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Abstract

Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.

Marie Curie, Polish physicist (1867-1934)

E
nterprise Application Integration is the research field, which pro-
vides methodologies, techniques and tools for modelling and
implementing integration processes. An integration process per-
forms the orchestration of a set of applications to keep them

synchronised or to allow the creation of new features. It can be represented
by a workflow composed of tasks and communication channels. Integra-
tion platforms are tools for the design and execution of integration processes
in which, the runtime system is the component responsible for the execu-
tion time of the tasks and the allocation of computational resources that
perform them. The processing of a large volume of data, corresponding to ex-
ecution of millions of tasks, can cause situations of overload, characterised by
the accumulation of tasks in internal queues awaiting computational re-
sources in the runtime systems, resulting in unacceptable response time for
the external applications and users. Our research hypothesis is that the
runtime systems of the integration platforms use simplistic heuristics for
scheduling tasks, which does not allow them to maintain acceptable lev-
els of performance when there are overload situations. In this research work,
we developed (i) a representation for integration processes, (ii) a characteri-
sation for your task schedules, (iii) a heuristic to deal with situations of
overload, (iv) a mathematical model for a performance metric of the execu-
tion of integration processes and (v) a simulation tool for task scheduling
heuristics. Our research results indicate that, in situations of overload, our
heuristic promotes a balanced workload distribution and an increase in the
performance of the execution of the integration processes.
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Resumo

Nada na vida deve ser temido, é apenas para ser entendido. Agora é a hora
de entender mais, para que possamos ter menos medo.

Marie Curie, Física polonêsa (1867-1934)

I
ntegração de Aplicações Empresariais é o campo de pesquisa, que for-
nece metodologias, técnicas e ferramentas para modelar e implementar
processos de integração. Um processo de integração executa a orques-
tração de um conjunto de aplicações para mantê-las sincronizadas ou

para permitir a criação de novas funcionalidades. Ele pode ser represen-
tado por um fluxo de trabalho composto por tarefas e canais de comunicação.
Plataformas de integração são ferramentas para projetar e executar proces-
sos de integração, nas quais o motor de execução é o componente responsável
pelo tempo de execução das tarefas e pela alocação de recursos compu-
tacionais que as executam. O processamento de um grande volume de
dados, correspondendo a execução de milhões de tarefas, pode causar situa-
ções de sobrecarga, caracterizadas pelo acúmulo de tarefas em filas internas
que aguardam recursos computacionais nos motores de execução, resultando
em tempos de resposta inaceitáveis para aplicações e usuários externos.
Nossa hipótese de pesquisa é que os motores de execução das platafor-
mas de integração usam heurísticas simplistas para agendar tarefas, o que
não lhes permitem manter níveis aceitáveis de desempenho em situações
de sobrecarga. Neste trabalho de pesquisa, desenvolvemos (i) uma repre-
sentação para processos de integração, (ii) uma caracterização para seus
agendamentos de tarefas, (iii) uma heurística para lidar com situações de so-
brecarga, (iv) um modelo matemático para uma métrica de desempenho
da execução de processos de integração e (v) uma ferramenta de simu-
lação para heurísticas de agendamento de tarefas. Nossos resultados de
pesquisa indicam que, em situações de sobrecarga, nossa heurística pro-
move uma distribuição equilibrada da carga de trabalho e um aumento no
desempenho da execução dos processos de integração.
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Resumen

No hay que temer nada en la vida, solo hay que entenderlo.
Ahora es el momento de entender más, para que podamos temer menos.

Marie Curie, Fisico polaco (1867-1934)

I
ntegración de aplicaciones empresariales es el campo de investigación,
que proporciona metodologías, técnicas y herramientas para mod-
elar e implementar procesos de integración. Un proceso de integración
realiza la orquestación de un conjunto de aplicaciones para mantener-

las sincronizadas o para permitir la creación de nuevas funcionalidades. Se
puede representar mediante un flujo de trabajo compuesto por tareas y
canales de comunicación. Las plataformas de integración son herramientas
para diseñar y ejecutar procesos de integración, en los cuales el motor de eje-
cución es el componente responsable del tiempo de ejecución de las tareas y
de la asignación de recursos computacionales que las ejecutan. El proce-
samiento de un gran volumen de datos, correspondiente a la ejecución de
millones de tareas, puede causar situaciones de sobrecarga, caracterizadas
por la acumulación de tareas en colas internas que esperan recursos computa-
cionales en los motores de ejecución, el que resulta en tiempos de respuesta
inaceptables para las aplicaciones y los usuarios externo. Nuestra hipótesis
de investigación es que los motores de ejecución de las plataformas de inte-
gración hacen uso heurística simplista para programar tareas, lo que no les
permite mantener niveles aceptables de rendimiento en situaciones de sobre-
carga. En este trabajo de investigación, desarrollamos (i) una representación
para los procesos de integración, (ii) una caracterización para sus cronogra-
mas de tareas, (iii) una heurística para lidiar con situaciones de sobrecarga,
(iv) un modelo matemático para una métrica de rendimiento de la eje-
cución de procesos de integración y (v) una herramienta de simulación
para la heurística de programación de tareas. Los resultados de nuestra in-
vestigación indican que, en situaciones de sobrecarga, nuestra heurística
promueve una distribución equilibrada de la carga de trabajo y un aumento
en el rendimiento de la ejecución de los procesos de integración.

 



xxvi Resumen



Part I

Introduction





Chapter1

OpeningRemarks

We cannot change what we are not aware of,
and once we are aware, we cannot help but change.

Sheryl Sandberg, American technology executive

O
ur goal in this thesis is to report on our research to develop a
task scheduling heuristic that improves the performance of the ex-
ecution of integration processes that are likely to be afflicted by
overloads. Task scheduling is classified as a computationally com-

plex problem, which cannot be solved by exact optimisation techniques
in reasonable computational time. In this chapter, we introduce the con-
text of our research, motivation, methodology, collaborations, and a summary
of our main contributions. Finally, we describe the structure of this thesis.

1.1 Research context

Companies often need to use their software ecosystems [123] to sup-
port and improve their business processes. These ecosystems are composed
of several applications, usually designed without taking into account their
possible integration. Within the area of software engineering, the field of
studies known as Enterprise Integration Applications (EAI) [61] seek to pro-
vide methodologies, techniques and tools for the design and implementation
of integration processes. In general terms, an integration process aims to or-
chestrate a set of applications to keep them synchronised or provide new
features that can be built from those already developed. An integration pro-
cess is composed of tasks and communication channels, which connect
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applications of software ecosystems, allowing that these applications work
together, exchanging data and functionalities.

Integration platforms are specialised software tools that provide sup-
port to design, implement, run, and monitor integration processes. In the last
years, several integration platforms have been created by the EAI commu-
nity. These platforms have been heavily influenced by the catalogue of
conceptual integration patterns documented by Hohpe and Woolf [85]
and follow the architectural style of Pipes-and-Filters [2]. In an integra-
tion process, pipes represent message channels, and filters represent atomic
tasks that implement a concrete integration pattern to process encapsu-
lated data in messages. The adoption of this architecture allows uncoupling
the tasks that make up the integration process.

There are several open source platforms that can be used to build inte-
gration processes such as Mule [49], Camel [91], Spring Integration [58],
Synapse [94, 152], Fuse [160], ServiceMix [105], Petals [162], Jitterbit [161],
WSO2 ESB [92], and Guaraná [60]. Usually, these integration platforms pro-
vide a domain-specific language, development toolkit, a test environment,
monitoring tools, and runtime system. The domain-specific language fo-
cuses on the elaboration of conceptual models for the integration process,
with a level of abstraction close to the domain of the problem. The develop-
ment toolkit is a set of software tools that supports the implementation of
the solution, that is, the transformation of the conceptual model into exe-
cutable code. The testing environment allows testing individual parts or the
entire integration process to identify and eliminate possible defects in the im-
plementation. The monitoring tools are used to monitor, at runtime, the
operation of the integration process and detect errors that may occur during
message processing. The runtime system provides all the support required to
run these integration processes.

Cloud computing [129] is another field of studies that have drawn the
attention of the scientific community and represents a new paradigm of
development, commercialisation and use of software. This field has been
transforming the current software ecosystems and revolutionising the way
companies provide computer support to their business processes. Cloud
computing enables companies to contract service packages by dramatically
reducing their total cost of ownership with the information technology infras-
tructure, without sacrificing the quality of the IT support provided to their
business processes. This reducing is due mainly to the pay-as-you-go charg-
ing model that allows billing based on the amount of computing resources
consumed by users of the cloud [29]. Along with the pay-as-you-go model,
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Cloud computing has also brought the elasticity feature, which allows for in-
creasing and decreasing computational resources to meet better the demands
of applications running on the cloud infrastructure [40]. The advancement of
Cloud computing technologies has led companies to a significant trans-
formation in their software ecosystem, which now includes on-premise
applications, migrated applications for virtual machines in the cloud, social
media applications and many other software services available in the cloud.

1.2 Motivation

The quality of service that integration processes can achieve in terms of
message processing is directly dependent on the runtime system of the inte-
gration platform. Figure 1.1 presents a conceptual map in which we abstract
the key concepts involved in the research context of this thesis. Typically, to
achieve the desired quality of service with an integration process, soft-
ware engineers have increase computational resources in the server machine
on which the integration platform is installed within the enterprise. This
approach links the increased performance of an integration process to the in-
crease in financial costs required. Such costs refer to the expansion of the
current hardware or the purchase of a new server with higher process-
ing power, to generate the desired performance of the runtime system,
increasing the number of messages processed by the integration processes.

Hiring of virtual machines in the cloud to host integration platforms al-
lows a reduction of the total cost of ownership for the realisation of EAI by
the companies, as well as by means of the feature of elasticity of the cloud, a
greater flexibility for the increment of computational resources [25, 159,
166]. This fact has motivated several integration platform providers to mi-
grate and offer a cloud version of their platforms to run integration processes
in the cloud [52]. The migration of integration platforms to virtual machines
in the cloud has given rise to a new service model that is being referred to by
the EAI community as integration Platform-as-a-Service (iPaaS) [145].

Data from 2015 show that, together, the aggregation of South America,
Central America and North America account for 67% of the market for iPaaS
integration platforms, followed by Europe, the Middle East and Africa, which
together account for 22%, and Asia and the Pacific with 11% of this mar-
ket, and these values should remain, with little oscillation, by the end of
2019 [175]. The traditional market for integration platforms used on-premise
registered a growth of less than 10% in 2016, while the market for iPaaS inte-
gration platforms had a 60% expansion over the previous year, representing a
global market of 700 million Dollars [77].
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Figure 1.1: Conceptual map of the key concepts in the research context.
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In 2017, two out of three application integration projects were developed
directly with cloud integration platforms [146]. The investment made by
companies in iPaaS integration platforms will increase by 40% by 2019 [175],
making iPaaS the preferred integration platform by companies and with
annual revenue growth higher than the traditional platform market of inte-
gration used on-premise [77, 176]. Given the high investments in iPaaS
integration platforms, a research effort is needed to study and adapt these
platforms to the new paradigm that represents Cloud computing. In this
context, the efficiency of runtime systems is fundamental since several com-
puting resources in the cloud follows the pay-as-you-go model, and therefore
has a direct impact on the financial cost involved in executing the solu-
tions. The higher the efficiency of runtime systems, the less computational
resources will need to be contracted or consumed in order for an integra-
tion process to achieve the expected quality of service. The central role of the
runtime systems is the task scheduling of the integration processes [76, 83].

1.3 Objectives

We present the objectives that have directed our research in the context of
Enterprise Application Integration and that resulted in the contributions of
this thesis.

Main

Improve the performance of the execution of integration processes in
overload situations to endow the runtime systems of integration
platforms with features that deal with large volume of data.
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Specifics

• Evaluate current runtime systems with focus in their performance.

• Characterise the task scheduling of integration processes.

• Develop a representation for integration processes that allows the
simulation of their execution.

• Build a tool for simulation of the execution of integration processes by
runtime systems of integration platforms.

• Implement a new heuristic for task scheduling for integration processes
in a programming language.

• Develop a mathematical model for a performance metric of the
performance of executions of integration processes.

• Perform statistical tests to evaluate the performance of executions of
integration processes with the proposed heuristic.
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1.4 Methodology

We classify our research, indicated methods and development process,
and list the main parts of research.

Classification

Scientific research varies by genre [45]. We classified our research regard-
ing its nature, goals, technical procedures, and approach the problem, cf.
Figure 1.2

Figure 1.2: Classification of the research.

Regarding nature, our research is applied because it produced theoreti-
cal and practical knowledge to the advancement of the runtime systems of
integration platforms.

Regarding goals, our research is exploratory and explanatory. Exploratory
because provided a new representation for integration processes and a classi-
fication for the task scheduling. Explanatory because we observed, analysed
and interpreted the scheduling of tasks with different heuristics. Additionally,
we concerned to investigate the threats to the validity of the observations.

Regarding the technical procedures, our research is bibliographic, docu-
mentary, and experimental with case studies. We conducted this part by
a multi-vocal literature review [136] that included several sources, such
as source-codes of runtime systems, documentation from integration plat-
form, books, and scientific articles. We utilised scientific databases such as
IEEE Xplore, ACM Digital Library, and Scopus. Besides, we carried out ex-
periments with four case studies to validate the research proposal, whose
results were confirmed by statistical significance tests. The experiments fol-
lowed a protocol based on Jedlitschka and Pfahl [95], Wohlin et al. [198]
and Basili et al. [17].
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Regarding of how to approach the problem, our research is quanti-
tative because we formulate the hypotheses and define the relationship
between the variables, confirm the results by statistical tests and analyse the
threats to their validity.

Methods

The scientific method is based on a set of procedures adopted for the pur-
pose of attaining knowledge [45]. The method of addressing the problem of
scientific research characterises the scientific aspect of research [150]. Follow-
ing, we described the approach and procedures methods of our research,
cf. Figure 1.3

Figure 1.3: Methods of the research.

Approach methods offer directives that distinguish scientific and non-
scientific objectives. We use the inductive method, which we start from
something particular to generalisation. In this method, we begin by ob-
serving the scheduling of integration process tasks. Next, we compare the
performance of integration process executions with different heuristics for
scheduling their tasks, submitted to different scenarios. Finally, we pro-
ceeded to the generalisation of the results, validating the conclusions by
statistical tests.

Procedural methods refer to the technical procedures to be followed in
the research. The procedures to be used in the data collection and analy-
sis depend on the choice of this type of method. We use an experimental,
comparative and statistical method. Experimental because we subject our
case studies on various scenarios and study the impact of using differ-
ent heuristics for task scheduling. Comparative because we compare the
performance of executions of case studies in each scenario studied. Statisti-
cal because we use statistical tests to determine the probability of success and
the margin of error of the conclusions obtained.
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Development process

The development of this research was iterative and incremental, as shown
in Figure 1.4. It was iterative because we planed the work of one iteration to
be improved upon in subsequent iterations and it was incremental be-
cause, after each iteration, a part of work was completed and was added to
our research. Each iteration began with a planning meeting, in which super-
visors, together with the doctoral proponent prioritised the items, extracted
of our project, that would be carried out, as well as, the activities, and prod-
ucts, which should be performed during that iteration. At the end of each
iteration, the proponent presented the progress of the work, by meetings or
seminars, attended in-person and by video conference by supervisors, and
by members of our research group. The objective was to promote discus-
sions, disseminate knowledge, identify possible inconsistencies and collect
new ideas about the work carried out in the iteration.

As the research progresses and incremental content was generated, the
proponent participated in workshops and conferences to discuss ideas and
have feedback. When these research increments were complete and ma-
ture, they were published in journals for dissemination of the results. Besides,

Figure 1.4: Research development process.
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at the end of the iteration, the proponent and her supervisors held an evalua-
tion meeting to assess the timing, productivity, learning and planning of the
next iteration. Then a new one begins, repeating the process until the whole
schedule was completed. One of the artefacts generated at the end of the
iteration was the research report, which had periodicity defined by the super-
visor. It is also important to highlight that the GCA research group is formed
by professors of several institutions, whose researches belong to differ-
ent fields of study within Software Engineering, with emphasis on the
Enterprise Application Integration, under which this research is anchored.

Parts of research

The research was divided into seven major parts:

i. Research context review

In this part, we review topics regarding the research context, such as en-
terprise application integration, runtime system, Cloud computing,
big data, mathematical modelling, optimisation techniques, statistical
models and multithread programming.

ii. State-of-the-art review

In this part, we studied runtime systems from popular integration plat-
forms. Our goal was to find out weaknesses of the runtime systems
regarding properties that impact on the performance of the execution of
integration processes.

iii. Task scheduling study

In this part, we mathematically represented the integration processes,
characterised the tasks scheduling of integration processes, and to
proposed alternative scheduling heuristics.

iv. Simulator development

In this part, we built a tool to measure the gain in the performance of
executions of integration processes with the different heuristics.

v. Mathematical modelling

In this part, we developed a mathematical model to describe the gain
in the performance of executions of integration processes with the
proposed heuristic.
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vi. Proposal validation

In this part, we performed experiments to compare the proposed
heuristic with a popular heuristic, commonly used by open source
integration platforms.

vii. Thesis writing

The last part contemplates the closing of the works, evaluation of the
obtained results, and writing this thesis.

1.5 Summary of contributions

We enumerated the contributions of this research and the works that were
already published or are under revision.

Our general results

• A representation that typifies the tasks of integration processes
according to their operation logic.

• A characterisation of the task scheduling of integration processes car-
ried out by runtime systems based on current approaches, classification,
problems, and methods used.

• A scheduling heuristic that addresses the execution of integration
processes in overload situations.

• A mathematical model and performance metrics definition as a function
of integration processes properties.

• A simulation tool that allows the evaluation of heuristics for task
scheduling of integration processes carried out by runtime systems.

Our main publications

• In the article entitled “A Survey on the Run-time Systems of Enter-
prise Application Integration Platforms Focusing on Performance” [68],
we did a literature review regarding the performance of runtime sys-
tems of integration platforms. We introduced a comparison framework
composed of performance properties that allow the analysis and com-
parison of open source integration platforms. This article was published
in the Software Practice and Experience journal. Figures and tables from
this article are used similarly in Figures 2.1, 2.2, and Tables 2.1, 2.2, 2.3,
2.4, and 2.4.



14 Chapter 1. Opening Remarks

• In the article entitled “A Methodology to Rank Enterprise Applica-
tion Integration Platforms from a Performance Perspective: An Analytic
Hierarchy Process-based Approach” [66], we proposed a methodol-
ogy to support software engineers in the decision-making process for
an integration platform when performance is a central requirement.
This methodology was based on the analytic hierarchy process (AHP)
method [163], but also added objective criteria for performance assess-
ment purposes. This article was published in the Enterprise Information
Systems journal.

• In the article entitled “Ranking Enterprise Application Integration Plat-
forms from a Performance Perspective: An Experience Report” [64], we
reported our experience in evaluating and comparing four well-known
open source integration platforms in the context of in which perfor-
mance was a central requirement to choose an integration platform. The
evaluation was conducted using our decision-making methodology to
build a ranking of candidate platforms by means of subjective and ob-
jective criteria. This article was published in the Software Practice and
Experience journal.

• In the article entitled “Optimisation of the Size of Thread Pool in Run-
time Systems to Enterprise Application Integration - A Mathematical
Modelling” [67], we proposed a mathematical formulation which char-
acterised the costs associated with adopting the thread-by-request and
pool of threads architectures as well as obtained the optimum size of the
pool of threads, maximising the expected gain by minimising the ex-
ecution time of integration processes. Furthermore, we applied our
mathematical formulation and analysed the expected gain with the use
of the pool of threads architecture. This article was published in the
Trends in Applied and Computational Mathematics journal.

• In the article entitled “Task Scheduling Optimisation on Enterprise Ap-
plication Integration Platforms Based on Meta-heuristic Particle Swarm
Optimisation” [169], we proposed an algorithm for task scheduling
based on the PSO meta-heuristic, which allocate computational re-
sources to execution of tasks of integration processes, considering the
waiting time in the queue of ready tasks and the computational com-
plexity of the tasks in order to optimise the execution of integration
processes. This article was published in the Proceedings of the 31st
Brazilian Symposium on Software Engineering.
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• In the chapter entitled “Experimental Study for Evaluating the Per-
formance of Java Virtual Machines in Application Integration”, we
evaluated the behaviour of the concurrent execution of tasks in different
implementations of Java virtual machines and analysed performance
metrics by rigorous statistical techniques. This chapter was published in
the Nova Science Publishers book, Inc. NY, USA.

• In the article entitled “Execução de Soluções de Integração de Apli-
cações Empresariais na Nuvem: Perspectivas e Desafios” [168], we
introduced the research context regarding the fair allocation of compu-
tational resources to execution of integration processes in integration
platforms offered as cloud services and discussed ideas to develop a
theoretical model for improvement of runtime systems. This article was
presented in the IV Seminário de Formação Científica e Tecnológica, in
Ijuí, Brazil.

• In the article entitled “New developments in Round Robin algorithms
and their applications: systematic mapping study”, we provided a sys-
tematic mapping study that identifies the state-of-the-art in the research
of the Round Robin algorithms to guide researchers and practitioners in
the field of software engineering. The mapping showed that the re-
search regarding the improvement in Round Robin algorithm continues
active, indicating that Round Robin remains one of the more efficient
scheduling techniques in the fields of research of packets, CPU and vir-
tual machine scheduling. This article is under revision in the Journal of
Scheduling.
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1.6 Structure of this thesis

This doctoral thesis is organised as follows:

Part I: Introduction. Comprises this introduction, Chapter 2 provides a lit-
erature review about the state-of-the-art of open source integration
platforms, which produced a comparison framework for runtime sys-
tems and identified their weakness regarding performance properties,
and Chapter 3 describes the research gaps found in the literature review
and indicates one that we approach in this work.

Part II: Background Information. Provides information related to our re-
search context. In Chapter 4, we introduce the well-known enterprise
application integration conceptions. In Chapter 5, we introduce the
main concepts, classifications, methods and approaches regarding task
scheduling. In Chapter 6, we describe some of the scheduling heuris-
tics and meta-heuristics. In Chapter 7, we discuss statistical techniques,
namely, ANOVA, Scott & Knott, and Regression analysis.

Part III: Our Proposal. Reports on the core contributions we made with this
thesis. This part starts at Chapter 8, we propose and apply a repre-
sentation for integration processes. Chapter 9, we characterise task
scheduling in execution of integration processes. In Chapter 10, we
propose the Queue-Priority heuristic to tackle overload situation. Chap-
ter 11, we propose a mathematical model and a performance metric,
as a function of the integration processes, the workloads, and the
scheduling heuristics

Part IV: Validation. Describes the experiments and statistic tests to vali-
date the application of the proposed heuristic to integration process
problems. In Chapter 12, we present a simulation tool for integration
processes task scheduling. In Chapter 13, we describe and apply the ex-
perimental protocol used to evaluate the performance of the proposed
heuristic.

