing the performance of these models with just market features and then with market plus 

fundamental features. 

The complex world of investments affects all of us directly or indirectly. From the bank 

deposit we make to save for our kids’ college, to the investment funds that invest in growing 

companies and even to how government allocates taxpayer money to build public infrastructure 

– all these tasks can relate to portfolio management. The importance of this study relies on two 

main pillars: i) it reinforces the overall benefits that DRL algorithms bring to the portfolio 

management activity; ii) it emphasizes the importance of using features related to the portfolio 

companies’ fundamentals – features related to the companies’ financial performance, such as 

profit, debt, cash, etc. Hence, this study will also try to bridge quantitative and fundamental 

investment strategies, which entails venturing into the new term of quantamental investment 

strategies.  

The remainder of this dissertation is structured in the following manner: theoretical 

background on portfolio management, quantitative finance and reinforcement learning; 

literature review of deep reinforcement learning theory; the methodology used in training and 

testing the DRL models; presentation of results and discussion of them; and it finishes with a 

conclusion of the main findings and study contributions, as well as major limitations and future 

research. 
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2. Theoretical Background 
 

2.1 Portfolio Management 

 

Financial Portfolio Management is the activity of managing a basket of financial assets, whilst 

trying to achieve the goal set by the investor – which usually entails maximizing returns and 

minimizing risk (Soleymani & Paquet, 2021). This activity can be recognized as one of the 

main tasks of financial experts worldwide (Leković, 2021). The remainder of this section will 

briefly explain the fundamental portfolio management topics and concepts needed to 

understand the analysis and results presented in this study. 

 

i. Modern Portfolio Theory 

Modern Portfolio Theory (MPT), developed by Markowitz (1952) and known as mean-

variance analysis, consists of a mathematical model that improves financial theory by providing 

an objective and systematic approach that enables establishing and optimizing the relation 

between expected return and assumed risk (dos Santos & Brandi, 2017; Leković, 2021). Putting 

MPT on a historical time series, it comes in the middle between Traditional Portfolio Theory 

and Post-Modern Portfolio Theory, and it can be considered a major breakthrough as it was the 

first time that investors had a scientific, objective and quantitative tool that allowed them to 

look at their portfolios as a whole – including all the important details that come with it, such 

as controlling the covariance between returns of portfolio companies (Leković, 2021). 

Such was the importance of MPT, that we still see it being considered by the scientific 

community as a valid option when managing large pools of capital. One example of this is 

provided by Lord (2020), as it uses MPT principles as the bases for the decision-making process 

of university endowments. Despite the fact that the main goal of Lord’s article was to prove 

that an experienced, diverse and open-minded investment committee contributed to a more 

diverse and less risky fund, the author uses the MPT framework as an “intermediary of the 

effect of committee characteristics and norms on portfolio diversification” – in other words, the 

author proposes using the objective Modern Portfolio Theory as a way to offset the personal 

and group behavioral biases that the committee might demonstrate during the decision making 

process. 
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ii. Rate of Return 

Rate of return is the profit generated by an investment, as a percentage amount of the 

initial capital invested (Verdiyanto et al., 2020). The rate of return, 𝑟𝑡, can be defined as follows, 

being 𝑃𝑡  the closing price at time 𝑡: 

𝑟𝑡 =  
𝑃𝑡 −  𝑃𝑡−1

𝑃𝑡−1
  

 

iii. Volatility: Variance and Standard Deviation 

According to Verdiyanto (2020), “variance (𝜎𝑖2) corresponds to a mathematical 

calculation in a data collection of the spread between numbers”. The variance of asset 𝑖 is 

determined by the following equation: 

σ𝑖
2 =  𝑉𝑎𝑟(𝑟𝑖) =  

∑ (𝑟𝑡
𝑖 −  𝜇𝑖)2𝑚

𝑡=1

𝑚 − 1
 

 

Where 𝑟𝑡
𝑖 is the value of asset 𝑖 at time 𝑡, 𝜇𝑖 is the mean value of asset 𝑖 across the sampled 

timeframe and 𝑚 is the number of periods in the sample (i.e., 360 days). 

The standard deviation is a measure of dispersion in comparison to its mean, and is measured 

as the variance’s square root (Verdiyanto et al., 2020): 

 

𝜎𝑖 =  √𝜎𝑖
2 

 

iv. Sharpe Ratio 

Sharpe ratio is a portfolio performance metric that measures the excess return, per unit 

of risk. Here, risk is determined by the standard deviation (𝜎𝑝) and excess return is the return 

minus the risk-free rate (𝑟𝑓) (Verdiyanto et al., 2020). Sharpe ratio (𝑆𝑝) can be expressed as: 

 

𝑆𝑝 =  
𝐸 (𝑟𝑝 − 𝑟𝑓)

𝜎𝑝
 

 

v. Efficient Frontier 

The efficient frontier is a set of ideal portfolios that allow an investor to have the highest 

expected return for a certain level of risk, or the minimum level of risk for an arbitrary expected 
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return level. This is a useful tool for the investor to focus the decision-making process on the 

trade-off between risk and expected returns (Verdiyanto et al., 2020). 

 

 

2.2 Quantitative Finance 

 

Quantitative finance is the field that uses quantitative and computerized data-driven models to 

help investors and traders to make better investment decisions. These quantitative models can 

be considered an extension of human capabilities that serve as intermediaries between traders 

and markets - and as technology further advances and data availability increases, these models 

are becoming ever more complex and sophisticated. Machine Learning can be considered a 

subsector of quantitative finance, and as its use by top-tier hedge funds and trading firms is 

increasing, it is believed that in the coming years machine learning will change even more the 

way people trade and invest in the financial markets (Hansen, 2021).  

This chapter subsection will go deeper into explaining two important quantitative 

finance-related concepts for this study: sequential least squares programing method and 

backtesting. 

 

i. Sequential Least Squares 

Sequential Least Squares is an optimization method to solve nonlinear optimization 

problems. Fu et al. (2019) explains it as a two-step method. First, one needs to identify a 

nonlinear least squares problem, and second, the problem must be transformed into a sequential 

quadratic programming model so that it can be solved. The following terminologies and 

mathematical explanations are based on this article. 