Part V: Final Remarks. Concludes this thesis and highlights a few future
research directions in Chapter 14.



Chapter2

RuntimeSystemState-of-the-art

All sorts of things can happen when you are open
to new ideas and playing around with things

Stephanie Kwolek, American chemist (1923-2014)

I
n this chapter, we present the state-of-the-art of open source integra-
tion platforms, addressing the performance properties of the execution
of integration processes. To compare the integration platforms, we
built a comparison framework to evaluate nine integration platforms

regarding performance of their runtime systems.

2.1 Research method

We present the research method we follow in reviewing integration plat-
forms and finding out research gaps in runtime systems performance of
integration platforms. We constructed a comparison framework made up of
performance properties and applied this framework to nine integration
platforms.

The research method for this review is abstracted in Figure 2.1. It has two
main activities: framework construction and framework application. In the
former, we conducted a feature analysis by means of a qualitative screen-
ing research on academic literature [102] and on technical literature [69] to
identify performance properties that can be used by academy and indus-
try. In the latter, the comparison framework was applied to nine integration
platforms and resulted in the identification of six research gaps. Screening
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Figure 2.1: Research method for review of the state-of-the-art.

research is one of the forms of feature analysis, in which the evaluation is per-
formed by software engineers based on documentation only. Screening is
indicated for a more complex evaluation, in which it is possible to reduce a
large number of platforms to a short-list that can be deeply evaluated [103].

Feature analysis is constructed from the selected research papers in multi-
vocal literature review (MLR). Ogawa and Malen [136] state that “Multi-vocal
literature” is comprised of all accessible writings on a common, often contem-
porary topic. The writings embody the views or voices of diverse sets of
authors (academics, practitioners, journalists, policy centres, state offices of
education, local school districts, independent research and development
firms, and others). The writings appear in a variety of forms. They reflect dif-
ferent purposes, perspectives, and information bases. They address different
aspects of the topic and incorporate different research or non-research logics”.
MLRs recently started to be used in software engineering, thus we conducted
and reported our study based in the guidelines documented by Garousi et al.
[69] to ensure high quality of our MLR processes and their results.

Framework construction

In this activity, we produced a comparison framework to analyse the
runtime systems of the integration platforms. This framework provides prop-
erties that contribute to endow current runtime systems of integration
platforms with quality attributes to increase their performance and at the
same time can lead to efficiency in the execution of integration processes.
This activity is based on the coding process [183], by which data is broken
down, conceptualised, and synthesised. The main coding procedures are:
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• Properties Identification - aims at identifying quality attributes for run-
time systems that allow to compare and group similar performance
properties. We constructed an initial list of properties that have an im-
pact on the processing time of messages in the integration processes and
in the consumption of computational resources of the runtime system.

• Properties Grouping - aims at identifying which problems in the execu-
tion of integration processes are solved when the runtime systems
are endowed with the identified properties. We classified the proper-
ties into dimensions and tabulated the relationships between properties
and dimensions. This tabulation allowed us to identify redundancies
amongst the dimensions.

• Properties Selection - aims at evaluating the dimensions and proper-
ties to select a consistent subset of them. This selection was carried
out based on our experience of several years on the development of
integration projects in real-world software ecosystems. The subset of di-
mensions and their properties is the comparison framework used as
criteria to evaluate integration platforms, in relation to the performance
of their runtime systems.

This activity resulted in a set of ten performance properties grouped
in two dimensions: message processing and fairness execution. The former
dimension relates to improving the efficiency of processing a message by run-
time system, which can also be seen as increasing the average number of
messages processed per unit of time. The latter dimension is concerned with
the assignment of threads to tasks aiming at a fair execution to help to min-
imise the average time that a message takes to be processed in the integration
process.

Once the coding derived quality attributes, it is required to contextu-
alise the platforms in comparison to each other. In other words, we aim at
evaluating the quality performance features of integration platforms that
meet three criterion: open source, provide support to the integration pat-
terns [85], and follow the pipes-and-filters architectural style [2]. Thus, we
aim at answering the following research questions:

RQ1: What are the relevant features that can help to improve the performance
of runtime systems of the integration platforms?

RQ2: What are the state-of-the-art open source integration platforms that pro-
vide support to integration patterns and follow the pipes-and-filters
architectural style?
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RQ3: Are the state-of-the-art open source message-based integration plat-
forms endowed with features that can help to improve the performance
of their runtime systems from the perspective of message processing
and fairness execution in the context of Cloud computing?

We hypothesise that the runtime systems are not sufficiently endowed
with features to improve message processing and to promote a fair execution
of tasks in the context of Cloud computing. In this review, we found out re-
search gaps regarding the performance of the runtime systems in this context,
that usually have to cope with large volumes of data.

Framework application

In this step, we applied the comparison framework for nine integra-
tion platforms. The evaluation of the platforms was carried out based on a
deep study of them and in our knowledge of their use in integration projects
in real-world software ecosystems. The main procedures are listed below and
detailed in next sections:

• Platforms Selection - aims to select integration platforms, in which it is
possible to compare their quality attributes regarding performance . We
collected 42 platforms and formed an initial list. After, we applied inclu-
sion criteria to filter and homogenise the set of selected platforms,
resulting in nine platforms.

• Platforms Review - aims at identifying values for performance proper-
ties of the comparison framework. We carried out a multi-vocal
literature review on the publicly available source-code and the docu-
mentation from their web site, books, and academic chapters in order to
study and evaluate integration platforms.

• Research gaps - aims at identifying the lack of features that can in-
crease the performance of runtime and at the same time can lead
to efficiency in the execution of integration processes. Based on this
review, we indicate research gaps that can be explored in order to im-
prove the integration platforms and at the same time may be useful to
adapt them to the context of Cloud computing.
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2.2 Evaluation framework

We present a set of properties that guided our analysis of the integra-
tion platforms to answer the first research question (RQ1). These properties
are grouped into two dimensions and can contribute to current runtime sys-
tems by endowing integration platforms with performance features, and, at
the same time, lead to an efficient execution of integration processes. The
following sections detail the respective properties in each dimension.

Message processing

This dimension addresses the improvement of the efficiency of the run-
time system to process a message, which can also be seen as increasing the
average number of messages processed per unit of time. The properties of the
message processing dimension are related to the capacity of reducing the de-
manded real-time to completely process a message by an integration process.
These properties are described below:

• Designed for Multi-core. This property indicates whether the run-
time system has been developed to take advantage of multi-core or
not. Multi-core programming has to be carried out in order to take
full advantage of multiple cores available in the hardware processors.
Nowadays, this becomes an increasingly important requirement in the
use of the powerful multi-core parallel machines that compose the com-
puting infrastructures [93]. Multiple cores work together to increase the
capability of processing multiple tasks or to increase the performance of
the system by operating on multiple instructions simultaneously in an
efficient manner. This property may take the following values: yes or
no. yes indicates that the runtime system was developed to take
advantage of multi-core hardware; otherwise, the value is no.

• Thread Pool Configuration. This property indicates how threads are
managed in thread pools. The programming languages, in which the
runtime systems are developed, have objects that encapsulate functions
to create and manage threads with predefined settings. Furthermore,
they also have utility methods that allow a custom configuration to pro-
vide more flexibility, such as setting the maximum number of threads
allowed in a thread pool, the maximum time a thread remains idle, and
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the type of queue used for the tasks waiting to be executed. This prop-
erty may take the following values: fixed, limited, or elastic.
fixed indicates that a thread pool is composed of a fixed number of
threads, which is known at design time; limited indicates the number
of threads in a thread pool can increase automatically during run-
time until a threshold defined at design time is reached; elastic

indicates that the number of threads in a pool can automatically in-
crease and decrease during runtime within a range of values defined at
design time [73].

• Type of Message Storage in Process. This property indicates how the
runtime system deals with the storing of messages during the execution
of an integration process. Storing messages in-memory is faster but can
be more expensive [15]. Messages that contain a big amount of data im-
pact the amount of memory required for their processing inside the
integration processes. In such cases, rather than storing messages only
in-memory, the runtime system can store them on-disk. This property
may take the following values: memory or hybrid. memory indicates
that the runtime system stores messages only in-memory. hybrid indi-
cates that the runtime system adopts different strategies for storing
messages, such as combining in-disc and in-memory.

• Distributed Process Execution. This property indicates if an integra-
tion process can be divided and distributed to different machines
to execute a set of correlated messages, thereby promoting scalabil-
ity [81]. This property allows increasing the number of tasks executed
per unit of time in cases in which there is no dependency between the
tasks, and the input data of one task is the output data produced by an-
other task. This property may take the following values: yes or no.
yes indicates that the runtime system takes advantage of scalability;
otherwise, the value is no.

• Thread Pool Creation. This property indicates the way and the stage
at which thread pools can be created. Historical and current execu-
tion data can be used by runtime systems to make decisions during
runtime [134]. Such data can point to optimised strategies for the cre-
ation of threads, empowering runtime systems to deal with different
workloads of messages. This property may take the following val-
ues: dynamic or static. dynamic indicates that thread pool creation
is done at runtime by means of information taken from the runtime sys-
tem. static indicates that the thread pool is created at design time by
software engineers.
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Fairness execution

This dimension addresses the assignment of threads to execution of tasks,
in a balanced way, to minimise the average time that a message takes to be
processed in an integration process. The following properties provide means
that contribute to a fair execution of tasks:

• Starvation Detection. This property indicates if the runtime system is
endowed with the capacity to detect tasks that do not execute within an
accepted time-frame. Roughly speaking, starvation happens when a
thread cannot fetch tasks because other threads have effectively blocked
it from doing so [27]. This property may take the following values: yes
or no. yes indicates that the runtime system is endowed with in-
telligence to detect hotspots during the execution of the integration
processes; otherwise, the value is no.

• Task Scheduling Strategy. This property indicates the policy followed
by the runtime system to schedule the execution of tasks of an inte-
gration process to computational resources. In cloud environments,
scheduling of an integration process becomes challenging, because
its performance must result in reduced scheduling overhead, min-
imised cost, and maximise resource utilisation while still meeting the
specified deadline [9]. However, cloud environments usually cause
computing overheads that negatively impacts on the overall perfor-
mance and costs of the workflow execution [34]. This property may
take the following values: fifo, priority or mapping. fifo means
that the runtime system follows First-In-First-Out policy, in which
threads are assigned to tasks in order that they arrive; priority

means that the runtime system allows tasks to have priority associ-
ated to them, so influencing the scheduling; and, mapping means
that the scheduling policy follows a mapping based on a mathemat-
ical model or optimisation method that allows finding an optimal
scheduling policy by previously evaluating the integration process.

• Task Complexity. This property indicates if the runtime system takes
into consideration the computational complexity of tasks to assign
threads. Tasks that perform more complex operations tend to be im-
plemented with more computational instructions, therefore require a
longer time to be executed. Task granularity must be considered for re-
ducing the impact of overheads on the execution of an integration
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process in the cloud environment, since it can lead to an inefficient
resource utilisation, resulting in an unfavourable application through-
put [131]. This property may take the following values: yes or no. yes
indicates that the runtime system recognises the computational com-
plexity of each of the tasks and this can be utilised to decide the order
of execution of tasks, so that tasks of less computational complex-
ity can be executed first; if the runtime system does not recognise the
computational complexity, the value is no.

• Execution Model. This property indicates the execution model imple-
mented by the runtime system, which deals with the level of the
execution of an integration process. It is possible to classify these mod-
els in: process-based and task-based. In the former, the runtime system
controls process instances as a whole, i.e., there are no means that it
can interact with the internal tasks. In the latter, the runtime system
may control both process instances and their internal tasks. The lit-
erature shows that the task-based model offers better performance
with a steady stream of data input and lower performance when the
input rate increases [59], although this model is more complex to pro-
vide transaction and fault-tolerance support [60]. This property may
take the following values: process-based, task-based or hybrid.
process-based indicates that the runtime system adopts a process-
based model; task-based indicates that the runtime system adopts a
task-based model. hybrid model, indicates that the runtime system
will adopt the model which best fits the execution profile regarding pre-
defined parameters, such as message input rate, number of processors,
or average message size.

• Throttling controller. This property indicates if the runtime system al-
lows to control the rate of incoming messages in an integration process,
so that when this rate exceeds a previously determined limit, the run-
time system can adopt suitable policies to preserve the execution of
the integration process. Such intervention policies may be: (i) refus-
ing new messages or (ii) buffering at input the incoming messages or
persisting them in a repository. This property may take the follow-
ing values: no or yes. yes indicates that the runtime system can
control the rate of incoming messages, that is, it has a throttling
controller [85]; otherwise, the value is no.
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2.3 Selection of the integration platforms

We present the research methodology that we applied to select the inte-
gration platforms analysed in this chapter. Motivated by the second research
question (RQ2), we reviewed the literature to identify the state-of-the-art
open source message-based integration platforms and to conduct a study
of their runtime systems. The research methodology is abstracted in Fi-
gure 2.2 and is composed of three steps: collection of references, collection of
integration platforms, and selection of integration platforms.
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Figure 2.2: Methodology for selection of the integration platforms.

In the step for collection of references, we selected scientific chapters and
technical reports regarding integration platforms based on predefined search
string. In the step for collection of integration platforms, we analysed these
documents and extracted a list of integration platforms based on inclusion
criteria “cited platforms explicitly”. In the step for selection of integra-
tion platforms, we selected integration platforms based on inclusion criteria
“open source, provide support to the integration patterns [85], and fol-
low the pipes-and-filters architectural style [2]”. The methodology and steps
are explained in the following sections.

Collection of references

In this step, we performed a search on SCOPUS using the following
search string: (“enterprise application integration” or “integration systems”
or “business integration”) and (“tool” or “platform”). This study searched
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for published chapters from January 2013 to April 2018 (date that the re-
search was done), written in English, in the subject area of Computer Science.
The search returned 158 unique results, which cover a diverse range of
journals and conferences.

Next, titles and abstracts of these 158 chapters were carefully reviewed to
select those chapters that explicitly make reference to at least one integra-
tion platform. At the end, there were 19 chapters. Additionally, we revised
the technical literature by means of 3 reports regarding integration plat-
forms: Gartner [77, 78], Forrester [144], and Ovum [176]. Finally, they were
grouped by year as shown in Table 2.1.

Literature Year Collected Selected References

scientific

2013 29 3 [54, 88, 132]

2014 20 2 [104, 141]

2015 31 4 [82, 109, 138, 171]

2016 38 5 [20, 51, 61, 107, 155]

2017 30 4 [18, 21, 169, 191]

2018 10 1 [154]

technical
2016 - 1 [144]

2017 - 2 [77, 176]

Table 2.1: Review of the state-of-the-art integration platforms.

Collection of integration platforms

In this step, we collected 42 platforms from the chapters and reports, cf.
Table 2.2. In this table, the first column identifies the platform; the second col-
umn indicates if the platform is released under an open source licence; the
third column indicates if the platform supports the enterprise integration pat-
terns (EIPs) [85]; the fourth column indicates if the platform adopts the
pipes-and-filters architectural style [2]; and, the last column provides the
references to the selected scientific chapters and technical reports.

Integration Platform Open source EIP P&F References

Actian ✗ ✗ ✗ [77]

Adaptris ✗ ✗ ✗ [51]

Adeptia ✗ ✗ ✗ [77, 144]
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AdroitLogic ✓ ✗ ✗ [21]

Apache Camel ✓ ✓ ✓ [54, 61, 104, 154, 155]

Apache Synapse ✓ ✗ ✓ [21]

Attunity ✗ ✗ ✗ [51, 77]

Azuqua ✗ ✗ ✗ [51]

Babelway ✗ ✗ ✗ [51]

Built.io ✗ ✗ ✗ [51, 77]

Celigo ✗ ✗ ✗ [51, 77]

DBSync ✗ ✗ ✗ [77]

Dell Boomi ✓ ✗ ✗ [51, 77, 144]

Elastico.io ✗ ✗ ✗ [51]

Fiorano ESB ✗ ✓ ✗ [21]

Flowgear ✗ ✗ ✗ [51, 144]

Fujitsu ✗ ✗ ✗ [77]

Guaraná ✓ ✓ ✓ [20, 61, 104, 107, 154, 171]

Fuse ✓ ✓ ✓ [21, 132]

IBM ✗ ✗ ✗ [18, 21, 51, 77, 132, 138, 144]

Informatica ✗ ✗ ✗ [51, 77]

Jitterbit ✓ ✓ ✓ [51, 77, 144]

Microsoft ✗ ✗ ✗ [18, 21, 51, 77, 132]

Moskitos ✗ ✗ ✗ [77]

Mule ✓ ✓ ✓ [21, 51, 61, 77, 104, 132]

Oracle ✗ ✗ ✗ [18, 21, 51, 77, 132]

Petals ✓ ✓ ✓ [132]

SAP ✓ ✗ ✗ [51, 77, 132]

Scribe Software ✗ ✗ ✗ [51, 77, 144]

ServiceMix ✓ ✓ ✓ [132]

Skyvva ✗ ✗ ✗ [51]

SnapLogic ✗ ✗ ✗ [51, 77, 144]

Software AG ✗ ✗ ✗ [51]

Sonic ESB ✗ ✓ ✗ [21]

Spring Integration ✓ ✓ ✓ [61, 104]
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Talend ✓ ✗ ✗ [21, 51]

TerraSky ✗ ✗ ✗ [51, 77]

Tibico ✗ ✗ ✗ [21, 51, 132]

Vigence ✗ ✗ ✗ [51]

Workato ✗ ✗ ✗ [144]

WSO2 ✓ ✓ ✓ [21, 109, 132]

Yourede ✗ ✗ ✗ [51, 77]

Table 2.2: Integration platforms found in the literature

Selection of integration platforms

In this step, we filtered the 42 integration platforms by considering
only those that are released under an open source licence, support the
EIPs, and that adopt the pipes-and-filters architectural style. We opted by
open source integration platforms because the performance properties that
we wanted to investigate required access to their source codes. The op-
tion by integration platforms that adopt the integration patterns of [85]
and the pipes-and-filters architectural style intended the homogenisation of
the set of studied integration platforms. At the end, 9 integration plat-
forms were selected to be analysed, cf. Table 2.3. The chosen platforms were
Camel [91], Guaraná [59], Fuse [160], Jitterbit [161], Mule [49], Petal [162], Ser-
viceMix [105], Spring Integration [58], and WSO2 [92]. The analyses of the
platform was carried out considering books, online documentation, and
source code accessible from their web sites.

2.4 Review of the integration platforms

We analyse the runtime systems of the selected integration platforms to
answer the third research question (RQ3). This analysis is guided by the eval-
uation framework previously introduced in Section 2.2, and aims to infer the
values for the properties in the message processing and fairness execution di-
mensions. Results are summarised in Tables 2.4 and 2.5 and discussed in the
following sections. It is important to note that every selected integration plat-
form was developed using Java programming language, which may result in
the same values for different platforms.
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Integration Platform References

Apache Camel [54, 61, 104, 154, 155]

Guaraná [20, 61, 104, 107, 154, 171]

Fuse [21, 132]

Jitterbit [51, 77, 144]

Mule [21, 51, 61, 77, 104, 132]

Petals [132]

ServiceMix [132]

Spring Integration [61, 104]

WSO2 [21, 109, 132]

Table 2.3: Selection of the open source integration platforms.

Message processing

We will now discuss how the runtime systems of the selected inte-
gration platforms meet the properties that can improve the efficiency in
message processing. None of the platforms have their runtime system en-
dowed with features to take advantage of multi-core design, however the
multi-core hardware is currently found in most commodity computers. Mule
uses the integration pattern [85] Scatter Gather to execute tasks concurrently
and independently. Camel implements integration patterns including Multi-
cast, Splitter, and Aggregator, each one of these patterns providing a custom
thread pool. Jitterbit has a feature that splits up the source data for parallel
processing; each part is processed in isolation, and it is possible to process se-
veral parts in parallel. However, none of the platforms take advantage of
multi-core programming to execute integration processes.

Regarding thread pool configuration, every runtime system that we have
analysed is endowed with a feature to define a limit for the number of threads
to be created during runtime. Petals and Jitterbit do not provide informa-
tion that allows evaluating them regarding this property, while Guaraná uses
a thread pool with a fixed number of threads. Mule allows software engi-
neers to configure of threading profiles in three different ways: configuration,
connector, and flow. Threading at configuration sets default threading pro-
files for all tasks. Threading at connector sets a threading profile for specific
tasks, for example, one profile for tasks to receive messages and another to
dispatch messages.
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Property

Integration Platforms

Mule Camel Spring Fuse
Service

Mix
Petals Jitterbit WSO2 Guaraná

Designed for multicore no no no no no N/A no N/A no

Thread pool configuration limited limited limited limited limited N/A N/A limited fixed

Type of message storage in flow hybrid hybrid hybrid hybrid memory memory hybrid memory memory

Distributed process execution yes yes yes yes yes yes yes yes yes

Thread pool creation static static static static static N/A static static static

N/A = Not Available

Table 2.4: Runtime systems comparison in message processing dimension.
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Property

Integration Platforms

Mule Camel Spring Fuse
Service

Mix
Petals Jitterbit WSO2 Guaraná

Starvation detection no no no no no no N/A no no

Task scheduling strategy fifo fifo fifo fifo fifo fifo fifo priority fifo

Task computational complexity no no no no no no N/A N/A no

Execution Model
process-

based

process-

based

process-

based

process-

based

process-

based

process-

based

process-

based

process-

based

task-

based

Throttling controller yes no yes no no no yes no no

N/A = Not Available

Table 2.5: Runtime systems comparison in fairness execution dimension.
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Threading at flow sets a threading profile for a sequential flow of
tasks [130]. Both Camel and ServiceMix offer a fine-grained configuration in
which it is possible to tweak individual thread pools and have more coarse-
grained configuration with fall back to global settings; furthermore, it should
be possible to define a set of rules which matches the thread pool to a given
source, i.e., task or group of tasks [10]. Every runtime system that we
have analysed have subclasses that extend classes of the Java language,
whose methods allow to configure the thread pool. Camel and ServiceMix al-
low configuring settings of thread pool, whereas WSO2 has a file property
that contains parameters for thread pool configuration [200].