In broad terms, a sequential quadratic programming model can be framed as follows: 

min 𝑓(𝑥) =  
1

2
 𝑥𝑇𝐺𝑥 +  𝑔𝑇𝑥 

 

𝑠. 𝑡.    𝐴𝑥 = 𝑏, 𝑥 ≥ 0                          

 

 Where 𝐺 ϵ 𝑅nxn is a symmetric matrix set to its Hessian matrix 𝐻(𝑓(𝑥𝑖)), 𝑔 ϵ Rnx1 is a 

gradient vector 𝛻 𝑓(𝑥𝑖), 𝐴 𝜖 𝑅𝑚𝑥𝑛 and 𝑏 𝜖 𝑅𝑚𝑥1 belong to the optimality constraint stating 𝐴𝑥 

vector must be equal to 𝑏 vector. 

This optimization problem is optimized iteratively, meaning that it is divided into 

sequential subproblems. Once one optimal point in a subproblem is found, it will search for the 
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next feasible point starting from the current optimal point. If 𝑑𝑘 is the solution of the optimal 

subproblem, then: 

𝑥(𝑘+1) = 𝑥𝑘 +  α𝑘𝑑𝑘 

 

Where α𝑘  ϵ [0, 1]. 

A nonlinear problem is defined as follows: 

𝐿 + ∆ = 𝑓(𝑥) 

 

Where L is a (nx1) vector, f is a nonlinear function, and Δ is a (nx1) observational error 

vector. On this nonlinear model, the following error equation also has to hold: 

𝑉(𝑥) = 𝑓(𝑥) − 𝐿 

 

To finalize, the above nonlinear model can be converted into a quadratic optimization 

problem, where  𝐹(∆𝑥𝑘) is the nonlinear function to be iteratively optimized, as follows: 

min       𝐹(∆𝑥𝑘) =  𝑉𝑇𝑃𝑉 

 

𝑠. 𝑡.            𝑉 = 𝑓(𝑥𝑘) − 𝐿 

 

 

ii. Backtesting 

In its simplest form, a backtest is a simulation of how a model would hypothetically 

have performed during a historical time period (López de Prado, 2018, p. 151).  

In his book “Advances in Financial Machine Learning”, López de Prado (2018) explains 

why backtesting is important and, at the same time, why it is a complex and usually misused 

concept in quantitative finance. From this book, one can comprehend that a solid backtest is 

essential to understand whether a model’s final version is proper. It appears to be common for 

the scientific community and investment professionals to think of backtesting as a tool to 

improve a model during the iterative research process. This leads to model overfitting in the 

backtest and false discoveries that underperform when implemented in the real world.  

The author goes deeper into this subject and states that backtest is not a research tool, 

but if used correctly it can be an important tool to do a sanity check and understand that the 

model is helpful under certain constraints and market scenarios. Since the historical time period 

chosen for the backtest is arbitrary, it will never happen again in the future. It’s not a good 
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practice to think that if we run the backtest multiple times with the same model on the same 

dataset, that the possible causal relations found between features and model performance are 

true discoveries – often is the case that these are false discoveries caused by backtest overfitting. 

The best way to avoid this pitfall is to backtest only the final version of the model, and if the 

backtest is not good we should redo the model again. López de Prado puts it in the following 

manner, calling it the Marco’s Second Law of Backtesting: “Backtesting while researching is 

like drinking and driving. Do not research under the influence of a backtest”.  

 

 

2.3 Reinforcement Learning 

 

Reinforcement learning (RL) is a semi-supervised ML algorithm where an agent tries to act 

optimally throughout a sequential decision-making process, given a goal and an environment 

state (figure 1) – having a lot of applications in the investment world. The main differences that 

RL has compared to supervised and unsupervised machine learning is that it has a partial 

feedback loop, and that the RL agent must balance between exploring the environment with 

new actions or exploiting through using the actions it already knows will output high levels of 

reward (exploration – exploitation dilemma). Regarding the first difference, when taking 

actions at a certain state, the agent receives a reward from the environment - which are 

quantitative values but not explicit regarding the action being right or wrong, it only outputs a 

value. This reward is a partial feedback because the agent never knows if that’s the highest 

reward possible, but on the other side it has the goal of maximizing the total cumulative reward 

over a sequence of steps. This feedback process creates a loop because when the agent takes an 

action from a certain state, a reward is generated and the environment state changes in 

accordance with the action (sometimes also due to some environment stochasticity), and the 

same happens in the next state-action-reward-state iteration. The second difference is that the 

agent never knows if it achieved the highest reward possible, leading to the need to randomly 

explore new actions to maximize total cumulative returns. But on the other hand, the agent 

already knows which actions produce the highest returns until that moment, and not reselecting 

them might represent missing an exploitation opportunity – therefore, the RL agent is faced 

with the exploration-exploitation dilemma (Dixon et al., 2020, Chapter 9).  
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The remainder of this chapter will primarily focus on using Dixon et al.’s (2020) book to 

introduce the reader to the basic reinforcement learning concepts, which will be essential to 

understanding the rest of this study. The following concepts will be explained: rewards; value 

and policy functions; observable and partially observable environments; Markov decision 

processes; and Bellman equations. 

 

i. Rewards 

The reward function is used to determine the goal of the reinforcement learning 

problem. To be more precise, the agent’s goal will be to maximize the total cumulative reward 

over a certain period. Rewards are quantitative measures of the level of 

satisfaction/dissatisfaction the agent gets when it acts in a state (Dixon et al., 2020, p. 284). The 

local reward immediately received after an action can be mathematically written as rt = rt (St, 

at), where the reward rt depends on state St, action at and time period t (in the case of a time-

dependent problem). 

Usually, the RL problem will require optimizing total cumulative rewards over T steps, 

where rewards and actions taken at one time step will impact the environment and the actions 

taken in the subsequent steps (rewards over multiple time steps are not independent) – which 

relates to the feedback loops mentioned above. 

 

ii. Value and Policy Functions 

We already know that rewards depend on the action taken (at) and the current 

environment state (St). Different states in the environment can have different levels of 

attractiveness / value to the RL agent – i.e., state x can output low rewards independently of the 

action taken, not being an interesting state for the agent to be at. Value function is the RL 

concept used as a numerical method for the agent to access the level of attractiveness of state 

agent Environment 

State 

Action 

Reward 

Figure 1: Agent - Environment Relation 



 

12 

 

St. The value function can be defined as “a mean (expected) cumulative reward, that can be 

obtained by starting from this state, over the whole period” (Dixon et al., 2020, p. 286). 

To determine the value function, one needs to know beforehand how the agent will 

behave first, because the rewards depend on both the state and the action taken. The rule that 

states how the agent should act in any possible state is the policy function πt (St). It can be 

deterministic (deterministic function of the state St) or stochastic (probability distribution over 

a range of possible actions). Hence, we have the value function Vπ (St) that depends on the 

current environment state St and policy π.   

 

iii. Observable and Partially Observable Environments 

Let’s go deeper into the notion of a state. For an agent to take an action, it needs to 

understand the state it is in, and after the action is taken the agent will be in a new state provided 

by the environment. This process of the agent comprehending the environment and acting upon 

the information it has is extended over multiple periods of time. So, how much information 

does the agent need to make an informed decision? For example, if the agent is a robot walking 

in a maze, it’s impossible to know the whole environment but it still needs to make a decision 

and act.  

In the example provided above, the agent only gets to partially observe the environment 

(the robot can’t see the full maze because it is inside of the maze). And therefore, it is important 

to understand if the agent can fully or only partially observe the environment in the current 

state. So, a fully observable environment is when the agent can see the entire environment (i.e., 

if the robot agent could see the whole maze during all states and all time steps); and a partially 

observable environment occurs when the agent can’t see the whole “picture” of the environment 

and has to take action with sub-optimal information (i.e., what the robot sees when walking in 

the maze, having to take decisions nonetheless). 

A way to simplify most of RL problems is to assume that they follow Markovian 

dynamics. According to Dixon et al. (2020), these dynamics assume that the transition 

probability 𝑝(𝑠𝑡 | 𝑠0:𝑡−1), at time 𝑡, of the conditional state 𝑠𝑡, depend not on the full history 

but rather only on the 𝑘 most recent values. And if 𝑘 = 1, which is the most common case 

(Dixon et al., 2020, p. 287), we get the following: 

𝑝 (𝑠𝑡 | 𝑠0, 𝑠1, … , 𝑠𝑇−1) =  𝑝 (𝑠𝑡 |𝑠𝑇−1) 
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iv. Markov Decision Processes 

“Markov Decision Processes are a tool for modeling sequential decision-making 

problems where a decision maker interacts with a system in a sequential fashion” (Szepesvári, 

2009, p. 8).  

Extended from the Markov model, the Markov Decision Process (MDP, figure 2) 

provides new degrees of freedom that consist of the agent’s actions. With these actions, the RL 

problem gains control variables that have impact into the feedback loop of the Markov process. 

The MDP framework allows one to describe the goal-oriented learning process through the 

multiple agent-environment interactions. Mathematically, it is described by a set of discrete 

time steps 𝑡0, … , 𝑡𝑛 and a tuple {𝑆, 𝐴(𝑠), 𝑝(𝑠’ | 𝑠, 𝑎), 𝑅, 𝛾}. In this tuple, we have the following 

elements, respectively: states 𝑆; the set of actions 𝐴(𝑠) that can be taken at step 𝑠; the transition 

probability of state 𝑠’, knowing that at state 𝑠 the action 𝑎 was taken; the rewards function 𝑅; 

and finally the discount factor 𝛾, which is a number between 0 and 1 used to discount future 

rewards when calculating the value (total cumulative rewards) of a state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v. Bellman Equations 

We already know that the state-value function relies on knowing the total cumulative 

reward of each step, also known as “value”. In reinforcement learning, the random cumulative 

rewards 𝐺𝑡 (that vary according to the policy), can be defined as follows: 

 

𝐺𝑡 =  ∑ 𝛾𝑖 𝑅 (𝑆𝑡+𝑖, 𝑎𝑡+𝑖, 𝑆𝑡+𝑖+1)

𝑇−𝑡−1

𝑖=0

 

 

a1 

S1 

R1 

a2 

S2 

R2 

a3 

S3 

R3 

Figure 2: MDP Framework 
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While defining the state-value function, it was noted that it only partially described the 

rewards’ dynamics because these depend on the actions. Therefore, we can define an action-

value function 𝑄𝜋 (𝑠, 𝑎) that specifies the value according to the state and action, while 

following policy 𝜋. The following expression defines the action-value function: 

 

𝑄𝑡
𝜋 (𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 

 

These value functions can also be represented by a simple recursive scheme that 

computes the value function at time t in terms of its future values at time 𝑡 + 1 by going 

backward in time (Dixon et al., 2020, p. 295). These recursive relations are known as the 

“Bellman equations”, a key concept that underpins RL frameworks.  

Given the equation for the action-value function as an example, this recursive relation 

can be formulated as follows: 

 

𝑄𝑡
𝜋 (𝑠, 𝑎) =  𝐸𝑡

𝜋 [𝑅𝑡 (𝑠, 𝑎, 𝑠′)] +  𝛾𝐸𝑡
𝜋 [𝑉𝑡+1

𝜋  (𝑠′)] 

 

Where 𝑄𝑡
𝜋 (𝑠, 𝑎) is the action-function under policy 𝜋, at time 𝑡. 𝐸𝑡

𝜋 [𝑅𝑡 (𝑠, 𝑎, 𝑠′)] is the 

expected reward of choosing action 𝑎, in state 𝑠, and ending up in state 𝑠′ - under policy 𝜋, at 

time 𝑡. And 𝛾𝐸𝑡
𝜋 [𝑉𝑡+1

𝜋  (𝑠′)] is the expected total value of state 𝑠′, at time 𝑡 + 1, under policy 

𝜋 and discounted by 𝛾. 
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3. Literature Review 
 

Now that the reader is acquainted with the main terminologies that connect investments with 

reinforcement learning, this new chapter will delve into the concrete problem tackled in this 

study. This literature review will properly define the main research question and the actual 

literature review will be conducted; it ends with justifying the deep reinforcement learning 

algorithms used in this study, and explaining how they work in broad terms. This is an important 

step to grasp the state-of-the-art methods currently being applied to solve the problem at hand, 

and to understand how this study can contribute to the scientific community. 

 As it was already mentioned, the goal of this study is to access the importance that DRL 

techniques have in portfolio management and understand if features related to the company’s 

financial fundamentals have a positive impact in the model’s performance. Therefore, the 

following research question was proposed: Can deep reinforcement learning improve medium-

long term fundamental investment techniques, in a portfolio of stocks?  

 After the research question got defined, the following steps were taken to perform the 

literature review: select database and keywords; material extraction and selection; analysis of 

results. The reader needs to understand that the articles used in this literature review are not the 

only ones mentioned in this study, nor are they the only ones about the subject. This literature 

review consists solely of a structured and consistent approach to justify the importance of the 

research question as well as the DRL models used in this study. 