Regarding the type of message storage in processes, Mule, Camel, Spring
Integration, Fuse, ServiceMix, and Jitterbit can store data in-memory and in-
disc. ServiceMix and WSO2 do not provide information that allows them to
be evaluated regarding this property, and Guaraná stores messages only in-
memory. Mule allows for storing data in-memory or on-disk for eventual
retrieval, such as recovered data from processing into tasks like filters,
routers, and other ones that need to store stateful messages. In the case of in-
memory storage, Mule allows for storing data in a local memory of the
runtime system, in which messages are dropped during shut-down of the
runtime. In the case of a persistent store, Mule persists data when explic-
itly configured to do that. In a standalone Mule runtime system, Mule creates
a default persistent store in the file system [130]. Mule allows for deal-
ing with streamed data by configuring an initial memory buffer size of 512
KB; if the stream is larger than this, Mule creates a temporary file on-
disk to store the contents without overflowing memory; if the stream is larger
than 512 KB, the buffer is expanded to a default increment size of 512 KB un-
til it reaches the configured maximum buffer size; when the stream exceeds
this limit, the integration process fails. Camel and ServiceMix allow for sav-
ing messages in a persistent store that can be a file or a database [91]. Camel
supports strategies to deal with streams; it can buffer all messages in an un-
bounded buffer, or choose to keep only the latest or oldest message and drop
all the others. Spring Integration defines a Message Store pattern, which al-
lows components to store messages typically in some type of persistent store,
in addition to the capability of buffering messages [127]. Fuse offers a num-
ber of different mechanisms for persistence besides the default message
store. By default a hybrid system that couples a data logs for message
storage and a reference store for quick retrieval is used; another option al-
lows for distributing the messages across multiple message stores or a
file-based message store that maintain indexes into log files holding the mes-
sages that can be used. Additionally, Fuse supports the use of relational
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databases as a message store through the Java Database Connectivity fea-
ture, in which the persistence adaptor may be either coupled with a high data
log or used in standalone mode [151]. To facilitate a rapid access to the con-
tent of the log, the message store constructs meta-data to index the data
embedded. Jitterbit is also able to persist message on-disk [98].

The execution of integration processes in a distributed way makes the
runtime system more suitable for Cloud computing environments [90], by
providing greater processing power for tasks that can be processed in paral-
lel across multiple virtual machines. However, it is important that the data
transfer time from one machine to another minimises the total message pro-
cessing time since the total processing time increases, and the distributed
processing will be detrimental to the performance of the runtime system. The
ability to distribute the execution of tasks amongst several virtual machines is
present in every runtime system analysed, except for Guaraná.

Mule has a virtual runtime system composed of multiple nodes, which en-
sure high system availability to perform distributed processing. It is possible
to configure a cluster in Mule for an integration process to maximise perfor-
mance using a profile of performance. By implementing the performance
profile for specific applications within a cluster, it is also possible to maximise
the scalability of the deployments while deploying applications with dif-
ferent performance and reliability requirements in the same cluster [130].
Camel, Fuse, and ServiceMix bring different technologies to allow their inte-
gration processes to be scalable and to distribute the load amongst different
instances, such as load balancing, clustering, and Cloud computing. The load
balancing approach allows for distributing the load amongst different proxys.
Clustering can be achieved by means of one or several instances of the run-
time system running on the same machine or distributed in virtual machines
in a Cloud computing environment. For Cloud computing, it is possible to
consume or push messages to Cassandra NOSQL database [6, 10]. Spring In-
tegration provides a consistent model for intra-process and inter-process
messaging implemented using Java Message Service [58].

Petals distributes its processes either statically or dynamically. Statically,
no new node can be added to a running Petals cluster. Dynamically, this dis-
tribution may be updated regularly, so new nodes can be added to a
running Petals cluster [143]. Jitterbit provides high availability and load bal-
ancing of integration operations across runtime systems within a group. This
platform is automatically scaled within the cloud as necessary, and does
not require adding new runtime systems to expand capacity [98]. WSO2
implements a distributed process by means of two models.
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The first model consists of two sub-cluster domains as a worker domain
and a management domain. These sub-domains take up loads according to a
defined load balancing algorithm and auto-scales according to the load on its
nodes. The second model consists of a single cluster, in which a selected node
works as both a worker and a manager. This worker node requires two
load balancers and has to be configured in read/write mode. The oth-
ers are set up in read-only mode. The management node also should be a
well-known member in the non-management worker nodes so that state
replication and cluster messaging works [200].

Regarding thread pool creation, none of the analysed runtime systems is
able to dynamically create pools of threads to optimise task execution strate-
gies from the analysis of the flow of messages in the integration process. In
Camel, it is possible to define a set of rules that matches which thread pool a
given source should use. Petals does not provide information that allows it to
be evaluated regarding this property.

From the analysis of the properties that may have an impact on mes-
sage processing, we observe that Mule, Camel, and Jitterbit are advancing in
terms of parallel programming, although none of them has actually benefited
from multi-core programming. There has been a growing need for a mecha-
nism to runtime system that gives software engineer a simple, yet effective
way to make use of multiple processors in a clean, scalable manner. It is need
to enable the runtime systems to automatically scale to make use of the
number of available processors. The multithreading programming must be
optimised for situations in which the runtime system is able to execute por-
tions of an integration process simultaneously, with each part executing on its
own CPU. This can be used to significantly speed up the execution of some
types of workflows that presented a set of tasks that can be processed in par-
allel. Parallel programming should be thought of as a possible improvement
in integration platforms because it offers a way to significantly improve inte-
gration process performance. The majority of them already manages threads
but are not endowed with the elasticity feature for configuration of thread
pools, in which the size of these computational resources changes proportion-
ally to the demand of tasks at runtime. Most of them are equipped with the
ability to deal with large volumes of data, including features to store data ei-
ther in-memory or on-disk. Also, they advanced the issue of exploiting the
benefits of distributed processing; except for Guaraná, every runtime system
analysed is endowed with the feature for distributing the execution of tasks
amongst several virtual machines. None of them is equipped with the abil-
ity to create thread pools dynamically, demanding the expertise of software
engineers to create thread pools at design time.
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Fairness execution

In the following, we discuss how the runtime systems of the selected
integration platforms are meeting the properties that can improve a fair
execution of tasks of an integration process.

Regarding starvation detection, none of the platforms is endowed with
the ability to detect tasks that are not executed within an accepted time frame,
except for Jitterbit, which does not provide information that allows to evalu-
ate it regarding this property. The absence of support to this feature can lead
to a risk of tasks to remain waiting forever for a thread to be assigned to it.
Every runtime system that we have analysed can monitor the execution of in-
tegration processes, so that to detect bottlenecks that may appear during
execution. Mule can use the management console to monitor the health of the
runtime system, i.e., see which flows are running or stopped, and deter-
mine memory usage, which can be a clue for bottleneck detection. In this
platform, it is also possible to view detailed information about the inte-
gration platform, including alerts, memory usage, threads, pools, files,
operating system resources, and runtime system settings [130]. Camel has ex-
tensive support for Java Management Extensions to allow monitoring and
controlling executions of integration processes [10]. Spring Integration al-
lows to monitor message sources, enable metrics, to detect bottlenecks. Such
metrics can count and measure the number of failed sent message, the
mean message sent rate, the number of messages in queue, and the num-
ber of active threads [127]. Fuse and WSO2 use Java Management Extensions
to monitor and manage resources that may themselves turn into bottle-
necks, such as memory allocation, thread utilisation, data input and output
operations, CPU consumption, and request processing time [11, 151]. Jitter-
bit provides an interface that allows to monitor every integration process
to catch errors [98]. Petals provides metrics through a control develop-
ment kit, such as current, maximum and minimum number of active threads,
response time of tasks, and the execution time of a task [143].

Regarding task scheduling strategy, the heuristics adopted in every run-
time system, which we have analysed, is FIFO, except for WSO2 that adopts a
priority-based policy. The priority of tasks is an alternative implementation
that allows tasks to be ordered within the channel based upon a priority. To
prioritise the execution of tasks, WSO2 uses a Java class, which executes se-
quences of tasks with a given priority. This approach allows for software
engineers to control the resources allocated to execute sequences and pre-
vent high priority tasks from getting delayed and dropped [200]. This class is



36 Chapter 2. Runtime System State-of-the-art

backed by a custom implementation which has multiple internal queues for
handling separate priorities. The scheduling policy impacts on the total pro-
cessing time of a message, since it is possible to give priority to tasks that
need to be executed first or more frequently, avoiding them to wait in a queue
for a time larger than necessary before being assigned to threads.

Regarding task computational complexity, none of the runtime systems is
endowed with a feature to take into account the computational complex-
ity of tasks in the assignment of threads, except for Jitterbit and WSO2, which
do not provide information that allows to evaluate them regarding this
property [131, 184].

Regarding the execution model, except Guaraná, the majority of the run-
time systems adopt a process-based execution model. In spite of most of
platforms adopt this model, they can process message synchronously or
asynchronously. The synchronous approach is used to process messages in
the same thread that initially has received the message. After the integration
process receives a message, all processing, including the processing of the re-
sponse, is done by the same thread. The asynchronous approach uses a queue
to keep tasks that wait an available thread. In this case, a thread checks the
task queue, then catch a task to execute. Thus, in the processing of a mes-
sage, different threads can execute the tasks of the integration process [10, 92,
130, 139, 151].

Regarding throttling controller, Mule, Camel, Spring Integration, Jitterbit,
and WSO2 allow to control the rate of incoming messages at input ports; this
type of control is absent in Guaraná; Fuse, ServiceMix, and Petals do not pro-
vide information that allows to evaluate them regarding this property. Camel
and Fuse support the control of inbound messages by implementing an in-
tegration pattern that allows the configuration of the size of the queue
that connects the message producer and the polling consumer; or to block
any message producer if the internal queue is full. In Mule, it is possi-
ble to arrange for tasks to actively consume messages at regular intervals of
time [130]. Spring Integration and Jitterbit use a Java class for the same pur-
pose [98, 127]. In WSO2, a polling inbound pattern allows for polling a given
message source at regular intervals of time. The polling inbound pattern peri-
odically checks for new messages in the message source, and if there are
messages available, they are loaded into the integration process [92].

From the analysis of the properties that may have an impact on the fair-
ness execution of the runtime systems, we observe that the integration
platforms are similar. None of them is endowed with features that allow to
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detect starvation or consider task computational complexity. Most of them
follow the FIFO policy for scheduling of tasks; adopt the process-based exe-
cution model; and have the ability of inbound control of messages. In this
dimension, WSO2 differs from others platforms because it is the single
platform endowed with the ability to prioritise to task execution.

2.5 Summary

In this chapter, we presented a literature and technical review on the
runtime systems of integration platforms. We analysed properties which
can have an impact on their performance when executing integration pro-
cesses and evaluated the runtime systems of nine different state-of-the-art
open source message-based integration platforms. It was possible to identify
that runtime systems have advanced the configuration of thread pools re-
garding efficiency of message processing, since most of them allow the
number of threads in a thread pool to be increased automatically during run-
time until a threshold defined at design time is reached; most of them store
messages in-memory and on-disk; all of them are able to distribute the
processing. On the other hand, none of them has been designed to take ad-
vantage of multi-core and none of them is able to dynamically create thread
pools. The platforms, however, have few features that allow the fair execu-
tion of tasks. None is able to detect tasks that have been waiting for a long
time to be executed, i.e., starvation detection; most of them use basic heuris-
tics as scheduling policy to tasks; none of them recognises the computational
complexity of these tasks; most of them adopt the process-based execu-
tion model; and, only a small part of them has some kind of throttling
controller to limit the incoming message rate.



38 Chapter 2. Runtime System State-of-the-art



Chapter3

ResearchProblem

I was taught that the way of progress
was neither swift nor easy.

Marie Curie, Polish physicist (1867-1934)

F
rom our literature review, we identify research gaps that have to be
explored by researchers to improve the performance of the runtime
systems of integration platforms and at the same time may be useful
to adapt them to the context of Cloud computing. In this chap-

ter, we describe these research gaps, the research problem approach, our
proposal and objectives.

3.1 Research gaps

Performance has become a critical issue in the Cloud computing environ-
ment [9] and enterprises have been concerned about integration application
to improve their business. We discuss the research gaps identified in our
literature review. There are quality attributes that can endow integration plat-
forms of features to enhance the performance of runtime systems. As a
starting point, it is possible to look at other research fields and get inspi-
ration from them to solve similar problems, so that these ideas can be
studied and adapted to enterprise application integration in the context of
Cloud computing. Table 3.1 summarises the properties that indicate the re-
search gaps found; for each them, we discuss incipient studies identified in
the literature, which permeate similar issues in different areas of know-
ledge, reiterating the pertinence of the focus on performance and the interest
of the scientific community in addressing them.
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Dimension Property

Message Processing
Designed for multi-core

Thread pool configuration

Thread pool creation

Fairness Execution
Starvation detection

Task scheduling strategy

Task computational complexity

Table 3.1: Research gaps.

Gaps for message processing

Software engineers seek to develop algorithms that can take full advan-
tage of multi-core in order to achieve a high level of parallelism and an
overall high performance. The way algorithms are written strongly impact
the success of multi-core technology [172]. Multi-core design is a property
which should be present in runtime systems bearing in mind that the techno-
logical advances already offer resources to extend parallel programming. The
Graphics Processing Unit (GPU) technology is an example of large scale pro-
cessing resources, allowing for tens of thousands of concurrent threads, to be
explored by software applications [205]. GPUs hold massive parallel comput-
ing capabilities with the potential of accelerating computationally intensive
algorithms [188]. Measurements of thread pool throughput and measure-
ments of thread utilisation in combination with analysis of prior thread pool
re-sizing actions can be used to determine the increase or decrease of the
number of threads from a thread pool in a current re-sizing action [134]. An
exponential moving average scheme that adjusts the idle time-out period and
thread pool size to adapt the system to the changing environment can be used
to predict the number of threads and thread pool management, ensuring bet-
ter response time and CPU usage [112]. Throughput degradation can be
minimised by means of the creation of threads, based on the estimation of the
range of threads needed, found via task arrival times and task process-
ing times [137]. Measures of request frequencies can be used to dynamically
optimise thread pool size, using non-blocking synchronisation primitives of-
fering advantages of scalability and liveliness [13]. Research in methods of
thread pool configuration and creation is needed, to support dynamic and
optimal thread pool sizing in multi-threaded processing environments, in
reaction to changes in workload and processing resources availability.



3.1. Research gaps 41

The previous studies motivate us to go deeper into the research that ex-
plores the advantages of multi-core in the context of integration platforms, as
well as the elastic configuration of the size of the thread pools and the dy-
namic creation of these pools by the runtime system during runtime. These
improvements would increase message processing and, consequently, al-
low for better performance on the integration platforms in the context of
Cloud computing.

Gaps for fairness execution

The implementation of multiple thread pools based on a distribution of
service times can avoid starvation and achieve concurrent processing, de-
creasing the response time and reducing the waiting time in the execution of
tasks [174]. Studies indicate that task scheduling and resource allocation can
be optimised by means of algorithms such as differential evolution algorithms
based on the proposed cost and time models in Cloud computing [192]. Algo-
rithms combining different policies, like shortest-job-first and round-robin
schedulers [53], or other meta-heuristics techniques based on swarm intelli-
gence and bio-inspired techniques could help to choose a suitable approach
for better schemes for scheduling according to the application [181].

It is essential to balance the execution time of all tasks in a workflow
running in parallel in order to achieve the best possible use of computing re-
sources. One of the possible solutions to deal with the heterogeneity of the
underlying platform is to use a model that to consider different execu-
tion times for loop iterations of the program. Thus, these execution times are
taken into account to select the processing units according to its perfor-
mance characteristics, as well as, to determine the number of processing units
that are used simultaneously [7]. An efficient and economical way of us-
ing computational resources is to adopt policies and approaches for deciding
the task granularity at runtime based on computational resource utilisation
constraints, quality of service requirements, and the average task deploy-
ment metrics [131]. The prediction of the quantity of computational resources
that are needed for a re-configurable architecture to suit task granularity can
be used to make compatible resources and tasks [184]. Computational com-
plexity should also be considered in the scheduling process to achieve better
allocation of computational resources.

This incipient research reflects the concern of the scientific community re-
garding performance. Such ideas still have to be developed, applied, and
experimented on the runtime systems of integration platforms in the con-
text of Cloud computing. Thus, these and other studies point to solutions that
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can endow platforms with features that provide an efficient message process-
ing and fairness execution of tasks, and, consequently, the runtime systems
will achieve better performance in the execution of integration processes in
Cloud computing.

3.2 Research problem approach

The current integration platforms present design challenges for pro-
viding near-real-time performance. These platforms manage petabyte-scale
data and distributing integration processes across contemporaneous environ-
ments ranging from traditional on-premise servers to cloud systems and
mobile devices [108, 202]. Enterprises also face the challenge to suit and inte-
grate their applications, together with the optimisation of resource usage to
save costs [71, 76, 79]. Amongst the research gaps identified in our literature
review, the task scheduling strategy regarding the scheduling of tasks of inte-
gration processes and the resource allocation of the runtime systems to
promote a fair execution in integration platforms, desearve special atten-
tion. In this research , we focus in this gap because it is the central role of the
runtime systems [76, 83].

Task scheduling concerns with the time of task execution and with the al-
location of computational resources that perform the tasks. A runtime system
has threads, usually grouped into a thread pool, that represent the computa-
tional resources available to execute the integration process. The need for
efficient scheduling has increased, to minimise costs when executing an inte-
gration process in an integration platform deployed on the cloud, due to
the pay-as-you-go charging model [68]. Besides, it is necessary to opti-
mise the use of computational resources because the processing of a large
amount of data requires more allocation of resources [56, 179]. In overload si-
tuations due to high and continuous input data rate, the scheduling of tasks
of the workflow tends to concentrate on tasks in the beginning of the work-
flow. This concentration causes the threads to execute more frequently tasks
in the beginning, in contrast to the other tasks. This behaviour impacts
negatively on the performance of the integration process.

It is possible to observe degradation in the performance as the workload
increases when the task scheduling of the integration process is performed
using the FIFO heuristic, c.f. shown in Figure 3.1. This evaluation was carried
out by simulations, which consisted of running an integration process [84]
with a fixed number of messages per experiment distributed in a time-frame
of 60 seconds to simulate heavily-loaded scenarios. The total number of in-
bound messages in each experiment was 1,000, 10,000, 100,00, 500,000,
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Figure 3.1: Number of processed messages with FIFO heuristic.

1,000,000, 1,500,000, 2,000,000, 2,500,000 msg. In total, we ran 25 repetitions
for each experiment to draw our conclusions.

FIFO heuristic is more commonly used in the open source integration
platforms. With a workload of 1,000, 10,000, 100,000, 500,000 and 1,000,000 in-
bound messages, the integration process produced 1,000, 10,000, 100,000,
500,000 and 1,000,000 outbound messages, respectively; with 1,500,000 in-
bound messages produced 522,315 outbound messages; with 2,000,000
inbound messages produced only 656 outbound messages; and, with a work-
load of 2,500,000 inbound messages, this integration process did not produce
outbound messages. We consider that an integration process is in over-
load situation when the number of remained message is greater than the
number of processed message.

There are several proposals of task scheduling heuristics, but as far as
we are concerned, none of them were studied in the specific context of
integration processes scheduling, taking into account integration process cha-
racteristics such as unknown message arrival rate, variable task processing
time, unpredictable path of the workflow traced by messages and elastic
resources provisioning. Building fair scheduling while increasing perfor-
mance is a significant concern of enterprises, which submit an integration
process for executing concurrently in different resources. Without the re-
engineering of the integration platforms, it is not possible to address these
fundamental technical challenges. Besides, it is not possible to ensure that en-
terprises take advantage of the scalability provided by Cloud computing,
optimise computational resources usage or can reduce their costs [117].
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3.3 Our proposal
The task scheduling heuristic used by most open source integration plat-

forms that follow the integration patterns documented by Hohpe and Woolf
[85] and Pipes-and-Filters architecture [2] present satisfactory performance in
the execution of integration processes for low workloads. However, it is in-
creasingly common enterprises cope to large (of the order of millions) and
continuous data volumes due to the fast-emerging of cloud and mobile appli-
cations, which are now part of their daily business. This large and continuous
data volumes can cause an overload in integration processes and, hence, a
degradation in the execution of these integration processes.

We propose a heuristic that addresses a new task scheduling policy for
the execution of integration processes in the execution of integration pro-
cesses in overload situation. A high arrival rate of large messages becoming,
corresponding to millions of tasks to process, can become the execution of in-
tegration processes overloaded, characterised by the accumulation of tasks in
internal queues awaiting computational resources in the runtime systems.

As demonstrated in subsequent sections, the innovative heuristic that we
suggest is based on scheduling policies, rather than on FIFO like in most ex-
isting platforms. Then to this innovation, it responds more rapidly than
using FIFO regardless of the incoming workload. Besides, it keeps the pro-
duction of messages although with high workloads. The behaviour of the
proposed heuristic is shown in Figure 3.2.

We verified that the increase of inbound messages rate did not harm un-
der the number of outbound messages. FIFO heuristic is more commonly
used in the open source integration platforms. With a workload of 1,000,
10,000, 100,000, 500,000, 1,000,000 and 1,500,000 inbound messages, the in-
tegration process produced 1,000, 10,000, 100,000, 500,000, 1,000,000 and
1,500,000 outbound messages, respectively; with a workload of 2,000,000
inbound messages produced 1,911,304 outbound messages; and, with a
workload of 2,500,000 inbound messages produced 1,876,828 outbound mes-
sages. We validated our proposal by performing several experiments and
confirmed its results with statistical tests.

Our research is a breakthrough towards dynamic scheduling for the
execution of integration processes. Our goal is to contribute for a better un-
derstanding of scheduling of tasks of integration processes, so software
engineers can upgrade the current integration platforms to avail Cloud com-
puting better. To the best of our knowledge, this is the first work that deals
with the characterisation of scheduling of tasks of integration processes.
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Figure 3.2: Number of processed messages with qPrior heuristic.

3.4 Summary

In this chapter, we summarised the why of the runtime systems of the cur-
rent integration platforms need to be adapted. Indeed, runtime systems have
to be endowed with a proper task scheduling heuristic to deal with over-
load situations brought of large and continuous volumes of data present in
the contemporaneous environments. We have presented some reasons that
we believe may be behind the inefficiency of the runtime systems in these si-
tuations. We also highlighted, experimentally, the behavioural differences of
the commonly adopted heuristic and the heuristic proposed in this thesis.
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Chapter4

IntegrationProcess

For me, education was power.

Michelle Obama, American lawyer & writer (1867-1934)

A
pplication integration is the conjunction of data and functionalities
from amongst applications to improve the efficiency of the enter-
prises becoming their businesses more productive through faster
processes, better information sharing, and smarter workflows. In

this chapter, we concept the main terms of the application integration, ex-
plain the elements involved in task scheduling of integration processes and
describe the task-based execution model for runtime systems of integration
platforms. Task-based model is the approach followed in this thesis.

4.1 Integration process

An integration process is a computational program that supports the ex-
change of data and functionalities amongst applications to perform a «job». A
job is a service request. The accomplishment of a job consists of receiv-
ing input data regarding service request, processing these data, and then,
producing output data.