 Scopus was the database used, and the query was: (Deep reinforcement learning OR 

reinforcement learning) AND (investments OR portfolio management OR quantamental 

investments). It returned a total of 44 results. After a first screening based on the title, keywords 

and abstract, 33 articles remained. Finally, after reading the selected articles, 24 were chosen to 

be the main articles discussed. The analysis of results will be based on the 33 articles, due to 

the quantitative nature of the analysis and the fact that all the articles are within the selected 

query. While in the final discussion of this literature review step, 24 articles will be used 

because these focused on using deep reinforcement learning for portfolio management. 

 

3.1 Literature Review Analysis 

The first observation that can be made with this study is that DRL for portfolio 

management is a recent research topic, with the oldest articles from 2018 – one that used DRL 

for the stock market (Kang et al., 2018) and another one for the cryptocurrency market (Jiang 

& Liang, 2017). 
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Year Citations Articles 

2018 65 4 

2019 5 3 

2020 46 12 

2021 9 14 

Total 125 33 
Table 1: Number of articles and citations, per year 

 

 

 

 

 
Figure 3: Number of articles and citations, per year 

 From the table and figure above, it can be seen an evident growth in research 

publications about reinforcement learning for portfolio management. In 2020, attention to this 

research problem grew and multiple DRL approaches started to be applied to investment 

portfolios of different kinds – ranging from portfolios of stocks, to portfolios of 

cryptocurrencies and even to more complex portfolios with multiples types of financial assets 

(i.e., Gao et al., 2020; Lin et al., 2020; Lucarelli & Borrotti, 2020). The peaks of citations 

observed in 2018 and 2020 happened due to, respectively, an innovative study on portfolio 

management of cryptocurrencies and a DRL methods that, according to its authors, outperforms 

more “traditional” DRL methods in noisy environments such as the one of financial markets 

(Aboussalah & Lee, 2020; Jiang & Liang, 2017). 
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Year Article Book Conference 

Paper 

Total 

2018   4 4 

2019   3 3 

2020 5 1 6 12 

2021 6  8 14 

Total 11 1 21 33 
Table 2: Types of research publications, per year 

 

Regarding types of research publications, conference papers were the most used for this 

study (21), followed by journal articles (11). 

It’s also worth mentioning that, in 2021, more challenging problems related to portfolio 

management started to be tackled. In the case of the articles selected, one can begin to see the 

application of deep reinforcement learning methods to solve problems related to financial 

hedging strategies and to portfolio management in the insurance industry (where there are more 

constraints to be considered) (Abrate et al., 2021; Pham et al., 2021). 

In terms of results, most authors focused on using Sharpe Ratio as a performance metric 

(i.e., Huang et al., 2021; Sun et al., 2021; Zhang et al., 2021). In contrast, Gu et al. (2021) 

focused simply on the compounded return of the investments.  

It was already mentioned that portfolio management considers both the return and risk 

of assets. And as stated by Shi et al. (2019), Sharpe Ratio is a “risk adjusted mean return”, 

therefore, one could say that this is a more appropriate measure of the performance and success 

of the algorithm applied. 

Besides the different measures of performance used, the fact that other baseline methods 

and investment periods are considered makes the comparison of results that much more 

difficult. Kang et al.’s (2018) main baseline was the performance against the S&P 500 index, 

while Shi et al. (2019) used as benchmark the performance of other traditional and machine-

learning based models. Betancourt et al. (2021) used 11 months’ worth of data in their test set, 

while Shi et al. (2019) used two months’ worth of data in their test set.  

Nevertheless, if we focus on the studies that had traditional models as benchmarks 

included. Gao et al.’s (2020) Deep Q-Network obtained a Sharpe Ratio of 23.07% - twice as 

much as the 2nd and 3rd best traditional models. Zang et al.’s (2021) DDPG model improved 

Sharpe Ratio in 33% against benchmark. And the innovative Ensemble of Identical Independent 

Evaluators approach, by Sun et al. (2021),  improved Sharpe Ratio by at least 50%, compared 

to the benchmark.  
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 Portfolio management and optimization through deep reinforcement learning is a 

growing hot topic for researchers (i.e., GAO et al., 2021; Huang et al., 2021; Soleymani & 

Paquet, 2020). The DRL algorithms that attract researchers the most are actor-critic (more 

specifically, the Deep Deterministic Policy Gradient method, DDPG) and Q-Learning models 

(i.e., Gao et al., 2020; Khemlichi et al., 2020; Lucarelli & Borrotti, 2020; Zhang et al., 2021). 

On the other side, some authors tried to use more innovative RL frameworks that are believed 

to have better performance when facing complex and noisy environments (i.e Gu et al., 2021; 

Lee et al., 2020; Shi et al., 2019). 

Despite the novelty applied to new algorithms with implementation in various types of 

investment portfolios, there is a major limitation on the type of features used – a constraint 

mentioned by Kang et al. (2018). Practically all articles for this systematic literature review 

used only market related features – either using the price, volume and/or other features derived 

from these two (i.e., Harnpadungkij et al., 2019; Ren et al., 2021; Xu & Tan, 2020).  

 

 

 

3.2 DRL Algorithms 

As stated in the literature review, actor-critic deep reinforcement learning algorithms 

have been one of the most used methods to solve portfolio optimization problems with RL. 

Therefore, this study focuses on using and analyzing the performance of three actor-critic 

algorithms: A2C (Advantage Actor-Critic), DDPG (Deep Deterministic Policy Gradient) and 

TD3 (Twin-delayed DDPG).  

Actor-critic methods generate both a policy and value function. Here, the actor is the 

algorithm that generates the policy function from the family 𝜋𝜃  (𝑎|𝑥), and the critic evaluates 

the results outputted by the actor, expressing it as a state-value or action-value function (Dixon 

et al., 2020, p. 310). 

  

i. Advantage Actor-Critic (A2C) 

A2C maintains a policy and an estimate of the value function (Mnih et al., 2016). In this 

method, the critic learns the value function, and the actor network learns the policy in the 

direction set by the critic (Park & Lee, 2021). In broad terms, the loss function of the critic 

network (𝑉𝜃) is defined as follows: 

 

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = 𝐸[(𝑟 +  𝛾𝑉𝜃(𝑠′) −  𝑉𝜃(𝑠))2] 
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And the loss function of the actor network (𝜋𝜑) is defined as follows: 

𝐿𝑎𝑐𝑡𝑜𝑟 = 𝐸[− log 𝜋𝜑(𝑎|𝑠)(𝑟 +  𝛾𝑉𝜃(𝑠′) − 𝑉𝜃(𝑠))] 

 

Hence, the critic network updates are based on the Bellman equation and the actor 

network updates are based on stochastic policy gradient theory (Park & Lee, 2021). 

Furthermore, the A2C critic network also estimates the advantage of an action 𝑎 in state 𝑠, 

𝐴(𝑠, 𝑎): 

𝐴 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) 

 

 

ii. Deep Deterministic Policy Gradient (DDPG) 

Park and Lee (2021) provide a good explanation of the DDPG framework. This actor-

critic method also combines Deterministic Policy Gradient (DPG) and Deterministic Q-

Network (DQN) methods. In DDPG, noise (𝑁) is added to the policy: 

𝑎 =  𝜇𝜑(𝑠) + 𝑁 

 

The loss function of the critic network, which uses target 𝑌, is defined as follows: 

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = 𝐸[(𝑌 −  𝑄𝜃(𝑠, 𝑎))2] 

 

where, 

 

𝑌 =  𝑟 +  𝛾𝑄𝜃′(𝑠′, 𝜇𝜑′(𝑠′)) 

 

The loss function of the actor network, which uses the deterministic policy gradient 

theorem (Park & Lee, 2021), is defined as: 

𝐿𝑎𝑐𝑡𝑜𝑟 = 𝐸[−𝑄𝜃(𝑠, 𝜇𝜑(𝑠))] 

 

DDPG has online and target networks – the main goal is to update the target networks 

(Park & Lee, 2021). The above loss functions are used to update the online actor and critic 

networks. The target actor (𝜃′) and critic (𝜑′) networks are soft updated from the online 

networks: 

 

𝜃′ ←  𝜏𝜃 + (1 −  𝜏)𝜃′,    𝜑′ ←  𝜏𝜑 + (1 −  𝜏)𝜑′ 
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iii. Twin-delayed DDPG (TD3) 

TD3 is an improved version of DDPG, enhancing its capabilities in three ways. First, it 

adds Gaussian noise to the target action. This technique is known as smoothing and serves as a 

way to reduce overfitting to the sharp peaks produced by the Q-value estimates. Secondly, TD3 

uses two critics to solve a common problem of overestimation in the DDPG algorithm – the 

idea is to use the minimum value in the pair of critic networks to compute the target value. 

Third, TD3 updates the actor network 𝜇𝜑  less frequently than the critic network 𝑄𝜃, aiming to 

improve Q-values convergence. Therefore, TD3 improves over DDPG through target policy 

smoothing, clipped double Q-learning and delayed policy updates (Park & Lee, 2021). 
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4. Methodology 
 

Once the goals were set, the research question defined and the literature review to back this 

study properly done, the experimentation phase started. Here, the focus was on the following: 

i) Does DRL performs better than traditional quantitative models? ii) Do features related to the 

portfolio companies’ financial performance help improve model performance? 

 Specifying the importance of each of the two questions defined, if i) stands true we 

prove (in line with other studies mentioned in the literature review) that reinforcement learning 

has benefits to portfolio management. If ii) also verifies to be true, this study brings to light the 

importance of the field of quantamental investing – which brings together strategies from 

quantitative finance and fundamental investing, already mentioned by some authors (López de 

Prado, 2018, p. 53). 

 As this was an experiment conducted in the field of data science, the CRISP-DM 

methodology was applied (figure 4). Therefore, it followed the following steps: 1) Business 

understanding; 2) Data understanding; 3) Data preparation; 4) Modeling; 5) Evaluation – this 

last step will be thoroughly analyzed in the “Results and Discussion” chapter. 

 

 
Figure 4: Experimentation Phases 
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4.1 Business Understanding and Data Understanding/Preparation  

Regarding business understanding, it’s clear by now that we want to see if DRL in 

portfolio management has good performance and if financial performance features help achieve 

a better model performance. For data understanding, it is important to remind ourselves that 

there will be two primary datasets going into each DRL model - one has only market features 

and the other has both market and financial performance features. Market data comes from 

Yahoo Finance python API and financial performance data comes from the Bloomberg 

terminal. All data used is from the beginning of 2004 until the end of 2020. 

To better analyze the impact of financial performance features in the DRL model, the 

portfolio companies used for this study are all from the same industry. Therefore, the long-only 

portfolio optimized in this study is comprised of three stocks of companies from the automotive 

industry. These are: Peugeot; Volkswagen; and Volvo. 

The data preparation phase was where the data cleaning and feature engineering steps 

took place. The foremost cleaning step was to ensure that prices were available for all three 

companies on all days. If, for a certain day, any of the three needed prices weren’t available 

(i.e., due to holidays in a certain market), this day was removed from the analysis. Feature 

engineering was mainly done through the FeatureEngineer method of the FinRL python 

package – this step was used to add technical indicators and a volatility index to the datasets 

(figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The final market features dataset is a (11.739 x 20) matrix, and the full features dataset 

is a (10.986 x 26) matrix (table 3). This difference of 753 instances (6.4% of total instances in 

the market feature dataset) occurred because there were a lot of missing financial values in 

2004, therefore, these instances were removed ensuring that the full features dataset started in 

January 2005.  

Raw Market Data Cleaned data 
(holidays removed) 

Processed Market 

Data 

Processed Market + 
Financial Data 

Final Market 

Dataset 

Final All 

Features Dataset 
Raw Financial 

Data 

Figure 5: Data Preparation Process 
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The market features dataset has the following variables: date; open daily price; high; 

low; close daily price; adjusted close price; daily volume traded; ticker; weekday; macd 

(moving average convergence divergence indicator); Bollinger upper band; Bollinger lower 

band; RSI 30 (Relative Strength Index for 30 days); CCI 30 (Commodity Channel Index for 30 

days); DX 30 (Directional Index for 30 days); Close SMA 30 (Simple Moving Average for 30 

days); Close SMA 60 (Simple Moving Average for 60 days); and VIX (volatility index). 

The full features dataset uses the features mentioned above, plus the following: daily 

volatility; EBITDA margin; Current ratio; Assets / Equity ratio; Debt / Equity ratio; and ROIC 

(Return on Invested Capital). 

Both datasets have also two final features: a covariance matrix and a daily returns list. 

Financial features change every half-year, due to the periodicity with which they were taken 

from Bloomberg. 