The input data of an integration process comes from one or more sources
data. Whereas the output data of an integration process are send to one or
more deliver data sinks. Sources and sinks of data can be applications,
databases, sensors, amongst others. Data flow through the integration pro-
cess wrapped in «messages», which are compose of two parts: header and a
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body. The header of the message can contain custom properties, such as iden-
tification or priority. The body has the payload data. A message can be split
into one or more messages in the integration process, as well as two or more
messages, can be merged in a unique message.

A conceptual model of an integration process is a workflow is a set of
«segments», which in turn are composed of «tasks» uncoupled and con-
nected by «communication channels». An example of an integration process
is depicted in Figure 4.1, in which, the larger rectangle represents the integra-
tion process. Small rectangles inside it represent tasks and arrows connecting
tasks represent communication channels. Rectangles outside the integra-
tion process represent applications that are being integrated. The highlighted
segment represents a possible path for a message in the workflow.

Data Source/Sink

Task

Communication Channel

Parallel Segment

Sequential Segment

Workflow

LEGEND

APP

APP

APP

APP

APP

Figure 4.1: Integration process example.

We use the following terminology:

Task is a computational code that implements an atomic operation.

Communication channel is the means whereby messages pass from a task to
another.

Workflow is a set of atomic chained tasks by communication channels inside
an integration process.

Segment is a piece of a workflow that can be composed of tasks arranged
sequentially, in parallel, or both.
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Path refers to a specific set of tasks, by which a message is entirely processed
in an integration process.

A task can have one or more inputs, and one or more outputs, depend-
ing on the implemented operation. This operation can be to transform, filter,
split, join, or route messages. The tasks have an order of dependence in
which they must be executed, such that a task can only process a message af-
ter every predecessor tasks have processed this message. After a message be
processed by a task, it is written to the communication channel that con-
nects this task with the next successor task in the path. There may be parts of
the integration process that contain tasks that can be executed in parallel.

The accomplishment of a job corresponds to receiving of one or more mes-
sages from one or more source applications, the processing of these messages
by tasks of a path of an integration process, up to sending of one or more
messages to one or more deliver applications. Generally, several jobs are pro-
cessed at a particular point in time; that is, several service requests are
fulfilled at a particular point in time. The execution model of runtime sys-
tems establishes how they must execute tasks of an integration process and
allocate threads during the processing of messages [65].

4.2 Task-based execution model

There are two main execution models for runtime systems: process-based
and task-based [4, 23, 24, 60]. In the former model, a thread is assigned to an
instance of the integration process, so that the thread is used to execute every
task that composes the workflow over an inbound message to make this mes-
sage flow throughout the process. After every task in the workflow has been
executed, the thread is released. In the latter model, a thread is assigned to an
instance of a task, so that this thread is used to execute the task over the in-
bound message that reaches the task. When the task finishes, an outbound
message is written to the channel that connects the current task to the next
task in the workflow and the thread is released. The execution of the message
in the next task now depends on a new assignment of an available thread to
this task. In this research, we address the task-based execution model.

A task is ready to be executed if there are messages in all communication
channels that are sources to this task. Ready tasks depend on an available
thread to execute them. Meanwhile, their executions are annotated in a wait-
ing queue. So, the tasks are instantiated and executed following a FIFO
policy, in which the task that was annotated first to enqueue is scheduled first
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to execute. Usually, threads are grouped in pools that avoid the creation of
consecutive threads and allow quickly handle requests of tasks [97].

All activities required for the accomplishment of the message process-
ing are orchestrated by the «scheduler» that is the central element of the
runtime system. The scheduler also manages the computational resources re-
sponsible for the execution of the tasks. These resources are «threads» and are
grouped in «pool of threads». A thread is the smallest sequence of a compu-
tational program that can be managed by the runtime system. The execution
threads are abstractions of pieces of the physical threads, also called, CPU
cores, which are physical and independent processing units. In this research,
we refer to execution threads as threads and physical threads as «cores». The
number of tasks that can be executed in parallel is limited to the num-
ber of available physical threads, and the executions always obey the order of
dependence in an integration process.

The scheduler creates, manages, and releases threads and can configure
the pool by determining parameters, such as initial thread number, the maxi-
mum number of thread, and the maximum lifetime of an idle thread. The
scheduler assigns threads to execute instances of tasks, and after an instance
of the task is executed, the thread is released back to the pool. The process-
ing of a message in the next task now depends on a new assignment of an
available thread from the pool to this task. A message is processed un-
der the order of dependence on the tasks of the path, which is composed
of several segments. Tasks in sequential segments are executed sequen-
tially, whereas tasks in parallel segments can be executed in parallel because
there is no dependency between them.

The operations required to create and start the threads are shown in Fi-
gure 4.2. Threads are started asynchronously by invoking operation start.
The business logic that a thread executes by run operation, corresponds
the execution of a task. The run operation implements a loop that en-
ables the threads to poll the task queue as long as the scheduler is running.
A thread polls an annotation of task execution and execute this respec-
tive task. So, available threads to keep working as long as there is a task
ready to be executed.
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Figure 4.2: Thread creation and initialisation (based on Frantz [63]).
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The execution of a task is depict in Figure 4.3. This execution requires in-
voking operation execute on the associated task, which first packages the
input messages and then invokes operation doOperation, which corre-
sponds the operation of the task, such as to transform, filter, split, join, or
to route messages. Then, the annotation of task writes its output mes-
sages to the appropriate communication channel, which in turn notifies the
tasks that read from them. These tasks then determine if they become ready
for execution or not; in the former case, the tasks notify the scheduler. For ev-
ery task notification that the scheduler receives, it creates a new annotation
and appends it to the task queue.



4.2.
Task-based

execution
m

od
el

55

Figure 4.3: Execution of tasks (based on Frantz [63]).
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4.3 Summary

In this chapter, we presented the main concepts of the research field of
Enterprise Application Integration. We defined the key terms used in this re-
search and described how is the task scheduling for integration processes of
runtime system that use the task-based execution model.
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TaskScheduling

Courage is like — it’s a habitus, a habit, a virtue: you get it by coura-
geous acts. It’s like you learn to swim by swimming. You learn courage by

couraging.

Marie M. Daly, American biochemist (1921-2003)

T
ask scheduling is the proceeding of partitioning an integration pro-
cess into tasks and assigning each task to a thread based on a
policy or heuristic aiming to optimise the performance of process-
ing of messages. It concerns the allocation of computation resources

(threads) and the sequencing and timing for execution of the tasks that com-
pose the integration processes. In this chapter, we define the concept of
scheduling and outline the main types of scheduling problems, highlighting
the dynamic scheduling, which is usually found in real-world problems.

5.1 Scheduling Definition

Scheduling is the decision-making process, in which it is necessary to an-
swer «what», «when», and «where» to perform a job [140]. «What» refers to
the decision about the set of tasks that must be carried out to complete a
job. «When» refers to the decision about the set of time intervals associ-
ated with tasks that must be carried out. «Where» refers to the decision about
the set of resources used to perform the tasks.

Scheduling covers two problems: resource allocation and task sequencing
and timing. The former precedes the latter. Resource allocation addresses the
decision about which resources are used for performing which tasks, and ac-
cording to Pinedo [147] and Blazewicz et al. [22]; it can be described as
follows:
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If T = {t1, t2, ..., tn} is a set of tasks, where t ∈ T , and
R = {r1, r2, ..., rm} is a set of computational resources that exe-
cutes tasks, where r ∈ R, how the resources of R must be allocated
to perform the tasks of T in order to maximise performance?

Task sequencing and timing addresses the decision about how to dis-
tribute the execution of the tasks over time. Sequencing addresses the order
in which tasks must be executed, whereas timing addresses the initial time
that each task must be executed. According to Baker and Trietsch [14], task
sequencing and timing can be described as follows:

If T = {t1, t2, ..., tn} is a set of tasks, where t ∈ T ; S = {s1, s2, ..., sn} is
a set of task segments, where s ∈ S; and [tini, tfin] is a time inter-
val, how the tasks of T must be sequenced in S and distributed in
[tini, tfin] in order to maximise performance?

It is possible to find optimal solutions to resource allocation problems
through mathematical models; however, the combinatorial nature of task se-
quencing and timing problems makes them complex, and, consequently, they
are not efficiently solved through mathematical models [14, 22, 147].

5.2 Scheduling Classification

The main scheduling problem classification divides the problems into two
categories: static and dynamic [189], cf. Figure 5.1. The scheduling is static
when all the tasks and their characteristics are previously known, and none
task is added until the conclusion of the entire job; otherwise, the scheduling
is dynamic.

Static Dymanic

stochasticdeterministic

Figure 5.1: Scheduling classification.

A static scheduling problem can be deterministic or stochastic. When de-
terministic, it is assumed that the conditions of the problem are known and
the parameters of the problem are described as constants. Usually, this ap-
proach is used to simplify real problems that always embed a certain degree
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of randomness. When stochastic, it is assumed that the conditions of the
problem are not known.

In the static and deterministic approach, scheduling seeks to the ini-
tial times of a given set of tasks that must be executed on one or more
resources. It involves a finite set of tasks with known characteristics and a fi-
nite processing time interval. The parameters of the problem are described as
constants. In this case, there is one possible scenario to schedule at a par-
ticular point in time, only valid for this scenario. In real problems, the
static and deterministic approach copes with short-term decisions. Such deci-
sions based on a particular status of the environment, on its combinatorial
structure, and realised uncertainty.

In the static and stochastic approach, scheduling seeks to the order in
which a finite set of tasks with unknown characteristics should be executed.
The parameters of the problem are described as approximations of static dis-
tributions. In this case, there are several possible scenarios, and the schedule
must deal with the combinatorial and stochastic nature of the problem. The
static and stochastic approach copes with short-term decisions based on a par-
ticular status of the environment, corresponding to a particular performance
of the job arrival process at a specific point in time, considering real problems.

Dynamic scheduling deals with any job performance and jobs of different
characteristics within a long time horizon. Then, dynamic scheduling is al-
ways stochastic. In this case, it seeks an optimal schedule for the current job
performance, such that it is near to the schedule in which the uncertain-
ties had been previously revealed. There is still the community scheduling
that is a generalisation of the dynamic scheduling, which copes with a
dynamic problem as a collection of related static problems; thus, methods de-
veloped for static scheduling problems can be applied to the dynamic ones.
Several literature reviews discuss the limitations of the static scheduling
approach in the presence of real-time information [195].

5.3 Summary

In this chapter, we defined resource allocation and task sequencing and
timing. The former addresses the decision about which the resources perform
tasks. The latter discusses the decision about how to distribute the execu-
tion of the tasks over time. After, we explained about static and dynamic
scheduling. The static scheduling refers to the scheduling with know charac-
teristics and dynamic scheduling refers to the scheduling with unknown
characteristics.
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Heuristics

A scientist in his laboratory is not a mere technician; he is also a child
confronting natural phenomena that impress him as though they were fairy

tales.

Marie Curie, Polish physicist (1867-1934)

T
he literature classifies heuristic methods into constructive heuris-
tics, local search, and meta-heuristics. In this chapter, we explain
this classification and address seven popular scheduling heuristics:
First-In-First-Out, Shortest Job First, Shortest Remaining Time First,

Round Robin, and Priority Scheduling. Besides, we approach some meta-
heuristic scheduling algorithms as Particle Swarm Optimisation, Genetic
Algorithm, Simulated Annealing, and Ant Colony Optimisation, highlight-
ing the Particle Swarm Optimisation meta-heuristic, which was used in our
proposal.

6.1 Heuristic Methods

An optimisation problem may be solved by an exact method or an ap-
proximate method, depending on the complexity of the. Exact methods find
optimal solutions and guarantee their optimality. For NP-complete prob-
lems, exact algorithms are non-polynomial time algorithms. Heuristics find
high-quality solutions in a feasible time for practical use, but there is no guar-
antee of finding a global optimal solution [186]. Task scheduling is classified
as a computationally complex problem, which cannot be solved by ex-
act optimisation techniques in reasonable computational time. Usually, it is
addressed by approximation methods that will achieve satisfactory per-
formance in short processing times [14, 22]. We highlight three heuristic
methods: «Constructive Heuristics», «Local Search», and «Meta-heuristics».
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Constructive Heuristics are heuristic optimisation methods that build a so-
lution of a problem, starting from an empty solution to which elements
are being added. In this case, the solutions are constructed by a se-
quence of sub-problem solutions. They are called myopic techniques
because in building a solution, they do not consider the impact of
decisions at later stages [22, 186].

Local Search is heuristic optimisation methods that search part of the
problem-solution space. In this case, they handle a problem solution
to find new solutions with better performance. Usually, they start
from random solutions, and then they move towards the best solu-
tions from the neighbourhood. However, they run the risk of remaining
in the local optimal space [22, 186].

Meta-heuristics are usually inspired by phenomena observed in nature.
They are endowed with stochastic mechanisms that allow greater diver-
sity in search of the solution space and surpass the optimal local.
Therefore, they are one of the main optimisation methods for problems
complex.

6.2 Heuristic Scheduling Algorithms

In this thesis, we address task scheduling that tackles with the prob-
lem of selecting a task instance from a waiting queue to be executed by the
thread. Some traditional scheduling algorithms will be described follow as.

First-In-First-Out (FIFO), also known as First-Come-First-Serve (FCFS), is
the simplest and the most common scheduling algorithm. In this algo-
rithm, the task that requests the thread first is one that allocated the
thread first. Then, this will be the task that waits in the queue for the
longest time. The FIFO algorithm is non-preemptive, i.e. when the
thread has been allocated to a task, that task keeps the thread up to ei-
ther terminating or requesting external call (I/O). The weakness of the
FIFO algorithm is that each task does not get to share the thread at the
regular intervals due to its non-preemptive nature[180].

Shortest Job First (SJF), also known as Shortest Job Next (SJN) or Shortest
Process Next (SPN), is a non-preemptive scheduling policy that se-
lects the task with the shortest execution time from a waiting queue to
be executed by an available thread[187]. SJF minimises the average
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amount of time each task has to wait until its execution is com-
plete [121]. However, the disadvantage of SJF is that if short tasks are
continually added and the tasks that require a long time to complete can
become a long time to execute or do not executed, starvation state.

Shortest Remaining Time First (SRTF) is a preemptive algorithm in which
the task with the minimum execution time remaining until its com-
pletion is selected to execute. A task is executed until its complete
execution or until a new task with a shorter execution time arrived
in queue. In this case, firstly short tasks are executed very quickly,
and the comparison between the execution time of currently execut-
ing the task and the execution time of the new process, ignoring all
other tasks. It also has the potential for task starvation [187].

Round Robin a (RR) scheduling is a method of time-sharing, in which each
task his executed per a given time slice (time quantum). When a task is
not finished by the end of the time slice, the execution of the task is in-
terrupted, and the next task is executed [182]. If the time slice is too
short, then too much task switching occurs, if the slice time is too
long, then the system may become unresponsive. Many varied ver-
sions of the Round Robin algorithm are available which provide better
results [19, 124, 164, 173, 209].

Priority Scheduling is a heuristic in which a priority is associated with each
task, and an available thread is allotted to the highest priority task. Pri-
ority scheduling can be either pre-emptive or non-preemptive [118].
The former interrupted the execution if the priority of the newly arrived
task is higher than the priority of the currently running task. The lat-
ter put the new task at the head of the waiting queue. Tasks of low
priority can keep in a starvation state.

Highest Response Ratio Next (HRRN) scheduling [182] is a non-preemptive
algorithm, in which the priority of each task is dependent on its
estimated execution time and also the of waiting time.

Longest Job First (LJF) is a non-preemptive algorithm that selects the
task with the largest execution time from the waiting queue to exe-
cute first. In this case, makespan is minimized, but the response time
can increase [12, 201].
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6.3 Meta-heuristic Scheduling Algorithms

Some of the main scheduling meta-heuristics Particle Swarm Op-
timisation, Genetic Algorithm, Simulated Annealing, and Ant Colony
Optimisation.

Particle Swarm Optimisation (PSO) is a population based stochastic optimi-
sation algorithm, in which a random swarm of particles is created
initially, and particle position represent a solution for an optimisa-
tion problem. Some scheduling algorithms use the basic PSO algorithm,
while others improve the PSO [194]. This meta-heuristic is described in
detail in the next section because it composes our proposal.

Genetic Algorithm (GA) was developed by Holland [86] in the Uni-
versity of Michigan, USA to understand the adaptive processes of
natural systems. GA was applied to optimisation and machine learn-
ing [74, 99] A GA usually applies a crossover operator to two solutions
and a mutation operator that randomly modifies the individual con-
tents to promote diversity. GAs use a probabilistic selection that is
initially the proportional selection. The replacement is generational, in
which the parents are replaced systematically by the off-springs [87].

Simulated Annealing (SA) applied to optimisation problems arises from the
works of Kirkpatrick et al. [101] and Černỳ [32]. This meta-heuristic is
popular in the field of heuristic search for its simplicity and efficiency in
solving combinatorial optimisation problems as well as in dealing with
continuous optimisation problems [44, 120]. SA bases on the principles
of statistical mechanics, whereby the annealing process requires heating.
Then slowly cooling a substance to obtain a stable crystalline struc-
ture. The SA algorithm simulates the exchange of energy in a system
under a cooling process up to it converges to an equilibrium state [186].

Ant Colony Optimisation (ACO) was proposed by Dorigo [47] and bases on
the cooperative behaviour of real ants to solve optimisation problems.
Usually, ACO has been applied to combinatorial optimisation prob-
lems, and they are widely used to solve different issues, such as
scheduling [48]. The decentralised and asynchronous nature of ants is
favourable to solve distributed problems where there is no global view
of the objective function and decisions are taken under a local view of
the problem [186].
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6.4 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a population based on stochastic
optimisation algorithm, in which a random swarm of particles is created ini-
tially, and particle positions represent possible solutions for an optimisation
problem. Some scheduling algorithms use the basic PSO algorithm, while
others improve the PSO [194]. PSO meta-heuristic was proposed by Eberhart
and Kennedy [50] based on the behaviour of animal flocks, such as in-
sects, fish and birds. Such animals locate right regions with food sources
through iterative adjustment of their positions in search space, taking into ac-
count their best individual positions and the best general position of the
group. The algorithm that implements the PSO is widely used because it
presents better computational performance for high dimensional nonlinear
optimisation problems with continuous variables and has fewer parame-
ters to adjust than other algorithms, so, facilitating their implementation [5,
26]. The pseudo-code for the PSO algorithm is shown in Algorithm 6.1.

The PSO algorithm is a stochastic optimisation technique in which a parti-
cle represents an individual and is characterised by its position on search
space and its velocity in a given time. The particle position represents a can-
didate solution to the optimisation problem, and the velocity is a function of
the best position of the particle and of the general best position of any
of the particles in a given time interval. An objective function is a func-
tion used to measure how good is the position of a particle and a position is
considered the best position if it is the closest to the goal.

The algorithm iteratively tunes the particle position and velocity to-
wards the record of best particle positions

−−−→
bpos and the general best position

−−−−→
gbpos. A random term weights how much the particle moves towards

−−−→
bpos

and
−−−−→
gbpos, with different random numbers for acceleration towards each one

of them. Equation 6.1 updates the particle position, where t and t+ 1 indicate
two successive iterations of the algorithm. Equation 6.2 updates the parti-
cle velocity

−−→
veli to the next iteration of the algorithm, where

−−→
veli is the vector

collecting the velocity-components of the ith particle along the D dimen-
sions [126, 133]. The algorithm is interrupted when a stopping criterion
is reached. Usually, the stopping criterion is a maximum iteration num-
ber. However, it also is possible to define as stopping criterion a near-optimal
value considered to be good enough.

−−→posi (t+ 1) = −−→posi (t) +
−→
veli (t+ 1) (6.1)
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−−→
veli(t+ 1) = ω •

−−→
veli(t) + φp • rp • (

−−−→
bposi(t) −

−−→pos
i
(t))

+φg • rg • (
−−−−→
gbpos(t) − −−→posi(t))

(6.2)

where:
ω = inertia weight
φp = acceleration coefficient of the best position of the particle i

φg = acceleration coefficient of the general best position
rp and rg = random numbers ∈ [0, 1]
−−−→
bposi(t) = best position of the particle i
−−−−→
gbpos(t) = general best position of the population
−−→posi(t) = current position of the particle i

The velocity vector
−→
vel is the sum vector of the cognitive term and social

term with the particle inertia, cf. Equation 6.2. The cognitive term, which is
based on individual experience, is given by φp • rp • (

−−−→
bpos − −−→pos); whereas

the social term, which is based on interaction amongst the particles is given

Input: stopping criterion
d← n

pos[i]← posrandom

vel[i]← velrandom

while stopping criterion = false

for i=1 to n

if poscurrent ↔ bpos

pos[i]← poscurrent

bpos← poscurrent

enf if

if poscurrent ↔ gbpos

pos[i]← poscurrent

gbpos← poscurrent

end if

pos[i]← poscalculated

vel[i]← velcalculated

end for

end while

Program 6.1: PSO algorithm.
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by φg • rg • (
−−−−→
gbpos − −−→pos). The inertia weight (ω) is the parameter that de-

fines how much previous velocities affect the current velocity and defines a
balance between the cognitive term and social term. If inertia is large, then
the velocity increases, favouring the social term that corresponds to the global
exploration. If inertia is small, then the velocity decreases favouring the cog-
nitive term, i.e., the particles decelerate and hence favour local exploration.
So, the proper value for inertia is one that balances global and local search di-
minishing the iteration number needed to the algorithm to converge [55].
Despite φp and φg do not directly impact the convergence of PSO, the proper
tuning these parameters contributes for the convergence, as well as, helps to
avoid that the algorithm stops in local minimal. In addition to the parameters
present in Equation 6.2, the PSO algorithm receives as inputs: the number of
particles, the dimension of particles, the range, and the maximum particle ve-
locity. The number of particles depends on the complexity of the optimisation
problem, but the standard is a value between 20 and 40 particles. The higher
the number of particles, the greater the chance of finding the global opti-
mum. dimension of particles and range define the space where the particles
move and depend on the optimisation problem. The maximum velocity de-
termines the maximum transition of a particle at each iteration, and usually, it
is defined to the half of the position range of the particle [157, 170, 177].

6.5 Summary

In this chapter, we reported some heuristic and meta-heuristic schedul-
ing algorithms. First-In-First-Out is the heuristic scheduling algorithm used
in current integration platforms. The heuristic scheduling algorithms that
were reported can be adapted to task scheduling of integration processes
because it is necessary to obey the precedence order of the tasks. One adapta-
tion of Round Robin was made to compare with the FIFO and with our
proposal in our experiments. Amongst the meta-heuristic cited, we high-
lighted the Particle Swarm Optimisation, which was used in our proposal to
the optimisation of an important parameter of our algorithm.
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Chapter7

StatisticalTechniques

We have a hunger of the mind which asks for know-
ledge of all around us, and the more we gain, the more is our desire; the more

we see, the more we are capable of seeing.

Maria Mitchell, American astronomer (1818-1889)

T
he used methodology for evaluating and analysing the performance
of a runtime system should consider random sources to avoid dis-
torted or even wrong results. Statistic analysis must be used to
confirm findings of simulations of computational systems for per-

formance evaluation, because these simulations cope with non-determinism
factors present in such systems. In this chapter, we review statistical tech-
niques that allow the validation of the findings of simulations of executions of
integration processes by runtime systems related to performance evaluation.

7.1 ANOVA test

ANOVA test is a statistical technique that allows for differentiating
amongst the measurements of an experiment, that are derived from ran-
dom factors, and which are due to real differences between the alternatives
being analysed. For the application of the analysis of variance, it is as-
sumed that the observations are independent, the groups compared have the
same variance and the errors are independent and come from a normal
distribution with average zero and constant variance. The errors in an experi-
ment can be of two types: thematic and random. Thematic errors are those
caused by incorrect procedures during measurements. It is up to the re-
searcher to control and eliminate such errors since they can invalidate
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the results, even in the cases in which the statistical analysis was per-
formed. Random errors are unpredictable and non-deterministic and may
come from external sources unrelated to what one wants to measure. Al-
though it is not possible to predict random errors, it is possible to develop a
statistical model to describe its effect on experimental results.

Therefore, the ANOVA test separates the total variation in two types: the
first is the variation observed within each alternative studied, which is pre-
sumed to be a result of non-deterministic factors, and the second is the
difference found between the alternatives considered. If the variation be-
tween the alternatives is greater than the variation within each alternative, it
is concluded that there is a statistically significant difference between the
alternatives [114].

The two graphs, in Figure 7.1, show the distribution of the averages of any
three groups, called: G1, G2, G3. Graph (a) shows the average of distribu-
tions, in which there is no statistically significant difference between the three
groups and the graph (b) shows the average of distributions, in which there is
a difference between the groups.

No di�erence between groups With di�erence between groups

G1G2G3 G1 G2 G3

(a) (b)

Figure 7.1: Analysis of variance.

7.2 Scott & Knott test

Scott & Knott is a test adopted in experiments for performance evalua-
tion since it is a simple approach [70]. Multiple comparison techniques are
used to distinguish of similar and of different treatments when there are seve-
ral treatments in an experiment. There are numerous procedures of multiple
comparisons in the literature. An efficient alternative is the Scott & Knott
test [167], mainly when a large number of treatments is evaluated. The Scott
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& Knott is considered a more rigorous test because it takes account signifi-
cant differences between treatments, whereas tests least rigorous take account
little differences between treatments.

The original procedure of Scott & Knott test starts by partitioning the
groups to maximise the sum of squares between groups. Let «K» be the num-
ber of treatments. Firstly, the procedure of Scott & Knott test will either find
two distinct groups dividing the treatment averages or will declare those «K»
treatment average as homogeneous, belonging to just one group. Thus,
(2(K−1) − 1) possible partitions of the «K» averages are verified into two non-
empty groups. The process is facilitated when the averages are ordered
since it is enough to verify at the (K − 1) partitions formed by order-
ing the treatment averages and dividing them between two successive ones.
Let T1 and T2 be the totals of two of those groups with K1 and K2 treat-
ments respectively, so that K1 + K2 = K. The sum of squares is defined as «B»,
according to Equation 7.1. The maximum value of the sum of squares be-
tween groups is defined as «Bo», taken over the (K− 1) partitions of the «K»
treatments into two groups.

B =
T 2
1

K1

+
T 2
2

K2

−
(T1 + T2)

2

K1 + K2

(7.1)

Then, the procedure of Scott & Knott test performs likelihood ratio test for
the null hypothesis of equality of all averages against the alternative, in
which the averages belong to the two groups aforementioned. If the null hy-
pothesis is rejected, then the two groups are kept. Otherwise, the group
of «K» treatment averages is considered homogeneous. This procedure is
repeated for each group separated until all groups formed are homoge-
neous [96]. The statistics used for the likelihood ratio test is express by
Equation 7.2. In this equation, σ̂2

0 is the maximum likelihood estimator of σ̂2
0

rp
,

where «rp» is number of repetitions of the experiment. λ is asymptotically a
χ2 distributed random variable with v0 =

k
π−2

degrees of freedom and is used
as the cutoff point for a given α value at each test. α is a Scott & Knott pa-
rameter for the significance level. Thus, if λ < χ2(α, v0), all averages are
considered homogeneous and, further partitioning is, therefore, unneces-
sary; otherwise, the two groups are considered statistically different and then
should be tested separately for new possible divisions.

λ =
π

2 • (π− 2)
•
Bo

σ̂2
0

(7.2)
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7.3 Regression analysis

Regression analysis is a method to estimate the relation between the de-
pendent and the independent variables. Let x = (x1, x2, ..., xn) be a vector
of the independent variables and y a dependent variable. The mathemat-
ics function, which relates y and x, can be expressed by the regression model,
c.f. Equation 7.3, where β is a vector of unknown parameters, and ε is a
disturbance term [203].

y = f(x | β) + ε (7.3)

In regression analysis, the square of Pearson product-moment correlation
coefficient is an important parameter to determine the degree of linear corre-
lation of variables. This coefficient is known as the correlation coefficient or,
simply, R2. R2 is defined by Equation 7.4, where SSE is the sum of squared er-
ror and SST is the sum of squared total [100]. Thus, R2 tends to 1 when
SSE ≪ SST , i.e., the sum of squared error is too small compared to the sum of
the squared total.

R2 = 1−
SSE

SST
(7.4)

The t−statistic is a test used for making inferences about the regression
coefficients. The hypothesis test on coefficient xi checks the null hypothesis is
equal to zero against the alternative hypothesis regarding the hypothe-
sis of the coefficient to be different from zero. The null hypothesis that equal
to zero means that the corresponding term to the coefficient xi is not sig-
nificant. The probability value p−Value is another common metric used
to determine the significance of the model results when applying hypo-
thesis testing. According to McCarthy et al. [128] the result is considered
statistically significant when p−Value is small, i.e., p−Value ≤ 0.05.

Stepwise regression is an iterative method for adding and removing terms
from a multi-linear model based on their statistical significance in a re-
gression. The method starts with an initial model and then compares the
explanatory power of incrementally larger and smaller models. At each itera-
tion, the p−Value of a F−statistic is calculated to test models with and
without a potential term. Similarly to t−statistic , F−statistic tests if the
averages between the two populations are significantly different. The t−test
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checks if a single variable is statistically significant whereas F−test checks if a
group of variables are jointly significant. The F−value in regression is the
result of a test in which the null hypothesis is that all of the regression coeffi-
cients are equal to zero. The method finishes when no single step improves
the model.

7.4 Summary

In this chapter, we described three statistical techniques: ANOVA, Scott &
Knott, and Regression analysis. ANOVA test allows differentiating amongst
the results of an experiment, what was due to random factors and what was
due to treatment applied. Scott & Knott test identifies which results are
similar and which are different. Regression analysis is a method to mathe-
matically model the dependent variables as a function of the independent
variables.
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Chapter8

Representation

I believe that fortitude is key. More than anything, be consistent.
Go at it. Go at it. Go at it. When you succeed, don’t forget the responsibility

of making someone else succeed with you.

Antonia Novello, American physician

O
ur hypothesis in this chapter is that it is possible to obtain in-
formation about conceptual models and of the logic of integration
processes, which help to categorise them. We have developed
a model for representation of integration processes as a directed

acyclic graph, called «integration operation typed graph» or IOTG, which fo-
cus on the functions and in the logic operations of the tasks of integration
processes. We describe the environment of four integration processes and
represent their conceptual models by IOTG. The case studies are based on
research work of Frantz [63].

8.1 Integration operation typed graph

Information can be extracted from the logic semantics of the task; cf. we
found in works of Belusso et al. [20], Kraisig et al. [107], Roos-Frantz et al.
[158]. We also consider these information for the building of our representa-
tion. The conceptual models of integration processes describe in this chapter
were designed in a single integration platform to standardise the implemen-
tation of the integration patterns. Initially, the models were created using the
Guaraná domain-specific language [62]. We describe the terminology and
then formulate a representation for task scheduling of integration processes.
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The terminology of the task scheduling problem in integration processes is
based on the classic real-time scheduling theory and general-purpose parallel
systems.

An integration process can be represented as a job, J that consists of the
entirely inbound message processing. For the entirely processing to take
place, the inbound message has to be processed by every task of a path of an
integration process. The task scheduling of integration processes can be rep-
resented as a set of jobs, J= {j1, j2, · · · , jn} on computational resources of the
same capability, consisting of «m» threads. A path has segments of tasks,
which can be sequential, parallel, or both. The tasks in sequential seg-
ments are executed, obeying their order of dependence. The tasks of parallel
segments can be simultaneously executed on different cores.

The Directed Acyclic Graph (DAG) represents task models for real-time
scheduling, allowing the description of constraints on tasks execution [165].
In the DAG model, an integration process is described as a workflow «W»
composed of «k» tasks, being an extension of the DAGs with weighted ver-
tices (Ei, Ti), where Ti = {ti,1, ti,2, · · · , ti,k} is the set of vertices and «E» is
the set of edges. Every vertex in the graph represents a task of the pro-
cess, and each edge represents a communication channel between tasks, as
well as indicates precedence constraints between tasks. An edge between
(ti, tj) represents a dependence between ti and tj, in which ti is the predeces-
sor node of tj and tj is the successor node of ti. Every edge has a weight,
which represents the waiting time of the task in the queue.

A starting task is a task that has no predecessor tasks in the order of
dependence. An ending task is a task that has no successor tasks. An integra-
tion process can have one or more starting tasks and one or more ending
task. Besides, an integration process can have tasks that exchange mes-
sages with applications during runtime and intermediate tasks that fork, join
or route messages to segments that compose the path whereby the message
must flow. There are several possible paths for the processing of a mes-
sage, which are defined at design time. However, the path through which a
message will flow depends on the integration process logic.

Ritter et al. [154] represented the integration process as a directed graph,
called Integration Pattern Typed Graph (IPTG). IPTG was defined as a set of
nodes T and a set of edges E ⊆ T x T add to the function type : T → F,
where F = {start, end, message processor, fork, join, condition, merge,
external call}. For a node t ∈ T , • t = {t ′ ∈ T |(t ′ • t) ∈ E} for the set of di-
rect predecessors of t, and t •= {t ′′ ∈ T |(t • t ′′) ∈ E} for the set of direct
successors of t.
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The function type records what type of task each node represents. An
IPTG model is correct if it observes three correctness conditions: the first
claims that an integration pattern has at least one input and one output; the
second condition indicates the cardinality of the involved tasks, i.e., the in-
degrees and out-degrees of a node; and the last condition states, «the graph
(T, E) is connected and acyclic», indicates that a graph represents only a task
and its relation with its predecessor and successor tasks and that mes-
sages do not loop back to previous tasks. IPTG representation adopt as the
condition of verification, the classification by task cardinality, and some ter-
minologies, such as type «start», «end», «join», «message processor», and
«external call». However, because we have taken into consideration the
logic operation of the task, then we add «and», «or», and «xor» function
types. If the logic operation equals «and», the task generates outbound mes-
sages to every one of its outputs. If the logic operation equals «xor», the task
generates outbound messages to only one of its outputs. The logic op-
eration «or» acts as both «and» and «xor», i.e., the task can generate
an outbound message to one or more outputs. We named our representa-
tion as integration operation typed graph. The function types of tasks are
summarised in Table 8.1.

Type Description

«start» Task that has no predecessor task.

«end» Task that has no successor task.

«join» Tasks that has more of one predecessor task.

«message processor» Tasks that has one predecessor task and one
successor task.

«external call» Task that communicates with external application.

«and» Tasks that has one predecessor task and more of
one successor task. This task generates outbound
messages to every one of its outputs.

«xor» Tasks that has one predecessor task and more of
one successor task. This task generates outbound
messages to only one of its outputs.

«or» Tasks that has one predecessor task and more of
one successor task. This task can generate an
outbound message to one or more outputs.

Table 8.1: Function types of tasks.
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An IOTG (T, E, type) is correct if it satisfies the following conditions:

• ∃ t1, t2 ∈ T with type (t1) = start and type (t2) = end;

• if type (t) ∈ {and} then |• t| = 1 and |t •| = n and must produce
messages to all n outputs;

• if type (t) ∈ {or} then |• t| = 1 and |t •| = n and produce message in at
least one of its outputs;

• if type (t) ∈ {xor} then |• t| = 1 and |t •| = n and produce message in by
only one of its outputs;

• if type (t) ∈ {join} then |• t| = n and |t •| = 1;

• if type (t) ∈ {message processor} then |• t| = 1 and |t •| = 1;

• if type (t) ∈ {external call} then |• t| = 1 and |t •| = 1;

• the graph (T, E) is connected and acyclic.

Integration processes that have more than one task of the type «start»
benefit from the adoption of the task-based execution model because it is
not necessary to have messages in all the inputs of the process to be-
gin its execution. Similarly, processes, which have several tasks of the type
«external call» type, also benefit from the task-based model because while a
thread can be blocked waiting for a response of an external application,
the other threads can execute the tasks of the integration process. Integra-
tion processes that have more than one task of the type «and» would benefit
from the use of parallel processing. Integration processes that have several
tasks of the type «join» may have a delay, mainly when such tasks are in-
volved in the correlation of messages. Integration processes with several
communication channels demand more memory to store messages. Usually,
the message arrival rate is random and can be batch, periodic, or real-
time. The size and format of a message can also vary, from bytes to petabytes,
and data can be structured or unstructured. The value of these parameters
determine the execution time of tasks.

8.2 Coffee shop integration process

The case study 1 (CS1) is the Coffee Shop problem, a benchmark of an in-
tegration process introduced by Hohpe [84]. Its conceptual model is depicted
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in Figure 8.1. In the CS1, the integrated applications are: «Orders», «Barista
Cold Drinks», «Barista Hot Drinks», and «Waiter». «Orders» represents the
source application that delivers the data of the customer orders to the integra-
tion process. The data of the customer orders are wrapped inside messages.
An order may include either hot, cold drinks or both. Different baristas pre-
pare cold and hot drinks, which represent two applications that exchange
messages with the integration process: «Barista Cold Drinks» and «Barista
Hot Drinks». The orders are delivered to the «Waiter» when all drinks corre-
sponding to the same order have been prepared. The «Waiter» application
represents a final data sink. The processing of one customer order corre-
sponds to one job instance. It is possible to process one or more orders. One
or more instances of the job can be being processed simultaneously. The num-
ber of instances of the job corresponds to the number of customer orders that
are being processed. If there are several instances of the job at a given time,
then there are several instances of the same task and each task instance is
associated with a job instance.

Waiter

B����	�

Cold Drinks

Orders

Barista

Hot Drinks

t1 t2

t3

t4

t5 t6

t7

t12t11t9

t10

t8

tx1

tx2

tendtstart

Figure 8.1: Conceptual model of case study 1.

The CS1 is an integration process with three different paths for mes-
sages, in which there are tasks of types: «start», «and», «or», «join»,
«message processor», «external call» and «end». There is one input task
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represented by tstart, and one output task represented by tend. Tasks that ex-
change messages with applications during runtime are represented by tx1 and
tx2. Intermediary tasks are represented by ti, where i ranges from 1 to 12.

In the integration logic of this conceptual model, there may be customer
orders containing only cold drinks, hot drinks, or orders containing both cold
and hot drinks. For each one of these types of customer orders, there is a path
through which messages are processed. The possible paths were defined dur-
ing design time by the CS1 model. However, it is during runtime that the
exact path for a given message is known, according to the type of customer
order. There is a path for customer order containing only cold drinks; an-
other path for only hot drinks; and another path for both cold and hot drinks.
Examples of tasks that can be executed in parallel in the Coffee Shop integra-
tion process are [t3, t9] , [t4, t10] , [tx1, tx2] , [t5, t11], [t6, t12]. The Coffee Shop
integration process is represented by a DAG in Figure 8.2.

Figure 8.2: Integration operation typed graph for case study 1.

In CS1 integration operation typed graph, there are 16 nodes, which rep-
resent the tasks, and there are 19 edges, which represent the channels. Node
tstart is a starting node, that represents a task of the type «start». The nodes t3
and t9 represent tasks of the type «and». The t2 represents a task of the type
«or». The nodes t5, t7, and t11 represent tasks of the type join; Nodes t1, t4, t6,
t8, t10, and t12 represent tasks of the type «message processor»; The nodes tx1
and tx2 represent tasks that send and receive information to/from applica-
tions that are tasks of the type external call; and, node tend is a ending node
that represent a task of the type «end». The possible paths of the conceptual
model CS1 and their segments of tasks are shown in Table 8.2.
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Path
Segment

Sequential Parallel

{tstart, t1, t2, t3, t4, tx1, t5, t6, t7, t8,
tend}

{tstart, t1, t2};
{t6, t7, t8, tend}

{t3, t4, tx1, t5}

{tstart, t1, t2, t9, t10, tx2, t11, t12, t7, t8,
tend}

{tstart, t1, t2};
{t12, t7, t8, tend}

{t9, t10, tx2, t11}

{tstart, t1, t2, t3, t4, tx1, t5, t6, t7, t8, t9,
t10, tx2, t11, t12, tend}

{tstart, t1}; {t8,
tend}

p1 = {t3, t4, tx1, t5};
p2={t9, t10, tx2, t11}; {t2,
p1 , t6, t7, t12, p2}

Table 8.2: Representation of case study 1 by integration logic.

8.3 Processing order integration process

The case study 2 (CS2) is the Processing Order problem, another bench-
mark of an integration process introduced by Hohpe [84]. Its conceptual
model is depicted in Figure 8.3. In the CS2, the integrated applications are:
«Ordering System», «Widget Inventory», «Gadget Inventory», «Invalid Items
Log», and «Inventory System». «Ordering System» represents the source ap-
plication that delivers the data of the new orders to the integration process.
The data of the orders are wrapped inside messages. Every message with
a new order is split into individual messages, each of which must con-
tain only one item. A message is routed to «Widget Inventory» or «Gadget
Inventory» depending on their contents. Messages with items that do not be-
long to any of these inventories are routed to «Invalid Items Log». The
«Inventory System» application represents a final data sink that responds re-
garding the availability of items. The processing of one order corresponds to
one job instance.

CS2 is an integration process with three different paths for mes-
sages, in which there are tasks of types: «start», «and», «xor», «join»,
«message processor», «external call» and «end». The CS2 has a different
integration logic differs from CS1, besides this, in CS2 there are two end-
ing tasks and a task of type «xor». There is one input task represented by
tstart, and two output tasks represented by t1end and t2end. The tasks that ex-
change messages with applications during runtime are represented by tx1 and
tx2. The intermediary tasks are represented by ti, where i ranges from 1 to 12.

In the integration logic of this conceptual model, an order contains seve-
ral items. An order is split into unitary items, which can belong exclusively to
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Figure 8.3: Conceptual model of case study 2.

one of the inventories, «Widget Inventory» and «Gadget Inventory», or to
none. There is a path for a unitary item that belongs to «Widget Inven-
tory»; another path for a unitary item that belongs to «Gadget Inventory»;
and another path for a unitary item that does not belong to any inventory. Ex-
amples of tasks that can be executed in parallel in the CS2 integration process
are [t3, t9] , [t4, t10] , [tx1, tx2] , [t5, t11], [t6, t12]. The CS2 integration process is
represented by a DAG in Figure 8.4.

Figure 8.4: Integration operation typed graph for case study 2.

In CS2 integration operation typed graph, there are 17 nodes, which rep-
resent the tasks, and there are 19 edges, which represent the channels. Node
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tstart is a starting node, that represents a task of the type «start». The nodes t3
and t9 represent tasks of the type «and». The t2 represents a task of the type
«xor». The nodes t5, t7, and t11 represent tasks of the type «join»; Nodes t1, t4,
t6, t8, t10, and t12 represent tasks of the type «message processor»; The nodes
tx1 and tx2 represent tasks that send and receive information to/from applica-
tions that are tasks of the type external call; and, nodes t1end and t2end are
ending nodes that represent tasks of the type «end». The possible paths of the
conceptual model CS2 and their segments of tasks are shown in Table 8.3.

Path Segment

Sequential Parallel

{tstart, t1, t2, t3, t4, tx1, t5, t6, t7, t8, t1end} {tstart, t1, t2};
{t6, t7, t8, t1end}

{t3, t4, tx1, t5}

{tstart, t1, t2, t9, t10, tx2, t11, t12, t7, t8, t1end}{tstart, t1, t2};
{t12, t7, t8, t1end}

{t9, t10, tx2, t11}

{tstart, t1, t2, t2end} {tstart, t1, t− 2, t2end}

Table 8.3: Representation of case study 2 by integration logic.
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8.4 Huelva’s county council integration process

The case study 3 (CS3) is the Huelva’s County Council problem, a real-
world integration process [61] that consists of the automatisation of the user
registration into a central repository. Its conceptual model is depicted in Fi-
gure 8.5. In the CS3, the integrated applications are: «Local Users», «Portal
Users», «LDAP», «Human Resources System», «Digital Certificate Platform»,
and «Mail Server». The «Local Users» represents one of the source applica-
tions that manage the data of the users of county council information
systems. The «Portal Users» represents the web portal used to manage the
users and is another source application. The «LDAP» is a unique reposi-
tory for users that provides authentication access control for several other
applications inside the software ecosystem. The «Human Resources Sys-
tem» represents the application that provides personal information about the
employees and from it, information like name and e-mail are required
to compose notification e-mails. The «Digital Certificate Platform» repre-
sents the application that manages digital certificates. Finally, the «Mail
Server» represents the application that runs the e-mail service and is used
exclusively for notification purposes.

CS3 is an integration process with four different paths for mes-
sages, in which there are tasks of types: «start», «and», «xor», «join»,
«message processor», «external call» and «end». The CS3 has a differ-
ent integration logic from CS1 and from CS2, besides this, in CS3 there are
two starting tasks and four possible paths. There are two input tasks repre-
sented by t1start and t2start, and two output tasks represented by t1end and
and t2end. The tasks that exchange messages with applications during run-
time are represented by tx1 and tx2. The intermediary tasks are represented by
ti, where i ranges from 1 to 13.

In the integration logic of the CS3, the data of users that arrive from t1start
and t2start are replicated and one copy flows towards «Human Resources Sys-
tem» for information about the employee who owns a user record. Further,
on t6, the message is replicated, and one copy flows towards «LDAP»,
and another flows towards «Digital Certificate Platform». «Digital Certifi-
cate Platform» is queried by a message that includes an e-mail address. The
sending of the certificate and its notification to the employee about the inclu-
sion in the «LDA» is done by «Mail Server». There is a path for a local user
that has e-mail address; another path for a local user that has not an e-
mail address; another path for a web user that has an e-mail address;
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Figure 8.5: Conceptual model of case study 3.

and another path for a web user that has not an e-mail address. Exam-
ples of tasks that can be executed in parallel in the CS3 integration process
are [t3, t7] , [t9, t10], [t7, t18]. The CS3 is represented by a DAG in Figure 8.6.