 

 Market Only Dataset All Features Dataset 

Shape 11.739 instances x 20 features 10.986 instances x 26 features 

Start Date January 1st, 2004 January 1st, 2005 

End Date December 31st, 2020 December 31st, 2020 
Table 3: Dataset Description 

 

For the training and test dataset, the 13th of June of 2018 was chosen as the split date to 

obtain approximately 85% of training data and 15% of test data. The two datasets got the 

following train and test sets: 

 

 Market Only Dataset All Features Dataset 

Training dataset shape 9.885 instances x 20 features 9.132 instances x 26 features 

Test dataset shape 1.854 instances x 20 features 1.854 instances x 26 features 
Table 4: Test & Training sets description 

 

4.2 Modeling and Evaluation 

After the data preparation, the following step is to build the DRL models. In this 

modeling stage, a baseline model was set up and three DRL models for both datasets were built.  

The baseline model used is the Sequential Least Squares Programming (SLSQP) 

method for portfolio optimization – the scipy.optimize python library was used. Here, only the 

closing daily prices of each portfolio company was considered. This static optimization 

technique allows us to create the efficient frontier for the three-stock portfolio. As we can see 

in figure 6, from the efficient frontier we can choose the portfolio that maximizes the return per 
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any given unit of risk – assuming that the portfolio companies’ covariance matrix remains 

stable. Interesting takeaways from this analysis is that Volkswagen is the only stock that can 

make sense for a rational investor to hold just by itself, from a risk/return perspective, but at the 

same time this would also be the riskiest choice the investor could make. On the other hand, 

owning Volvo or Peugeot as single stocks should not be considered as there are more profitable 

options for the same risk these positions have.  

But the two main points that one should consider from the efficient frontier are the ones 

that give the maximum sharpe ratio and the minimum volatility portfolios. Choosing either will 

depend on the investor’s ultimate goal. If one is risk averse, the minimum volatility portfolio is 

the best choice. If one wants to maximize profit per unit of risk, he/she should opt for the 

maximum sharpe ratio portfolio. In this study, the latter goal was chosen, and hence, the 

benchmark portfolio comprised the following weights: 

• Volkswagen: 62.20% 

• Volvo: 31.89% 

• Peugeot: 5.91% 

 

 
Figure 6: Efficient Frontier 

 

The Deep Reinforcement Learning algorithms used on both datasets were the A2C, 

DDPG and TD3. These models were employed from the FinRL python package and had their 

respective hyperparameters tunned to optimize model performance. All these models (three 

plus benchmark) are explained in the “Theoretical Background” chapter. 
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Deep diving into the hyperparameters tunning, table 5 shows the final optimized 

hyperparameters of each model for both datasets. For each DRL model, the chosen 

hyperparameters to tune were the ones available in the FinRL package. For A2C, the number 

of steps until update and learning rate were tuned. For DDPG and TD3, the batch size, buffer 

size and learning rate were tuned. After several semi-manual iterations to try to find the optimal 

values for each hyperparameter through grid-search, the final round of iterations had the 

following grid for each model: 

• A2C 

o  Number of steps until update: 5, 10 and 15 

o Learning rate: 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.001, 0.005 

• DDPG and TD3 

o Batch size: 32, 64, 128 and 256 

o Buffer rate: 10.000 and 100.000 

o Learning rate: 0.0005, 0.001 and 0.005 

 

The main insights are that financial features don’t seem to have helped the A2C model 

in the optimization process. Also, with financial features the DDPG model needed a smaller 

buffer size (100.000 vs 10.000) and both the DDPG and TD3 found the same solution – and 

using a simpler model with a smaller buffer requires less computational power, thus being more 

efficient.   

 

The evaluation stage will be further developed in the “Results and Discussion” chapter. 

Nevertheless, here the main focus was on the results arising from the backtest and the test set 

results (especially the Sharpe Ratio – table 6). 
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 Number of steps 

until update 

Learning 

rate 

Batch size Buffer size 

Market-only features Dataset 

A2C 10 0.001 NA NA 

DDPG NA 0.001 32 100.000 

TD3 NA 0.0005 64 10.000 

All features Dataset 

A2C 10 0.001 NA NA 

DDPG NA 0.001 32 10.000 

TD3 NA 0.001 32 10.000 

 Table 5: Optimized hyperparameters detailed 

 SLSQP A2C DDPG TD3 

Type Baseline DRL DRL DRL 

Datasets Used None (closing 

price) 

Market Features + 

All Features 

Datasets 

Market Features + 

All Features 

Datasets 

Market Features + 

All Features 

Datasets 

Hyperparameters 

Tunned 

None Number of steps 

until update; 

learning rate 

Batch size; buffer 

size; learning rate 

Batch size; buffer 

size; learning rate 

Evaluation 

Methods 

Returns, Sharpe 

Ratio 

Returns, Sharpe 

Ratio, Backtest 

Returns, Sharpe 

Ratio, Backtest 

Returns, Sharpe 

Ratio, Backtest 

Table 6: Models Descriptive Summary 
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5. Results and Discussion 
 

This chapter will analyze the results obtained from the built models and discuss them. It starts 

with the benchmark model, then it goes to the performance of models with market features only, 

and to the performance of models with the market and fundamental features. As for 

performance metrics, it was used total performance; sharpe ratio; and backtest performance – 

all drawn from the test set with 31 months. It’s also worth noting that the test set occurred 

during the COVID-19 pandemic (figure 7), which wasn’t around during the training period of 

the models and can be considered a black-swan type of event. Therefore, this abrupt change in 

market conditions can provide a good environment to access the models’ generalization 

capabilities. 

 

 
Figure 7: Individual portfolio companies’ compounded returns, in the test set period 

The backtesting was performed using the pyfolio python package in the test set, and 

these models are then compared with a simple buy-hold strategy of the DJIA (Dow Jones 

Industrial Average) index that comes with the package. The backtest is conducted so that this 

study can have a higher level of reliability regarding the results achieved. It’s an excellent way 

to understand if the results obtained in the normal test set performance are trustworthy and not 

a “one time” outlier performance value. 
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5.1 Baseline Model Performance 

Starting with the baseline model, as the name indicates, this model based on traditional 

optimization techniques is used as the base-case to assess the DRL model’s performance. Using 

the daily returns of each company, the model generated a maximum sharpe ratio portfolio 

comprised of static weights (mentioned in the “Methodology” chapter). The baseline model 

portfolio outperforms two out of the three individual stocks comprised in it (figure 8). It has a 

total return of 12.43% in the test set, while Volvo has 36.48%, Volkswagen has -5.12% and 

Peugeot has -10.25%. 