Figure 8.6: Integration operation typed graph for case study 3.
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In CS3 integration operation typed graph, there are 19 nodes, which rep-
resent the tasks, and there are 20 edges, which represent the channels.
Nodes t1start and t2start are starting nodes, that represent tasks of the type
«start». The nodes t2 and t8 represent tasks of the type «and». The t6 repre-
sents a task of the type «xor». The nodes t1, t4, and t10 represent tasks of the
type join; Nodes t3, t5, t7, t9, t11, t12, and t13 represent tasks of the type
«message processor»; The nodes tx1 and tx2 represent tasks that send
and receive information to/from applications that are tasks of the type
«external call»; and, nodes t1end and t2end are ending nodes that repre-
sent tasks of the type «end». The possible paths of the conceptual model CS3
and their segments of tasks are shown in Table 8.4.

Path Segment

Sequential Parallel

{t1start, t1, t2, t3, t4, tx1, t5, t6, t7, t8, t9,
t10, t11, t12, t13, t1end}

{t1start, t1};
{t5, t6, t7};
{t11, t12, t1end}

{t2, t3, tx1, t4};
{t8, t9, tx2, t10}

{t1start, t1, t2, t3, t4, tx1, t5, t6, t13, t2end} {t1start, t1};
{t5, t6, t13, t2end}

{t2, t3, tx1, t4}

{t2start, t1, t2, t3, t4, tx1, t5, t6, t7, t8, t9,
t10, t11, t12, t13, t1end}

{t2start, t1;
t5, t6, t7};
{t11, t12, t1end}

{t2, t3, tx1, t4};
{t8, t9, tx2, t10}

{t2start, t1, t2, t3, t4, tx1, t5, t6, t13, t2end} {t2start, t1};
{t5, t6, t13, t2end}

{t2, t3, tx1, t4}

Table 8.4: Representation of case study 3 by integration logic.

8.5 Phone call integration process

The case study 4 (CS4) is the Unijuí University problem, a real-world inte-
gration process [61] that consists of the automatisation of the charge of
personal phone calls using phones of the university. Its conceptual model is
depicted in Figure 8.7. In the CS4, the integrated applications are: «Call
Centre», «Human Resources», «Payroll System», «Mail Server», and «SMS
Notifier». The «Call Centre» records every call every employee makes from
a university belonged phone. The code is also used to correlate phone
calls with the information in the «Human Resources» and the «Payroll
System». The «Human Resources» supplies personal data concerning em-
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ployees, and the «Payroll System» computes their wages. The «Mail Server»
and the «SMS Notifier» notify employees about their charges. The former
provides e-mail service and the later offers short message system services.
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Figure 8.7: Conceptual model of case study 4.

CS4 is an integration process with single path for messages, in which
there are tasks of types: «start», «and», «join», «message processor»,
«external call» and «end». The CS4 has a different integration logic from
the previous cases, besides this, in CS4, there are three ending tasks and a sin-
gle possible path. There is an input task represented by tstart, and three
output tasks represented by t1end, t2end, and and t3end. The task that ex-
change messages with another application during runtime is represented by
tx1. The intermediary tasks are represented by ti, where i ranges from 1 to 11.

In the integration logic of the CS4, the data of users that arrive from tstart
is replicated and one copy flows towards «Human Resources System» for in-
formation about the employee. Further on t6, the message is replicate and
one copy flows towards «Payroll System», another flows towards «Mail
Server», and another, towards «SMS Notifier». The sending of the notifica-
tions to the employees about the charge is done by «Mail Server» and «SMS
Notifier». Examples of tasks that can be executed in parallel in the CS3 inte-
gration process are [t6, t6] , [t9, t11, t14], [t10, t12t15], and [t13, t16]. The Unijuí
University integration process is represented by a DAG in Figure 8.8.

In CS4 integration operation typed graph, there are 16 nodes, which rep-
resent the tasks, and there are 20 edges, which represent the channels. Node
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Figure 8.8: Integration operation typed graph for case study 4.

tstart is a starting node, that represent a task of the type «start». The
nodes t2 and t6 represent tasks of the type «and»; The node t4 repre-
sents a task of the type join; Nodes t1, t3, t5, t7, t8, t9, t10 and, t11 represent
tasks of the type «message processor»; The node tx1 represents a task that
sends and receives information to/from applications that is a task of the type
«external call»; and, nodes t1end, t2end, and t3end are ending nodes that repre-
sent tasks of the type «end». The possible paths of the conceptual model CS4
and their segments of tasks are shown in Table 8.5.

Path Segment

Sequential Parallel

{t1start, t1, t2, t3, tx1, t4, t5, t6, t7, t1end, t8,
t9, t2end t10, t11, t3end}

{tstart, t1};
{t5, t6, t7, t1end};
{t8, t9, t2end};
{t10, t11, t3end}

{t2, t3, tx1, t4}

Table 8.5: Representation of case study 4 by integration logic.

8.6 Categorisation by IOTG

A categorisation for the four case studies is summarised in Table 8.6. The
first column identifies the case study; from second to eighth column are ex-
pressed the number of each type of tasks, respectively: «start», «and», «or»,
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«xor», «join», «message processor», «external call», and «end». The ninth
column expresses the number of communication channels. The tenth col-
umn shows the number of sequential segments, and the eleventh column
represents the number of parallel segments.

ID
No of Tasks - per function type

No of

Channels

No of Segments†

start and or xor join
message

processor

external

call
end Sequential Parallel

CS1 1 2 1 0 3 6 2 1 18 2 3

CS2 1 2 0 1 3 6 2 2 19 2 1

CS3 2 2 0 1 3 7 2 2 20 3 2

CS4 1 2 0 0 1 8 1 3 16 4 1
† Considering the longest path.

Table 8.6: Model conceptual representation.

8.7 Summary

In this chapter, we created a representation of integration processes ac-
cording to their type of logic operations and described four case studies:
Coffee Shop, Processing Order, Huelva’s county council, and Phone call. The
two first are benchmarks introduced by Hohpe [84], and the other two are
real-world integration processes. We applied the IOTG, classifying the in-
tegration processes as to types of tasks, the number of communication
channels, number sequential task segments and parallel task segments.
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Chapter9

Characterisation

A woman with a voice is, by definition, a strong woman.

Melina Gates, American philanthropist

T
he task scheduling of integration processes has specific charac-
teristics that are discussed in this chapter. We have characterised the
task scheduling of the execution of integration processes, analysing
the primary methods, approaches, challenges, and guidelines

concerning the dynamic environment involved in application integration.

9.1 Environment

In realistic problems, several events disturb the environment and de-
grade the performance of the execution of integration processes. We grouped
the most common types of disturbance into five groups of events related to:
the integration models, the messages, the computational resources, the tasks,
and the queues, cf. Table 9.1. These events are also divided into inter-
nal and external. The former refers to events caused by internal elements that
can be managed or monitored by the runtime system. The latter are caused
by external elements, such as application, user requirements, or data source.

Model-related events are caused by factors related to the design of inte-
gration processes. Some internal events are bottlenecks and dynamic routing.
Regarding bottlenecks, there are task arrangement patterns in integration
process models, which, subject to certain conditions, indicate obstruction
or delay the message processing [158]. The dynamic routing refers to the
unpredictability of the path in which a message is processed. Usually, the in-
tegration process includes tasks that filter or route some specific messages;
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Group
Event

Internal External

Model-related
bottleneck I/O delay

dynamic routing constraint change

Message-related -
priority change

workload peak

arrival rate random

Resource-related
unavailability

constraint changeidleness

deadlock

Task-related
starvation

-
processing time random

Queue-related overload constraint change

Table 9.1: Common disturbances in the integration environment.

thus, the tasks in which a message will be processed are uncertain. Also,
there are external events such as I/O delay and constraint change. I/O delay
refers to the interruptions or delays caused by applications, database or any
other component in which messages are processed. Constraint change refers
to adjustments to meet new business requirements, such as a change in the
message processing maximum time or message processing minimum rate.

Message-related events are caused by unexpected external events, such as
change of priorities, workload peak, and the random arrival rate. Prior-
ity change refers to a change in the order of message processing or task
execution. Scheduling based on the priority of task specifies a decision crite-
rion to select the task to be executed first, for example, the earliest finish
time [37, 208]. Peak load refers to the simultaneous arrival of a large num-
ber of messages. Random arrival rate refers to the unpredictability of the
arriving message number per unit of time.

Resource-related events are caused by factors related to threads managed
by the runtime system. Some internal events are unavailability, idleness, and
deadlock. Unavailability refers to the lack of the number of threads for task
execution, causing inefficient message processing. Idleness refers to the over-
sizing number of threads, leading to financial costs for the enterprise that has
under-utilised computational resources. Deadlock is directly linked to bot-
tlenecks and occurs when a thread long-executes a task and cannot be
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released. In this case, constraint change refers to events, such as adjust-
ments in computational infrastructure that reduce the execution capability
and machine-fault.

Task-related are events related integration tasks that compose an integra-
tion process. Some internal events are starvation, random processing time
and high processing time. Starvation refers to tasks that wait for a long time
to be executed; for example, when a task has low priority and threads are
always busy with high priority tasks. Random processing time refers to envi-
ronments that deal with Big Data or Internet of Things [149], in which data
varies in volume, variety, velocity, and variability causing variation in the
processing time of the tasks, which becomes unpredictable.

Queue-related are events related to queues in which tasks look for-
ward to available threads to execute them. An internal event is an overload
that occurs when there is a high-accumulation of tasks due to high mes-
sage arrival rate or to unavailability of threads. Constraint change refers to
events, such as adjustments in computational infrastructure that reduce the
capability of storing tasks.

9.2 Approaches for scheduling

In most real-world environments, the schedule needs to cope with the
presence of a variety of unexpected factors, such as workload oscillations,
task delays, and resource overload. The use of static scheduling-based ap-
proaches becomes unfeasible and the near-optimal scheduling-based on
approximated data, antiquate for practical use [193].

Chaari et al. [33] classify dynamic scheduling into «proactive», «reac-
tive», and «hybrid», cf. Figure 9.1. These scheduling approaches are more
appropriated to deal with environmental uncertainties [3, 42, 125].
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Figure 9.1: Dynamic scheduling approaches.

Proactive scheduling deals with uncertainties in design time. It pro-
duces one or more scheduling endowed with flexibility that becomes
responsive to uncertainties. Thus, this approach is also called robust schedul-
ing [116]. Reactive scheduling is used in highly disturbed environments in
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which uncertainties are both frequent and abundant. Thus, decisions are
quickly made during runtime. Hybrid scheduling can be proactive-reactive
or predictive-reactive. The proactive-reactive approach produces a set of
static schedules and adopts one of them during runtime. So, the decision-
making is not made during runtime, but the scheduling can change to a
previously defined scheduling capable of managing the current disturbance.
The predictive-reactive approach has a deterministic schedule and adap-
tive scheduling. While the former produces schedules in design time, the
latter makes decisions during runtime, so reacting to disturbances.

9.3 Methods for scheduling

We describe the primary methods for resource allocation and task se-
quencing and timing that can be adopted to optimise performance measures
in integration processes.

Resource allocation

The resource provisioning in three categories: «rigid», «moldable», and
«malleable» [28, 75]. When the number of cores assigned to a job is specified
in design time and does not change during runtime, the resource provision-
ing is considered rigid. When the number of cores assigned to a job is
determined by the scheduler and does not change during runtime, the provi-
sioning is considered moldable. When the scheduler can change the number
of cores assigned to a job during runtime, it is considered malleable. The clas-
sification of resource allocation in the task scheduling of integration processes
can be «fixed», «limited», or «elastic» [68], as depicted in Figure 9.2.
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Figure 9.2: Resource allocation approaches.

In «fixed» resource allocation, the challenge is to optimise the schedul-
ing with a fixed number of threads, configured in design time, to meet
multiple integration process instances. Some algorithms face this challenge
by emphasising the prioritisation for jobs and tasks or by the optimisa-
tion of resource utilisation [83]. In «limited» resource allocation, the number
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of threads can increase until a specified limit during runtime, but this number
cannot change during the execution of an integration process. Thus, the chal-
lenge is to optimise the scheduling with a limited number of threads. «fixed»
or «limited» provisioning occurs in environments in which the number of re-
sources is usually limited, such as a single server, clusters, grids; as well as,
in Cloud computing, when the infrastructure leased has a limited and
unchanged number of computational resources.

«Elastic» resource allocation occurs in virtual environments, like Cloud
computing, in which the number of computational resources increases and
decreases to better meet the demands of applications running in the in-
frastructure [41]. Main approaches to «elastic» resource provisioning are
«workload-aware» and «performance-aware» [83]. In «workload-aware», the
algorithms react according to the workload status, acquiring more resources
in peak demand situations or releasing resources in low demand situations. A
strategy used by a scheduler can be deciding between reusing or hiring a new
resource, based on the deadline of the task. Thus, the additional provisioning
resources is more accurate because it is based on the task requirement being
scheduled [156]. In «performance-aware», the algorithms react according to
the total resource utilisation status, acquiring more resources in peak demand
situations or releasing resources in low demand situations. This approach is
usually present in environments of homogeneous virtual machines because it
simplifies the selection process of the virtual machine by the algorithm [153].

Regarding the number of threads allocated for the execution of tasks of in-
tegration processes, although it is not limited, it is more realistic to assume
that there is some constraint on it. Parallel task processing is only possi-
ble when there are multiple physical cores in a machine where the integration
process is executed. The number of cores directly impacts the execution of the
tasks by threads created by the runtime system [122], and thus, it in-
fluences the performance of the execution of the integration process. The
number of threads is configurable and, theoretically, unlimited. However, a
high number of threads can degrade the performance of the execution be-
cause more time has to be spent on managing these threads and shared
resources, such as cache capacity or memory bandwidth tend to quickly satu-
rate [111]. There are several possible configurations of thread pool that a
runtime system can implement, such as (i) a thread pool with predefined
and fixed number of threads, (ii) a thread pool with an unlimited num-
ber of threads that increases according to demand; and, (iii) a thread pool
that distributes the workload amongst the available cores.
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Task sequencing and timing

There are two approaches to carry out sequencing and timing schedul-
ing [110]. One of them classifies the methods into «transformation-based
scheduling» and «non-transformation-based scheduling». Another approach
classified the methods into «immediate» and «periodic». These classifications
are depicted in Figure 9.3.
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Figure 9.3: Task sequencing and timing approaches.

«Transformation-based scheduling» is a method that relies on transfor-
mations in integration process conceptual models to simplify constraints
imposed to adapt them to known models to use policies or heuristics for
scheduling. It is divided into decomposition and partitioning. The former
transforms parallel segments of a process in a set of independent sequential
segments, obeying precedence constraints. Then, the tasks are scheduled ei-
ther by static or dynamic scheduling algorithms. In the latter, the tasks are
divided into two sets according to a given criterion. Li et al. [113] divide in
groups of high and low utilisation tasks. The tasks are allocated to subsets of
system cores, which are not necessarily the same. Chronaki et al. [37] divide
tasks into groups of «critical» and «non-critical» tasks. Critical tasks are as-
signed to the fastest cores and the non-critical tasks to the slowest cores.
Transformation-based scheduling is a proactive method that usually adds an
overhead waiting delay in environments of continuous arrival of messages,
in which the actual scheduling takes place only after the previous processing
associated with the transformation has occurred. Non-transformation-based
scheduling is a reactive method that does not know the integration process
conceptual models in advance, and the scheduling decisions are made dur-
ing runtime. It is classified into two types: «direct» or «hierarchical». The
former assigns priorities to job-level and tasks, and this is done during run-
time. In the latter, two scheduling schemes are applied: one determines the
next job to be executed, and the other determines the task to be executed.

The time complexity for heuristic algorithms must be short to deal with
the dynamicity of the environment; then it must use lightweight algorithms.
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Meta-heuristics must be avoided in scheduling algorithms because they are
computationally intensive to plan the schedule before runtime, in which the
planning time may take longer than the integration process execution itself.
Alternatively, the reactive or hybrid methods reduce the intensive comput-
ing at the planning phase to make quick decisions based on the current
status of the environment. These methods are classified in two types: «imme-
diate» or «periodic» scheduling [83]. The immediate scheduling method
usually has three phases: first, the task queue is built with some prioritisation
method; second, the algorithm selects a particular task; and, third the al-
gorithm selects the appropriate resource for that particular task. Periodic
scheduling systematically performs the scheduling to adequate it to the sta-
tus environment. This approach is considered hybrid because it has a static
and a dynamic part. In the static part, the algorithm investigates the characte-
ristics of a set of tasks, such as structures and estimated runtime. The goal is
to build an optimal plan, based on a set of tasks available in a certain pe-
riod, instead of the entire workload. In the dynamic part, the algorithms
change the schedule plan periodically. The static part of this method is faster
than those purely static scheduling methods because it only includes a small
fraction of workload to be optimised before runtime.

9.4 Challenges and guidelines

Parunak [140] outlines the main challenges in scheduling: desirability,
stochasticity, tractability, chaos, and decidability. Desirability means finding a
schedule that provides results that are closer to the ones expected by the com-
pany. Mathematical and dynamic programming [119] and evaluation [106]
are the most used approaches to address this challenge. Mathematical and
dynamic programming seeks optimal scheduling using interacting con-
straints; however, in complex environments, this can demand excessive
computational resources. Evaluation techniques experiment and evaluate se-
veral solutions by simulations or by simplification of the behaviour of the
environment. However, in complex environments, the exhaustive search of
the set of solutions to evaluate can demand excessive time.

Stochasticity characterises the deviation of the real parameters defined
in the computational model. This deviation is used for scheduling. Such
deviation arises from unexpected events, such as breakdowns, overload,
bottlenecks, variation in processing times, and interference. Simulation tech-
niques can provide mechanisms to describe pseudo-random samples from a
variety of standard statistical distributions efficiently, but, the number of re-
quired simulations to encompass a statistically significant number of events
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can become prohibitive. Rescheduling [16], Deferred Commitment [206], and
Tweaking [72] are the standard techniques for this challenge. Rescheduling
monitors the deviation, changing the schedule when this deviation exceeds a
given constraint; however, this technique is only feasible when the time
required to schedule is short enough to accompany changes in the environ-
ment. Deferred Commitment scheduling designs high-level decisions and,
during runtime, refines these decisions based on the current status of the en-
vironment. Tweaking analyses the deviation of a mathematical model of the
scheduling within certain limits to decide when to reschedule.

Tractability refers to with the computational difficulty to analyse complex
environments behaviours in a reasonable time and cost. Usually, heuris-
tics techniques are used to find a near-optimal solution, such as dispatching
rules [8], constraint propagation [204], stochastic search [135], and predic-
tive performance modelling [197]. Dispatching rules selects the next task to
be executed at a resource, obeying predefined rules. Constraint propagation
deals directly with predefined constraints, identifying interactions amongst
them and performing changes to reduce disparity amongst them. Stochas-
tic search uses meta-heuristics that allow the search on a broader solution
space from an initial set of random solutions. Predictive performance mod-
elling extrapolates historical observations to predictions of future situations
without requiring detailed information about the workload.

Chaos concerns with an environment in which these conditions never re-
peat themselves and small differences in these initial conditions can result in
exponential divergences in the environment during runtime, so, it is not
possible to predict its behaviour. The techniques suggested are bidding inter-
val [43], information uncertainty [31], and structure of chaos [89]. Bidding
interval seeks a threshold below which the environment is not chaotic. Usu-
ally, this value is determined by simulation. Information uncertainty inserts
noise to the environment to block chaotic behaviour. Although this strat-
egy conflicts with the problem of stochasticity it can be used as a component
in a compromise solution. Structure of chaos identifies configurations of the
environment favourable to chaos to avoid them.

Decidability concerns with the capacity for analysing environmental be-
haviour to identify undecidable problems. Undecidable problems are the
ones in which there is no computationally feasible solution in a reason-
able time. An strategy used in such problems is the participatory scheduling,
which involves job processing as a partner in the scheduling process. Tech-
niques, as neural models [46], allow the computational adaptation or
learning, adjusting the model to the characteristics of the problem domain.
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Participatory scheduling addresses other challenges as to deal with the com-
plexity through heuristic search; to deal with the stochasticity through
real-time distributed computation, and to deal with the desirability through
adaptive behaviour.

9.5 Features

The elements of task scheduling of integration processes are not prior
known and that change in runtime, so they require an dynamic approach, can
be «proactive», «reactive» or «hybrid».

• The scheduling has the following features:

⋄ number of tasks and computational resources,in our approach,
threads, are unknown;

⋄ there are different and unpredictable paths of tasks;

⋄ each task performs an atomic operation;

⋄ task processing time is variable;

⋄ tasks wait for available computational resources into queues;

⋄ there are parallel segments, in which tasks can be executed in
different cores;

⋄ there are sequential segments, in which tasks must be executed in a
precedence order;

⋄ there are no precedence constraints amongst instances of tasks of
different instances of jobs.

• The computational resources type must be «elastic» to take advan-
tage of the cloud computing capacity of increasing and decreasing the
number of cores, according to the demand.

• The resource allocation can have the following approaches: «workload-
aware» and «performance-aware». In the former, the algorithms use the
deadline of the task to decide whether to reuse the core after the cur-
rent execution or to get a new core, hiring a new virtual machine. In the
latter, the algorithms react based on the total resource utilisation status.

• The task sequencing and timing can have two approaches: The former
is to use low complexity heuristic to deal with dynamic environ-
ments. The latter is to adopt hybrid methods to make quick decisions
based on the current environment status.
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• The scheduling can have the following representation: an Integration
Operation Typed Graph that enables the description of constraints on
the execution and logic operation of the tasks.

9.6 Summary

We characterised the resource allocation and the task sequencing and
timing involved in the execution of integration processes, providing direc-
tives that allow researchers to propose and evaluate heuristics to deal with
disturbances present in the integration of applications environment.
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QueuePriorityHeuristic

Mankind has made giant steps forward. However, what we know is really
very, very little compared to what we still have to know.

Fabiola Gianotti, Italian physicist

I
n this chapter, we formulate our research problem as mathematical ex-
pressions, define our objective function, and propose a heuristic to task
scheduling of integration processes. This heuristic, namely Queue Pri-
ority (qPrior), deals with overload situations caused by workloads of

large volumes of data. We implement qPrior by a lightweight algorithm to
increase the performance of the execution of the integration processes.