 
Figure 8: Baseline model portfolio & individual companies’ compounded returns, in the test set period 

 

Although Volvo is the best performer in the test set, the portfolio has a higher 

concentration of Volkswagen shares because in the train set it presented the highest daily mean 

return of 7.45 x 10-4. Regarding volatility, Volvo and Volkswagen had similar behavior in the 

train set, as seen in the table below. 

 

 

 Volkswagen Volvo Peugeot 

Compounded 

Return (test set) 

-5.12% 36.48% -10.25% 

Average Daily 

Return (train set) 

7.45 x 10-4 5.99 x 10-4 4.19 x 10-4 

Daily Variance      

(train set) 

5.94 x 10-4 5.87 x 10-4 4.39 x 10-4 

Table 7: Individual portfolio companies performance metrics 
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5.2 DRL Models Performance 

Going to the models’ performance on the market-only features dataset (table 8), all DRL 

models had similar performances on the simple test set analysis and backtested results – which 

helps confirm that these are stable results. No model outperformed the DJIA, nevertheless, all 

but one outperformed the baseline model (SLSQP). DDPG was the only model that 

underperformed the baseline, by 73 bps. On average, DRL models had a performance of 15.67% 

on the test set, which outperforms the baseline model by 324 bps. The average sharpe ratio of 

all DRL models was also higher than the baseline (avg. 0.35 vs 0.30).  

 It’s important to note that despite the DDPG underperformed against the baseline, both 

sharpe ratios are the same at 0.30 – meaning that both models returned the same performance 

(above the risk-free) per unit of risk.   

 

 

Model Period 

Performance 

Sharpe Ratio Backtest 

Performance 

A2C 18.83% 0.38 19.69% 

DDPG 11.70% 0.30 11.57% 

TD3 16.47% 0.36 16.37% 

Baseline 12.43% 0.30 None 

DJIA 19.84% None None 
Table 8: Model performance with market features only 

 

 

 The best model was the Advantage Actor-Critic (A2C), with a test set performance of 

18.83% (640 bps higher than baseline) and a 0.38 sharpe ratio (0.08 higher than baseline). The 

following figures (9 and 10) show the backtest and test set performance, respectively. In figure 

9 we can see the logarithmic returns of the backtest against the compounded DJIA daily returns, 

and the daily returns generated by the backtest on the A2C model. In figure 10 we can see the 

model’s test set performance, against the baseline model and the DJIA index. 

 The backtest can be considered successful, because the performance achieved is similar 

to the one on the test set (table 8) and the returns’ pattern doesn’t diverge from the DJIA 

benchmark comparison – in case divergence happened, it had to be accessed the possibility that 

the model didn’t generalize well enough and that the model “exploded” when it encountered 

the new environment caused by the COVID-19 pandemic. Another interesting point to analyze, 

from figure 9, is that daily return’s volatility spiked in Q2 2020 (when the pandemic started) 

and remained higher throughout 2020 compared to the past two years. 
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 The A2C model also showed a well-behaved performance pattern in the test set. And 

despite the total compounded return of the model being smaller than the DJIA performance 

(18.83% vs 19.84%), the A2C slightly outperformed the index in November 2019 and 

November 2020. 

 

 

 

Moving on to the performance of models with all features (table 9) (market + financial 

fundamentals). Once again, the similarity of results in the test set analysis and backtest 

demonstrates consistency/robustness of the deep reinforcement learning models and 

Figure 9: A2C Backtest cumulative log-returns (vs DJIA) & daily returns 

Figure 10: A2C Model Performance on Test Set, with market only features 
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trustworthiness of their results. All models outperformed the baseline, but none again 

outperformed the DJIA index. On average, DRL models had a performance of 15.39% on the 

test set, which outperforms the baseline model by 296 bps. The average sharpe ratio of all DRL 

models was also higher than the baseline (avg. 0.35 vs 0.30). 

Another key point from this analysis is that both DDPG and TD3 models had the same 

performance scores – 16.47% period performance, 0.36 sharpe ratio and 16.37% backtest 

performance. Knowing that TD3 is an enhancement of the DDPG model, it’s possible to assume 

that both models have similar optimized network parameters and that both had a similar (if not 

the same/identical) understanding of the agent’s environment – both taking alike actions under 

the same environment states.  

 

Model Period 

Performance 

Sharpe Ratio Backtest 

Performance 

A2C 13.24% 0.32 13.39% 

DDPG 16.47% 0.36 16.37% 

TD3 16.47% 0.36 16.37% 

Baseline 12.43% 0.30 None 

DJIA 19.84% None None 
Table 9: Model performance with market + fundamental features 

 

Both the Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) 

models had the best performance, with a test set performance of 16.47% (404 bps higher than 

baseline) and a 0.36 sharpe ratio (0.06 higher than baseline). Figures 11 and 12 show the 

backtest and test set performance of the DDPG model, respectively. This was the model chosen 

to be presented in the figures since it is the most original and straightforward model. In figure 

11 we can see the logarithmic returns of the DDPG backtest against the compounded DJIA 

daily returns, and the daily returns generated by the DDPG model backtest. In figure 12 we can 

see the model’s test set performance, against the baseline model and the DJIA index. 
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 Once again, this backtest can be considered successful. Its performance is similar to the 

one on the test set (table 9) and the returns’ pattern is similar to the DJIA index – demonstrating 

that the model generalizes well enough in the new market environment. Also, from looking at 

figure 11, daily return volatility still spiked in the second quarter of 2020 and remained higher 

throughout 2020 compared to the past two years – due to the increased market volatility brought 

by the COVID-19 pandemic. 

 

 

The DDPG model also showed a well-behaved performance pattern in the test set. And 

despite the total compounded return of the model being smaller than the DJIA performance 

(16.47% vs 19.84%), the DDPG model was slightly outperforming the index in early November 

2020. 

Figure 12: DDPG Model Performance on Test Set, with market + fundamental features 

Figure 11: DDPG Backtest cumulative log-returns (vs DJIA) & daily returns 
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5.3 Results Discussion 

Overall, deep reinforcement learning models outperformed the baseline model (which 

consisted of a more traditional quantitative approach). The only model that didn’t outperform 

the baseline was the DDPG with market-only features. Financial fundamental features brought 

consistency to the models’ performance. Although the best model was the A2C with market-

only features, this dataset also had the worst performing model. In the market-only features 

dataset, the spread between best and worst performing DRL model was 7.13% - 18.83% for 

A2C and 11.70% for DDPG. In the dataset with all features, this spread got reduced to 3.23% 

- 16.47% for DDPG / TD3 and 13.24% for A2C. Also, despite the average performance of all 

models in the market-only features dataset having cumulative returns higher than the dataset 

with fundamental features (avg. 15.67% vs 15.39%), the average sharpe ratio for both datasets 

remained the same at 0.35. Furthermore, no model with fundamental features underperformed 

the baseline model.  

 With these results, we could demonstrate that the portfolio company’s fundamental 

features help bring consistency to the DRL model’s performance – enhancing the model’s 

trustworthiness and reliability. Fundamental features also allow achieving the same results in 

less complex models, which helps to improve transparency in the portfolio allocation process - 

this is an important aspect for portfolio management and finance generally that is also studied 

under the emerging field of Explainable AI (XAI) (Dosilovic et al., 2018). With fundamental 

features both DDPG and TD3 had the same performance, whilst with market-only features 

DDPG underperformed TD3 by roughly 5 percentage points.  

 This discussion focused on the average performance across all models for both datasets, 

it was done this way because of two main reasons: i) avoiding focusing the discussion on one 

single model that might have benefited from the specific environment characteristics provided 

in this study; ii) one of the two main goals of this study was to understand if fundamental 

features enhance model’s performance and generalization capabilities – not to see if model a 

performed better than model b. And in fact, these results show that fundamental features can 

improve the stability and reliability of DRL models, which generally outperform traditional 

quantitative methods. 
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6. Conclusion 
 

As stated in the introduction, this study focused on proving the importance of deep 

reinforcement learning models in portfolio management and assessing if financial fundamental 

features enhance model performance. A literature review was conducted where we could see 

that the scientific community has recently used DRL to solve financial portfolio optimization 

problems, raising the importance of this study. Here, one could see that multiple DRL models 

were implemented, but there’s a tendency towards using actor-critic DRL models.  

 Still in the literature review, emphasis was given to the lack of importance feature 

engineering has on current financial DRL research. This might happen due to the type of 

problem being solved. Once the AI scientific community finds a new problem to tackle (i.e., 

portfolio management), there’s a tendency to focus on finding and optimizing the best model – 

which leads to higher model complexity, increased computer power and budgetary needs. If 

more focus is given to feature engineering while solving new problems, improved data quality 

can provide an efficient way to obtain good results with simpler models. 

 After the importance of this study was proven with the literature review, the CRISP-

DM methodology was used to conduct the practical experiments. In this stage, three actor-critic 

DRL models (A2C, DDPG and TD3) were applied and optimized to solve the portfolio 

allocation problem – using a long-only portfolio with three stocks of companies in the 

automotive industry. These models were optimized on two different datasets, one with market 

features (i.e., price, volume traded, technical indicators) and the other with market plus financial 

fundamental features (i.e., revenue, profit, debt). To conclude, these models were evaluated 

against a baseline model and were subject to a backtest. 

 These experiments showed that DRL models outperformed the traditional portfolio 

optimization technique. The baseline model had a cumulative return of 12.4% in the test set, 

whilst the DRL models had an average cumulative return of roughly 15.5% - translating to a 

sharpe ratio of 0.30 for the baseline, against an average of 0.35 for the DRL models. It can be 

concluded that financial fundamental-based features improve model consistency and 

robustness, at least when in a portfolio of companies from the same industry, which helps in 

raising the importance of the emerging field of quantamental investments. 

 This study contributes to explaining the current increasing trend of Portfolio Managers 

(PM) using Machine Learning (and Deep Reinforcement Learning) models in their portfolio 

allocation process (López de Prado, 2018, p. 4). Machine Learning provides a better structured 

and systematic approach to the decision-making process. Quantamental investment strategies 
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can be a good opportunity for PMs to generate new alpha for their investors and create trust 

with them through increased transparency. Quoting Marco López de Prado, “No human is better 

at chess than a computer. And no computer is better at chess than a human supported by a 

computer. Discretionary PMs are at a disadvantage when betting against an ML algorithm, but 

it is possible that the best results are achieved by combining discretionary PMs with ML 

algorithms. This is what has come to be known as the “quantamental” way” (López de Prado, 

2018, p. 15). 

 To the scientific community currently trying to solve this problem with DRL, this study 

serves as another piece of evidence of the benefits that deep reinforcement learning brings to 

the financial portfolio optimization problem. It may also demonstrate how improving feature 

engineering can contribute to a better learning environment for the agent to develop its strategy. 

With simpler models, less computer power required and higher understanding of the problem 

at hand – in this case, understanding financial assets from different classes and how it relates to 

portfolio management - one can also contribute to state-of-the-art research. This idea of 

focusing on data and feature engineering to solve AI problems (instead of model optimization) 

has been growing, especially with a recent movement, brought by the scientist Andrew Ng, 

called Data Centric AI (Strickland, 2022).  

 Regarding the main limitations of this study and the future research agenda 

recommended. Time constraints and data availability were the two main limitations. 

Reinforcement Learning is a vast and growing research field. To perform this study, the author 

had to learn RL from scratch. Meaning that if time hadn’t been a constraint, a deeper 

understanding of RL could have been gained by the author and better/deeper analysis 

throughout the entire study could have been made – despite the interesting contributions that 

this study already provides. Data availability was also an important limitation, financial 

fundamental features had to be taken from Bloomberg terminal, which has associated monetary 

costs. This is the main reason for the portfolio constructed having only three companies all from 

the same industry – since the portfolio was small, companies from the same industry were 

chosen to have a proper assessment of the importance that fundamental features bring. This data 

availability constraint limits the conclusions that can be taken, especially regarding the 

importance of fundamental features in a portfolio of companies from diverse industries. 

 A future research agenda could include building a customized python package with deep 

reinforcement learning models applied in portfolio management, bringing a higher level of 

transparency and control over the models by the researcher. A wider range of DRL models can 

be tried, not just the main actor-critic ones, and assess if the importance of financial 
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fundamental features persists. Still, on the modelling side, a more extensive hyperparameter 

tuning can be done to optimize the agents’ networks. Feature engineering can always be 

improved. One could find more interesting markets or fundamental features to enhance model 

performance. At last, wider portfolios could be tried. These could be cross-industry portfolios, 

multi-asset portfolios (i.e., with swaps, cash equities and bonds) or even a portfolio with long 

and short strategies. Thus, allowing future research to better understand the importance of 

quantamental strategies in portfolio management. 
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