10.1 Problem formulation

In this chapter we present the matematical modelling of integration pro-
cesses, with focus on time-related performance metrics, commonly used
for scheduling performace bechmarking. Rodriguez and Buyya [157] pro-
pose Equation 10.1 to calculate the total processing time of a task in a
virtual machine (VM) in scientific workflow scheduling in a cloud environ-
ment. «ETVMj

ti
» is the task execution time ti in a virtual machine of type VMj;

«TTeij» is the time it takes to transfer data between a task ti and its succes-
sor tj; k is the number of edges in which ti is the predecessor task and sk is 0
whenever ti and tj run on the same virtual machine or 1 otherwise.

TP
VMj

ti
= ET

VMj

ti
+

(

k∑

1

TTeij∗sk

)

(10.1)
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Makespan is a well-known metric for performance within the integration
community. According to Chirkin et al. [36], the processing time in a work-
flow can be represented by Equation 10.2. In this equation, «ET» is the task
execution time, «TR» is the resource preparation time, «TQ» is the queu-
ing time, «TD» is the data transfer time, and «TO» is the overhead system time,
such as time spent in analysing the task structure, selecting the resource,
amongst others.

TP = ET + (TR + TQ + TD + TO) (10.2)

For Shishido et al. [178], the total processing time of a task «ti» in a vir-
tual machine of type vmk

s is the sum of the task execution time «TE(ti, vmk
s)»,

transfer time «TT(ti)», and security services overhead of the «SC(ti)» as
defined in Equation 10.3.

TP
(

ti, vm
k
s

)

= TE
(

ti, vm
k
s

)

+ [TT (ti) + SC (ti)] (10.3)

Several researchers use the makespan arithmetic average as a perfor-
mance metric for scheduling algorithms [1, 35, 115]. According to Canon
and Jeannot [30], makespan is computed by instantiating every computa-
tion and communication duration according to random variables, i.e. it is the
end-time of the processing last task. For Abdulhamid et al. [1], the lower
the makespan, the better the processing efficiency, meaning less process-
ing time. They defined Equation 10.4, in which makespan is the maximum
time needed to complete processing «maxCi

′».

Makespan = {maxCi
′} = max {C1

′, C2
′, ..., Cn

′} (10.4)

In integration processes, we define the internal task total processing time
in a thread pool as computed by Equation 10.5. In this equation, «TPti» is the
total processing time; «ETti» is a task execution time in a thread into its re-
spective thread pool; «TQti» is the task waiting time in a task queue; and, «k»
is the number of edges to which the current task is its successor.

TPti = ETti +

k∑

1

TQti (10.5)

We defined the total processing time of a message «TPmi
» as the elapsed

time interval between the time a message entered and the time it leaves the



10.1. Problem formulation 105

integration process. «TPmi
» is the sum of the execution time of all the tasks of

the path by which the message must flow for its complete processing, c.f.
Equation 10.6. We assume that the execution time of a task, «ETtk» includes all
the times involved, such as the total CPU time, the annotation time of tasks in
queues, the waiting time of the tasks in a queue; and, the waiting time of the
task in request and response operations with external applications. The num-
ber of tasks in the path is represented by «tot». We also assume that the range
of the execution time of a task «tk» is defined as «[ETtkini

, ETtkfin
]».

TPmi
=

tot∑

1

ETtk, where
{
ETtk ∈ R | ETtkini

≤ ETtk ≤ ETtkfin

}
(10.6)

Then, we define the makespan of an execution of an integration process as
the total execution time of an integration process. It is the elapse time between
the start time of the first message that entered «STm1

» and the end time of the
last message that leaves the workflow «ETmnp», cf. Equation 10.7. Throughput
is a performance metric based on the amount of work a system can perform
in a given time in a particular environment. The throughput of a computer
system is a function of the environment and workload characteristics. Im-
provements resulting from system changes can be evaluated by throughput
metrics [190, 199]. In case of execution of integration processes, through-
put corresponds to the number of messages processed per time unit and it is
calculated by computing the division of the total number of processed mes-
sages «np» by the total execution time «Makespan», cf. Equation 10.8. This
formulation is represented by the objective function shown in Equation 10.9.

Makespan = ETmnp − STm1
(10.7)

Throughput =
np

Makespan
(10.8)

max{Throughput} (10.9)

Time optimisation becomes fundamental in situations in which the pro-
cess execution duration must meet specific constraints or deadlines, because,
their violations increase the business processes costs [142]. Thus, the problem
can be formulated as:

to find out a heuristic for task scheduling that processes more
messages per time unit in the execution of integration processes in
overload situations.
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10.2 Queue Priority heuristic

We have development the Queue Priority (qPrior) heuristic. The goal is to
keep a good performance of the execution of integration processes even if
such overload situations occur. In qPrior, there are multiple task queues.
Every task queue maintains instances of a specific task of integration pro-
cess. Tasks that can be executed in parallel are maintained in same queue.
Threads, grouped in a thread pool, check the queues following in an or-
der of priority. In this order, a task that has more predecessor tasks has more
priority in its execution. Each time threads check a queue, a specific num-
ber of tasks are captured to be executed by those threads. We refer to number
of tasks that is executed as preemption. Tasks are allocated permanently to
threads till the tasks are entirely executed.

To exemplify the qPrior heuristic, we present four possible iterations of
the heuristic illustrated in Figure 10.1. This example is a snapshot of a partic-
ular moment(n-th iteration) of the integration process in runtime, in which,
instances tasks wait in three task queues. The queue of high priority main-
tains the annotations for executions of the instances of task t3. This task is the
task that has more predecessor tasks. The queue of medium priority main-
tains the annotations for executions of the instances of task t2. The queue of
low priority maintains the annotations for executions of the instances of
task t1. This task has no predecessor task. Assuming the software engi-
neer set the preemption to the value six, which means that, at every time that
threads of pool check a queue, they will execute six tasks that have annota-
tion in this queue. The annotations of the tasks that are caught by threads are
shaded in grey. The iterations take happen as follow:

n-th iteration: threads poll the queue of high priority and, then, they execute
six tasks of queue of tasks t3.

(n+1)-th iteration: because the queue of high priority is empty, threads poll
the next queue of more top priority and, then, they execute six tasks t2
of this queue. After, the executions of tasks t2 produce outbound mes-
sages that are inbound messages for successor task, t3. So, the scheduler
annotates the executions in the queue of tasks t − 3. While this hap-
pens, new inbound messages continue arriving for the integration
process generating new annotations in the queue of task t1.
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(n+2)-th iteration: threads poll the queue of high priority and, then, they ex-
ecute six tasks of queue of tasks t3.While new tasks continue being
annotated in the queue that maintains the tasks t1.

(n+3)-th iteration: because the two queues more top priority are empty,
threads poll the queue of lowest priority and, then, they execute six
tasks t1 of this queue. After, the executions of tasks t1 produce out-
bound messages that are inbound messages for successor task, t2. So,
the scheduler annotates the executions in the queue of tasks t2.

This process iteratively continues till up all queues are empty or till up it is
interrupted.

10.3 qPrior algorithm
We have implemented qPrior algorithm that the software engineer to per-

form the Queue Priority heuristic. The activities of this heuristic is shown in
Figure 10.2 and the pseudo-code of the algorithm that implements the qPrior
heuristic is shown in Algorithm 10.1.

This algorithm receives the total number of tasks and the number of
tasks performed at a time «preemption». The algorithm starts by initialis-
ing the auxiliary variables: «totalSize», «preempt», and «qPrior». The first
variable corresponds to the total size of queues, the second variable is the pre-
emption, and the third variable maintains the queue indication that will be
polled. The algorithm verifies the queues from the highest priority queue un-
til the lowest priority queue. After the algorithm selects a queue, it sets the
preemption according to the following rule: if the queue size is smaller than
«preempt», the threads executes all tasks that are in the queue; otherwise,
the algorithm executes an amount of task equals «preempt». The algo-
rithm keeps allocating threads to execute tasks until all the queues are empty.
The algorithm uses a thread pool that creates threads as needed. How-
ever, it is possible to reuse previously constructed threads when they are
available. When there is no available thread, a new thread will be cre-
ated and added to the pool. Threads that have not been used for sixty
seconds are shut up and removed from the pool †1.

10.4 PSO modelling
When there is a high arrival rate of messages, the queues accumu-

late more annotations of the initial tasks and threads keep busy in the
†1docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html
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Figure 10.1: Iterations of the qPrior heuristic.

execution of these tasks to the detriment of the others. This accumulation oc-
curs either in the task queue of the FIFO heuristic and in queues of initial
tasks of qPrior heuristic. Therefore, the preemption used by qPrior algo-
rithm impacts the total execution time of an integration process, if the
preemption is large, the algorithm spends more time in execution of the ini-
tial tasks by threads, since the size of queues of initial tasks tends to be bigger.
On the other hand, if the preemption is too small, the algorithm can spend
more time with the exchange of queues. It is a challenge for the software en-
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Receive parameters

Calculate preemption

Execute tasks

Figure 10.2: qPrior heuristic.

gineer to find the ideal preemption, i.e., the optimum number of task
instances that must be executed by threads at each polling to a queue.

Thus, the problem can be formulated as:

to determinate the number of tasks included in the preemp-
tion for the task scheduling carried out by the qPrior algorithm,
which maximises the number of messages processed per time unit
in the execution of integration processes under high workloads.

We model this problem as a PSO problem and use this meta-heuristic to
find the optimum preemption for the task scheduling heuristic by qPrior. For
our scheduling problem, a particle represents an execution of an integra-
tion process in an overload situation. The position of a particle is a range for
the preemption. Thus, the particle position is two-dimensional, specified by
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Input: Task queues: queues[ ]
Input: Maximum duration of the simulation: maxDuration

Input: Time start of the simulation: start
Input: Total number of tasks: numTasks

Input: Number of tasks performed at a time (preemption): preemptTask

totalSize← 1

preeemp← preemptTask

qPrior← numTasks

while totalSize > 0 and duration < maxDuration)

for[i] = numTasks to 1 with step−1

if queues[i] 6= ∅

qPrior← i

i← 1

end if

end for

if (preempt = 0) or (queues[qPrior].size < preempt)

preempt← queues[qPrior].size

else

preempt← preemptTask

end if

Allocate Thread(queues[qPrior], preempt)

end while

totalSize← 0

for[i] = 1 to numTasks

totalSize← totalSize+ queues[i].size

end for

duration← current.Time −start

Program 10.1: qPrior algorithm.

two coordinates, which are the minimal and maximal value of the preemp-
tion range. In our case, the minimal value of the preemption range can be at
least 1 and the maximal can be at most the total workload to be processed by
the integration process. According to the guidelines of the literature, it is rec-
ommended to use half of the total workload as maximal value for this
range.

The objective function must be linked to the goals of the scheduling prob-
lem because it is used to determine if a potential solution is good enough. The
goal of scheduling is to maximise the number of processed messages per time
unit in the execution of integration processes. In PSO modelling, the value of
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the objective function is defined as «maximise», which means maximising the
throughput average related to the execution derived from the position of the
particle. A strategy to define the initial preemption to the algorithm uses to
explore different solutions and achieve the goal of scheduling. This strat-
egy must reflect the unpredictability of the possible paths that a message
flows in the execution of an integration process. So, it is necessary to provide
enough options for PSO to produce a optimum particle position (solu-
tion). If the range is vast, then the search space explored by PSO is also huge,
hence the algorithm may take a long time to converge and find the near-
optimal solution. A strategy to limit the range of preemption was adopted,
based on software engineers expertise in application integration, to re-
duce the size of the search space. The algorithm stopping criterion parameter
was set to the number of iterations supported by the memory capacity of the
computer used to execute the PSO. Table 10.1 summarises the PSO parame-
ters for a total workload of 2,000,000 messages. Algorithm 6.1 uses Algorithm
6.1 to calculate the optimal value of the throughput, cf. Equation 10.9.

Parameter Value

ω 1

φp 1

φg 1

particle number 20

particle dimension 2

range [25000, 50000], [50000, 75000]

number of iteration 100

Table 10.1: PSO parameters.

10.5 Summary

In this chapter, we mathematically formulated the problem of scheduling
heuristic of integration processes, and then, we proposed a new task schedul-
ing heuristic for integration processes in overload situations, qPrior. This
heuristic separates the tasks that wait for available threads in multiple priori-
tised queues and threads select task to execute according to the priority of the
queue. At each time that a thread polls a queue, it selects a predefined
number of task to execute. We used the Particle Swarm Optimisation meta-
heuristic to find the near-optimal number of tasks that must be selected to
reach better performance in the execution of integration processes.
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Chapter11

MathematicalModel

Life shrinks or expands in proportion to one’s courage.

Anais Nin, French-Cuban American writer (1903-1977)

M
athematical models as linear approaches can express the rela-
tionship between the dependent and the independent variables.
In this chapter, we propose mathematical models that allow pre-
diction of the average of processed messages in the executions

of integration processes, which use the qPrior heuristic.

11.1 Processed messages vs.workload

The first mathematical model (model 1) is a polynomial equation of de-
gree 3 that expresses the average of processed messages as a function of the
workload. It is shown in Equation 11.1.

pm ∼ 1+w+w2 +w3 (11.1)

where:
pm: average of processed messages
w: workload

The terms of Equation 11.1 are indicated in Table 11.1. The column «esti-
mate» indicates the coefficients and constant terms of this equation and are
express in Wilkinson notation [196]. Column «ID» indicates the case study,

 



114 Chapter 11. Mathematical Model

ID Term Estimate R2

CS1

(Intercept) 1.16 106

1
w −1.65

w2 1.97 10−6

w3 −4.76 10−13

CS2

(Intercept) 6.76 105

1
w −0.46

w2 1.01 10−6

w3 −2.25 10−13

CS3

(Intercept) −2.08 106

1
w 4.97

w2 −2.24 10−6

w3 3.43 10−13

CS4

(Intercept) 3.05 106

1
w −4.60

w2 4.57 10−6

w3 −1.02 10−12

Table 11.1: Coefficients model 1.

and column «R2» indicates the correlation coefficient. Table 11.2 shows the
observed values of the averages of processed messages and the estimate
found by our model.

The behaviour of the average of processed messages as function of work-
load by model 1 is expresses by dotted lines of scatter chart, shown in
Figure 11.1. In the execution considering a total workload of 1,000,000 and
1,500,000 messages (msg), the four case studies processed all messages, thus,
up to these workload, the behaviour of the average of processed messages is
a linear of slope equals 1. Considering a total workload of 2,000,000 msg, this
behaviour remained for CS2 and CS4, but it begin to change for CS1 and CS3,
which processed a smaller average of messages than the workload. In the ex-
ecution of the workload of 2,500,000 msg, all case studies processed a smaller
average of messages than the workload, establishing the behaviour of a
decreasing curve for all case studies.



11.2. Processed messages vs. IOTG 115

ID Workload
Averages of processed messages

Observed Estimated

CS1

1000000 1000000 1004000

1500000 1500000 1511000

2000000 1911304 1932000

2500000 1876829 1910000

CS2

1000000 1000000 1011523

1500000 1500000 1554373

2000000 2000000 2147223

2500000 2331044 2640073

CS3

1000000 1000000 996798

1500000 1500000 1489192

2000000 1651450 1625832

2500000 1711751 1661716

CS4

1000000 2000000 2015876

1500000 3000000 3053581

2000000 4000000 4127006

2500000 4238093 4486151

Table 11.2: Comparison observed vs. estimated for model 1.

11.2 Processed messages vs. IOTG

The second mathematical model (model 2) is a generic polynomial equa-
tion that expresses the average of processed messages as a function of all
elements of IOTG, namely, number of every type of task, number of commu-
nication channels, the number of sequential and parallel segments. It is
shown in Equation 11.2.

pm ∼ 1+ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 (11.2)

where:
pm: average of processed messages
x1: number of tasks of type «start»
x2: number of tasks of type «and»



116 Chapter 11. Mathematical Model

0

1000000

2000000

3000000

4000000

5000000

1000000 1500000 2000000 2500000N
u

m
b

e
r 

o
f 

p
ro

ce
ss

e
d

 m
e

ss
a

g
e

s

Workload

Case study 1 Case study 2 Case study 3 Case study 4

Figure 11.1: Average of processed messages by model 1.

x3: number of tasks of type «or»
x4: number of tasks of type «xor»
x5: number of tasks of type «join»
x6: number of tasks of type «message processor»
x7: number of tasks of type «external call»
x8: number of tasks of type «end»
x9: number of communication channels
x10: number of sequential segments
x11: number of parallel segments

We use the stepwise statistical method to build a specific mathemati-
cal model for every workload, which are shown in the «model» column of
Table 11.3. In this table, column «workload» indicates the workload in Ta-
ble 11.3, column «estimate» indicates the coefficients and constant term of this
equation, and column «R2» indicates the correlation coefficient of the model.
Table 11.4 shows the observed values of the averages of processed messages
and the estimate of these averages found by the model. It is possible to ob-
serve that with a workload from 1,000,000 to 1,500,000 messages, qPrior can
process all workload in four cases. In case of this interval of workload, tasks
of type «join» «x5» are the ones that have more impact on the average of pro-
cessed messages. With a workload from 2,000,000 to 2,500,000 msg, qPrior
starts to decrease the productivity and can process workload partially. In the
case of this interval of workload, the tasks of type «external call» «x7» are
ones that more impact the average of processed messages.
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Workload Model Term Estimated R2

1000000 1+ x5 + x6

(Intercept) 2.50 106

1x5 −5 105

x6 −2.05 10−10

1500000 1+ x1 + x5

(Intercept) 3.75 106

1x1 7.11 10−10

x5 −7.50 105

2000000 1+ x7
(Intercept) 6.15 106

0.98
x7 −2.15 106

2500000 1+ x7
(Intercept) 6.50 106

0.95
x7 −2.27 106

Table 11.3: Coefficients of model 2.

Workload x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Observed Estimated

1000000

1 2 1 0 3 6 2 1 18 2 3 1000000 1000000

1 2 0 1 3 6 2 2 19 2 1 1000000 1000000

2 2 0 1 3 7 2 2 20 3 2 1000000 1000000

1 2 0 0 1 8 1 3 16 4 1 2000000 2000000

1500000

1 2 1 0 3 6 2 1 18 2 3 1500000 1500000

1 2 0 1 3 6 2 2 19 2 1 1500000 1500000

2 2 0 1 3 7 2 2 20 3 2 1500000 1500000

1 2 0 0 1 8 1 3 16 4 1 3000000 3000000

2000000

1 2 1 0 3 6 2 1 18 2 3 1911304 1854300

1 2 0 1 3 6 2 2 19 2 1 2000000 1854300

2 2 0 1 3 7 2 2 20 3 2 1651450 1854300

1 2 0 0 1 8 1 3 16 4 1 4000000 4000000

2500000

1 2 1 0 3 6 2 1 18 2 3 1876829 1973200

1 2 0 1 3 6 2 2 19 2 1 2331044 1973200

2 2 0 1 3 7 2 2 20 3 2 1711751 1973200

1 2 0 0 1 8 1 3 16 4 1 4238093 4238100

Table 11.4: Comparison observed vs. estimated for model 2.
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11.3 Generic model for average processed messages

The third mathematical model (model 3) is a generic polynomial equa-
tion that expresses the average of processed messages as a function of both
the workload and the elements of IOTG. The method of stepwise linear re-
gression allows removing of the variables less statistically significant or the
weakly correlated. The resulting model is shown in Equation 11.3, in which
the workload, the tasks of type «message processor», the communication
channels and the parallel segments are the components that impact the aver-
age of processed messages in the execution of integration processes with the
qPrior heuristic.

pm ∼ 1+w+ x6 + x9 + x11 (11.3)

where:
pm: average of processed messages
w: workload
x6: number of tasks of type «message processor»
x9: number of communication channels.
x11: number of parallel segments.

The coefficients and constant term of Equation 11.3 are indicated in the
column «estimate» of Table 11.5. The correlation coefficient indicates that
the model explains about 92% of the variability in the response. The ob-
served averages of processed messages and the ones found by the generic
model are shown in Table 11.6.

Term Estimate

(Intercept) 4.70 106

w 0.88 105

x6 3.13 105

x9 −3.25 105

x11 −2.30 105

Table 11.5: Coefficients of model 3.
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Workload x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Observed Estimated

1000000

1 2 1 0 3 6 2 1 18 2 3 1000000 914437

1 2 0 1 3 6 2 2 19 2 1 1000000 1050165

2 2 0 1 3 7 2 2 20 3 2 1000000 808204

1 2 0 0 1 8 1 3 16 4 1 2000000 2651927

1500000

1 2 1 0 3 6 2 1 18 2 3 1500000 1352834

1 2 0 1 3 6 2 2 19 2 1 1500000 1488562

2 2 0 1 3 7 2 2 20 3 2 1500000 1246601

1 2 0 0 1 8 1 3 16 4 1 3000000 3090324

2000000

1 2 1 0 3 6 2 1 18 2 3 1911304 1791232

1 2 0 1 3 6 2 2 19 2 1 2000000 1926960

2 2 0 1 3 7 2 2 20 3 2 1651450 1684999

1 2 0 0 1 8 1 3 16 4 1 4000000 3528722

2500000

1 2 1 0 3 6 2 1 18 2 3 1876829 2229630

1 2 0 1 3 6 2 2 19 2 1 2331044 2365357

2 2 0 1 3 7 2 2 20 3 2 1711751 2123397

1 2 0 0 1 8 1 3 16 4 1 4238093 3967120

Table 11.6: Comparison observed vs. estimated model 3.

11.4 Comparison of the models

The first mathematical model takes account of only the workload, there is
a single equation, but the coefficients are specific for each integration process.
Model 1 accurately represents the behaviour of the number of processed mes-
sages for all case studies tested, with the correlation coefficient equals to 1.
The second mathematical model considers the elements of the IOTG that
represent each integration process, so there are specific equations and coeffi-
cients for each workload. The elements that influence this model are the
number of tasks «start», «join», «message processor», and «external call».
Model 2 has a correlation coefficient above 0.95. The third mathematical
model regards either the workload and the elements of the IOTG, so there are
a single equation and coefficients for all studies cases and workloads. The el-
ements that influence this model are the workload, the number of tasks
«message processor», the number of communication channels and the num-
ber of parallel segments. Model 3 is the most generic yet also has a high
correlation coefficient, which equals to 0.92. Table 11.7 summarises the influ-
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ences, the coverage, and the accuracy of every mathematical model for the
average of processed.

Model Influence elements Coverage
Accuracy

(R2)

Model 1 workload single equation and specific coefficients 1

Model 2
tasks «start», «join»,

specific equations and coefficients 0.95 to 1«message processor»,

and «external call»

Model 3

workload,

single equation and coefficients 0.92
tasks «message processor»,

communication channels,

and parallel segments

Table 11.7: Comparison of the mathematical models.

11.5 Summary

We have developed mathematical models for prediction of the aver-
age of processed messages in executions of integration processes by the
qPrior heuristic by means of the statistic technique of linear regression. The
first model for this average is a function of the workload; the second, a func-
tion of the elements of their representation by an integration operation typed
graph; and, the third model, a function of both workload and IOTG ele-
ments. For every model, we indicated the coefficients and constant terms as
well as the correlation coefficient. Then, we applied the model and compared
the observed and estimated values.
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IntegrationProcessSimulator

To be able to code gives you the freedom to build
anything and that is just so empowering.

Karlie Kloss, American fashion model and entrepreneur

T
he behaviour of the execution of integration processes can be ob-
served safely by simulations, which allow the analysis of different
scenarios with a good level of details. Besides, simulation is usually
less expensive and take less time than experiments with real assets.

In this chapter, we describe the Integration Process Simulator (IPS) †1, a simu-
lator that we implemented for heuristics for task scheduling of integration
processes.

12.1 Overview

The activities of the IPS shown in Figure 12.1 and its interface in Ap-
pendix B. The simulation receives the input parameters, such as the profile of
the integration process, and simulates the input of messages by annota-
tion of first tasks in a queue. Then, iteratively, it executes the heuristic
selected until the time duration of the simulation to be achieved. After ev-
ery simulation, it prints and stores performance metrics. The running is
stopped when the limit of simulations is achieved.

The architecture of the IPS allows the incorporation of any scheduling
heuristic. In its current version, IPS allows the simulation of the heuris-
tics: First-In-First-Out (FIFO), Multi-queue Round Robin (MqRR), and Query

†1github.com/gca-research-group/Integration-Process-Simulator
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Figure 12.1: Diagram of activities of IPS.

Priority (qPrior). FIFO is adopted in most open source integration plat-
forms [68], so we used as a reference of comparison for the heuristic proposed
in this research. MqRR is a scheduling heuristic, based on Round Robin, a
heuristic popularly known by its simplicity and efficiency in computing [185,
202, 207]. MqRR is another alternative that IPS provides as reference of com-
parison. qPrior is our heuristic for task scheduling that seeks to increase
the performance of the execution of integration processes in an overload
situation.

When a FIFO heuristic is adopted, there is a single queue of annotations of
executions of tasks that enqueue the instances of all the tasks ready to be exe-
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cuted and are waiting for available threads. Annotations of executions of
tasks are queued in ascendant order of time. In the head of the queue is the
task that longest waits, and in the tail is the task that arrived most recently.
Available threads recurrently poll the head of the queue for a annotation of
execution of a task and, if a task is found, a thread executes entirely the task.

When the scheduling follows a MqRR heuristic, there are multiple queues
of annotations of executions of tasks, and each queue maintains the annota-
tions of executions of instances of a task. Thus, the number of queues is
equals to the number of tasks of the integration process. However, annota-
tions of executions of tasks that belong to parallel sequences are maintained
in the same queue because these tasks can be executed in parallel. Annota-
tions of executions of tasks are also maintained in the queues in ascendant
order of time, and available threads recurrently poll the queues and exe-
cute tasks according to the annotations existing. A thread polls the queues of
tasks in a circular order, executing a predefined number of tasks of every
queue, each time. We refer to this predefined number of tasks as preemption.

The qPrior heuristic is similar to MqRR heuristic. In this heuristic, there
are also multiple queues of annotations of executions of tasks; however,
threads poll the queues following order of priority, in which the more
predecessors a task has, the higher its execution priority.

Performance metrics, such as makespan, throughput, number of pro-
cessed messages, and the number of remained messages can be obtained
from IPS. It is possible to vary the time of simulation, the initial workload of
messages, the total workload of messages, the rate of inbound messages, and
the integration process, creating different scenarios for the simulations.
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12.2 Algorithms

The IPS is compose of the ten algorithms: «Main», «Profile», «FIFO»,
«MqRR», «qPrior», «Receive», «Route», «Allocation», «Operation»,
and «Send». The codes of these algorithms are presented and detailed in the
following section.

«Main» is the algorithm responsible for receiving parameters and call-
ing the other ones. It coordinates the simulation of integration processes. Its
code is shown in Algorithm 12.1. The input parameters of «Main» are the
number of simulations, the maximum duration of the simulation, maxi-
mum number of messages (workload), the heuristic to follow, and the
number of tasks performed at a time (preemption). The last input parame-
ter is the number of tasks that must be executed every time a thread polls a
queue. For the FIFO heuristic, the preemption parameter is not necessary.
Firstly, the algorithm creates one or more queues for tasks. If the heuris-
tic is FIFO, it creates a single queue; otherwise, it creates a queue for each task
of the integration process. Following, it calls another algorithm that anno-
tates the instances of the first task in the correspondent queue, after, it calls
the algorithm that performs the heuristic. When the duration of simula-
tion expires, the algorithm calculates the performance metrics and then,
prints and records these numInputTasks in a text file.

«Profile» is the algorithm that contains information about an integra-
tion process and is used as parameters in the other algorithms. Its code is
shown in Algorithm 12.2. It receives a Vector containing identification of
tasks, a vector containing parallel tasks, a vector containing the execution
time of the tasks, a vector containing the operations of the tasks, a vector con-
taining the next tasks, and a vector containing last tasks. It calculates the
number of tasks of the integration process by the length of a Vector contain-
ing identification of tasks. A profile is specific for each integration process, cf.
shown in Appendix A.

«FIFO» is the algorithm that implements the First-In-First-Out heuristic
for the task scheduling of integration processes and its code is shown in Algo-
rithm 12.3. It receives a queue of tasks, the maximum duration of the
simulation, and the start time of input of the first task in the queue. The algo-
rithm starts by initialising the auxiliary variable «totsize» that corresponds to
total size of a queue. After it recursively calls another algorithm to allo-
cate threads to perform tasks until the simulation time expires or up to the
time that there is no tasks in the queue.
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«MqRR» is the algorithm that implements the Multi-queue Round Robin
heuristic for the task scheduling of integration processes and its code is shown
in Algorithm 12.4. It receives a queues of tasks, the maximum duration of the
simulation, and the start time of input of the first task in the queue, the total
number of tasks, and the number of tasks performed at a time (preemp-
tion). This last input parameter is used to indicate the number of tasks that
the threads must execute every time a queue is polled. The algorithm starts
by initialising two auxiliary variables: «totsize» and «preempt». The former
variable corresponds to total size of a queue and the latter variable to the pre-
emption. The algorithm checks the queues from the first to the last task, and
it keeps checking them in a circular order. When the size of the queue is
smaller than «preempt», the algorithm executes all tasks that are in the
queue. This algorithm calls another algorithm to allocate threads to execute
tasks, while there are tasks in the queue and the duration of the simulation is
lower than the input parameter that stipulates the maximum duration.

«qPrior» is the algorithm that implements the Queue Priority heuristic
for the task scheduling of integration processes and its code is shown in Algo-
rithm 10.1 in Chapter 10. It receives a queues of tasks, the maximum duration
of the simulation, and the start time of input of the first task in the queue, the
total number of tasks, and the number of tasks performed at a time. This last
input parameter is used to indicate the number of tasks that the threads must
execute every time a queue is checked. This algorithm starts by initialising
two auxiliary variables: «totsize» and «preempt». The former variable corre-
sponds to total size of a queue and the latter variable to the preemption. The
algorithm checks the queues from the highest priority queue until the low-
est priority queue. When the size f the queue is smaller than value specified
for variable «preempt», the algorithm executes all tasks that are in the
queue; otherwise, only the number of task equals «preempt» will be execu-
ted. The algorithm calls another algorithm to allocate threads to execute
tasks, while there are tasks in the queue and the duration of the simulation is
lower than the input parameter that stipulates the maximum duration.

«Allocation» is the algorithm responsible for managing and allocating
threads that execute the tasks of integration processes and its code is shown
in Algorithm 12.5. It receives a queue of tasks, the maximum duration of the
simulation, the maximum number of messages, the preemption, and a vector
containing the ending tasks. The algorithm starts by initialising the auxil-
iary variable «preempt», and then it continuous with the creation of a pool of
threads, which is elastic and take advantage of the multicore CPU. The algo-
rithm selects tasks of the queue, from head to tail, until it achieves the number
of tasks equals to the preemption. When the size f the queue is smaller than
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value specified for variable «preempt». The algorithm submits the task to the
pool of threads and calls the algorithm responsible by executing the opera-
tion of tasks. After the execution, the algorithm removes the task from
the current queue. Then, it checks if the task belongs to a vector contain-
ing the ending tasks. If the task is not an ending task, the algorithm annotates
the task in the next queue, according to the logic of the process integration.
After all there operation, the algorithm destroys the pool of threads.

«Route» is the algorithm responsible to define to next queue where a task
must to be annotated, following the precedence order of the logic of an inte-
gration process and its code is shown in Algorithm 12.6. It receives a task, a
vector containing the next queues of tasks, and a vector containing the opera-
tions of the tasks. It starts by initialising the auxiliary variable «operLeng»
that corresponds to the length of a vector containing the operations of the
tasks. When the length of this vector is equals to zero, it means that the task
has single output and then it must be annotated in only one queue. Other-
wise, the task must be annotated in the queues according with information
contained in vector «vetorNextTask» of the profile of the integration process.
If the operation of the task equals «AND, the task must be annotated in all the
next queues. If the operation of the task equals «XOR», the task must be anno-
tated in only one of the queues. The operation «OR» acts as both «AND» and
«xOR», i.e., the task can be annotated in one or more queues.

«Operation» is the algorithm that simulates the execution of tasks and
its code is shown in Algorithm 12.7. As previously mentioned, the opera-
tion of a task can be to transform, filter, split, join, or route messages. Each
operation has an execution time with an interval of variation. This algo-
rithm receives a task and a vector containing an interval of the execution
time of tasks. Then, it randomly selects a value into an interval of execu-
tion times and waits during this time, simulating the time that the task spent
executing its operation.

«Send» is the algorithm responsible for annotation of tasks in the queues,
cf. Algorithm 12.8. This algorithm receives a task and a vector contain-
ing parallel tasks. The vector containing parallel tasks indicates if a task can
be executed in parallel with another task. The algorithm checks the heuris-
tic used and annotates the task in a queue according to heuristic. When the
heuristic used is FIFO, the algorithm annotates the task in the FIFO queue.
When the heuristic used is MqRR or qPrior, it first checks the vector con-
taining parallel tasks and. If these tasks are parallel tasks, the algorithm
annotates the task in same queue of the parallel task, else each task is
annotated in its queue.
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«Receive» is the algorithm responsible for annotating of tasks in the first
queue, which corresponds to the queue of the first task of an integration pro-
cess. Thus, it simulates the arrival of messages in the integration process. Its
code is shown in Algorithm 12.9. This algorithm receives the number of input
tasks «numInputTask» and checks the heuristic used. When the heuris-
tic used is FIFO, the algorithm annotates the task in the FIFO queue. When
the heuristic used is MqRR or qPrior, it annotates the task in the queue of the
first task.
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Input: Number of simulations: numSimulation

Input: Maximum duration of the simulation: maxDuration

Input: Number of inbound messages: messInbound

Input: Heuristic: policy
Input: Preemption: preemptTask

starTtime[], endTime[]

while count ≤ numSimulation

if policy = «FIFO»

queues[0]

else

for[i] = 1 to numTasks

queues[i]

end for

end if

for[i] = 1 to messInbound

startTime[i]← current.Time

if policy = «FIFO»

queues[0]← add(1)

else

queues[1]← add(1)

end if

end for

switch policy

case «FIFO»

FIFO()

end case

case MqRR

MqRR( ))

end case

case «qPrior»

qPrior( ))

end case

end switch

count← count+ 1

end while

if messProc > 0

throughput← (messProc/(endTime[messProc] − startTime[1]))

end if

Record Archive(simulationFile)

Program 12.1: Main algorithm.
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Input: Vector containing identification of tasks : idTask[ ]
Input: Vector containing parallel tasks : parallelTask[ ]
Input: Vector containing the execution time of the tasks : timeExec[ ]

Input: Vector containing the operations of the tasks: operTask[ ]
Input: Vector containing the next tasks : nextTask[ ]
Input: Vector containing last tasks: lastTask[ ]

numTasks← idTask.length

Program 12.2: Profile algorithm.

Input: Queue of tasks: queues[0]
Input: Maximum duration of the simulation: maxDuration

Input: Time start of the simulation: start
totSize← queues[0].size

while totSize > 0 and duration < maxDuration)

if queues[i] 6= ∅

Allocation (queues[0], totSize)

end if

duration← current.Time −start

totSize← queues[0].size

end while

Program 12.3: FIFO algorithm.
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Input: Queues of tasks: queues[ ]
Input: Maximum duration of the simulation: maxDuration

Input: Time start of the simulation: start
Input: Total number of tasks: numTasks

Input: Number of tasks performed at a time (preemption): preemptTask

totSize← 1

preeemp← preemptTask

while totsize > 0 and duration < maxDuration)

for [i] = 1 to numTasks

if queues[i] 6= ∅

if (preempt = 0) or (queues[i].size < preempt)

preempt← queues[i].size

else

preempt← preemptTask

end if

Allocation (queues[i], preempt)

end if

end for

totSize← 0

for [i] = 1 to numTasks

totSize← totSize+ queues[i].size

end for

duration← current.Time −start

end while

Program 12.4: MqRR algorithm.
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Input: Queue of tasks: queues[i]
Input: Maximum duration of the simulation: maxDuration

Input: Maximum number of messages: maxMessages

Input: Number of tasks performed at a time (preemption): preempt

Input: Vector containing last tasks: lastTask[ ]
preeemp← preemptTask

Creates elastic pool of threads for [j] = 1 to preempt

if duration < maxDuration)

task← queues.head

if task 6= null

Submits Operation(task) to a pool of threads

for [j] = 0 to lastTask[ ].length

if task 6= lastTask[j]

lastTask = 1

end if

end for

if lastTask = 0

Route (task)

else

endTime[]← current.Time

end if

Removes task of the queue[i]

Shutdown pool of threads

end if

if queue[i].size < preempt

preempt← queue[i].size

else

preempt← preemptTask

end if

else

i← preempt+ 1

end if

duration← current.Time− start

if maxMessages>startTime.size()

Receive Add()

else

duration← maxDuration

end if

end for

Program 12.5: Allocation algorithm.
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Input: Task : task
Input: Vector containing next tasks : nextTask[ ]
Input: Vector containing operation tasks: operTask[ ]

operLeng← operTask[task].length

switch operLeng

case 0

nextTask← nextTask[task][1]

Send (nextTask)

end case

case 1 or 2

if operLeng = 2

operRad = random operTask[task][ ]

else

operRad = operTask[task]

end if

if operRad = or

nextTask = randomnextTask[task][1]

Send (nextTask)

else

if operRad = and

for [i] = 1 to nextTask[task].length

nextTask = nextTask[task][i]

Send (nextTask)

end for

end if

end if

end case

end switch

Program 12.6: Route algorithm.

Input: Task : task
Input: Vector containing execution time tasks : timeExec[ ]

time← random timeExec[task][ ]

Waits time

Program 12.7: Operation algorithm.
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Input: Task : task
Input: Vector containing parallel tasks : parallelTask[ ]

if policy = «FIFO»

queues[0]← add(task)

else

if policy = «MqRR» or policy = «qPrior»

if parallelTask[task] 6= 0

parallel = parallelTask[task]

queues[parallel]← add(task)

else

queues[task]← add(task)

end if

end if

end if

Program 12.8: Send algorithm.

for[i] = 1 to numInputTask

startTime[]← current.Time

if policy = «FIFO»

queues[0]← add(1)

else

if policy = «MqRR» or policy = «qPrior»

queues[1]← add(1)

end if

end if

end for

Program 12.9: Receive algorithm.
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12.3 Summary

In this chapter, we have described the tool that we have implemented,
called Integration Process Simulator. This tool allows the simulation of the
execution of integration processes, performing their task scheduling by seve-
ral heuristics. Its goal ist evaluate the performance of these heuristics. For
this, IPS provides performance metrics, such as: such as makespan, through-
put, number of processed messages, and the number of remained messages.
Currently, our simulator endows the heuristics: FIFO, MqRR, and qPrior, but
others can be incorporated. Its source code is compose of ten algorithms.
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Experiments

In a modern and innovative society, where advancements are plentiful, and
communication is instantaneous, science and technology are a part of

everyday life.

Julie Payette, Canadian Politician

S
imulation-approach allows the evaluation of traditional and novel
heuristics and measurement of their impact on the performance of the
execution of integration processes. In this chapter, we simulate the
execution of integration processes to validate our heuristic. We relate

two experiments that aim to evaluate the performance of executions of inte-
gration processes. The first experiment verifies the impact of the preemption
in performance of executions using qPrior and uses the PSO meta-heuristic to
find the near-optimal preemption. The second experiment verifies the impact
of the workload on the performance of executions using FIFO and qPrior.

13.1 Experimental protocol

The experiments followed a protocol based on Jedlitschka and Pfahl [95],
Wohlin et al. [198], and Basili et al. [17], with procedures for controlled exper-
iments in the field of software engineering and its steps are «Definition»,
«Planning», «Execution», and «Results». «Definition» is the step of main deci-
sions regarding the experiment. «Planning» is the step to the organisation of
elements needed to experiment. «Execution» is the step that detail proce-
dures of the experiment. «Results» is the step of present and analysis of the
results of the experiment. These steps and their respective activities are
shown in Figure 13.1 and, in following, detail them.
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Figure 13.1: Experiment protocol.

Definition

• Research questions and hypotheses. Indication of the null hy-
potheses that are going to be confirmed or refused by the
experiments.

• Independent and dependent variables. Indication of the variables
to be measured and which will allow further comparison.

Planning

• Environment. Presentation of technical information about the
hardware in which the experiment is performed.

• Tools. Presentation of technical information about software that
support the conducting of the experiment.
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Execution

• Procedure. Description of the scenarios of the experiment and
statistical procedure for analysis of results are described.

• Data collection. Indication of how data will be collected for the
variables in the experiments.

Results

• Presentation. Tables and charts show the results of the metrics
collected in the experiments.

• Discussion and comparison. Argumentation regarding the results
to respond to the research question and confirm or refute the
hypotheses.

• Threats to validity. Description and evaluation of the factors that
could influence the results of the experiment and the strategies to
mitigate these threats.

13.2 Preemption evaluation

In this experiment, we compared the performance of executions of an inte-
gration process using the heuristic qPrior, varying the preemption. The goal
is to verify if the preemption impacts on the performance of executions and if
the PSO meta-heuristic found the near-optimal preemption for qPrior.

Research question and hypothesis

This experiment aims to answer the following research question:

RQ: Does the performance of the executions of integration processes
improve when the qPrior heuristic uses an optimal preemption?

Our hypothesis to this research question is that:

H: The qPrior heuristic improves the performance of the executions of inte-
gration processes when it uses an optimal preemption since, the PSO
algorithm can find the optimal or near-optimal, preemption.
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Variables

The independent variables controlled in the experiment are:

Integration process. The conceptual model of the integration process taken
as input. The model tested for this variable was case study 1.

Workload. The number of inbound messages. The value tested for this
variable was 2,000,000 msg.

Initial workload. The initial number of inbound messages. The value tested
for this variable was 1,000 msg.

Rate of inbound messages. The number of inbound messages added period-
ically to the integration process. The value tested for this variable was
1,000 msg.

Preemption. Number of tasks executed at each time queue checking. The
values tested for this variable were 100, 500, 1,000, 10,000, 25,000, 50,000,
75,000, 100,000, 500,000, 1,000,000, 1,500,000, and 2,000,000 tasks.

The dependent variable measured in the experiment is:

Throughput. The number of processed messages by time unit.

Environment and supporting tools

We carried out the experiments on a machine equipped with 16 proces-
sors Intel Xeon CPU E5-4610 V4, 1.8 GHz, 32GB of RAM, and operating
system Windows Server 2016 Datacenter 64-bits. We used the Java program-
ming language, version 8.0 update 152, to implemented and execute the
IPS simulator. We used the Genes [38] software, version 2015.5.0, to pro-
cess the descriptive statistics, ANOVA and Scott & Knoot tests for the
performance metrics used in this study.
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Execution and data collection

The experiment was conducted using the IPS simulator, which simu-
lates the execution of the case studies aforementioned. The simulation starts
with a workload of 1,000 msg and receives 1,000 msg every 100 execu-
tions of tasks. We set the maximal total workload to 2,000,000 msg and
the maximal time of duration for the simulation to 60s. Thus, the simula-
tor stops the generation of messages when it reaches this maximal number of
messages and stops running after 60s. Then, the simulator stores the preemp-
tion and throughput in a text file. After we handled and statistically analysed
this information. We tested the execution using 12 different size for preemp-
tion. For each one of them, we repeated 25 times the execution of the qPrior
heuristic, resulting in 300 scenarios, summarised in Table 13.1.

Integration Process case study 1 1

Total workload 2,000,000 msg 1

Rate of inbound messages 1,000 msg 1

Initial workload 1,000 msg 1

Preemption 100, 500, 1,000, 10,000, 25,000, 50,000, 75,000,
100,000, 500,000, 1,000,000, 1,500,000, and
2,000,000 tasks

12

Repetitions 1...25 25

Scenarios 1 x 1 x 1 x 1 x 12 x 25 300

Table 13.1: Scenarios for preemption evaluation.

We tested the PSO algorithm with the range for search space [25000:75000].
For the case study 1, the best throughput was 30528,985,783 msg/s, found the
near-optimal preemption equals to 50000 tasks, and the execution time of
PSO algorithm took 7203 seconds. The output of the PSO algorithm is shown
in Table 13.2.

Results

The average throughputs obtained in the 25 repetitions of the simula-
tion for every value of the preemption are shown in Figure 13.2, where the
x-axis represents preemption, and the y-axis represents the average through-
put in messages per seconds (msg/s). In this figure, we outline the values in
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Test Function : qPriorPSO

Number of particles : 20

Iterations : 100

Global Best Position : [50000,0, 55000,0]

Global Best value : 0.000032755755697

Preemption : 55000,0

Throughput ( msg/s) : 30528.985

Duration qPrior(s) : 60.000

f(25000, 75000) : 0.000032755755697

BUILD SUCCESSFUL (total time: 2,001 minutes 3 seconds))

Table 13.2: Output of PSO algorithm.

which occurs the maximal throughput: 32,672 msg/s using a preemption of
50,000 tasks and 32,659 msg/s using a preemption of 1,500,000 tasks.

The analysis of throughput variance of execution of the case study 1 under
a workload of 2,000,000 msg is shown in Table 13.3. The average square of the
throughput was 3,374,239 for the preemption and 163,458 for error. The over-
all average was equal to 32,148 msg, and the coefficient of variation was
1.25%. The Scott & Knott test of the throughput, with an error level of 5%, is
present in Tables 13.4. First column represent the preemption and the aver-
age of the throughput is represented in the second column. There were four
groups: «a», «b», «c» and «d». Group «a» refers to the preemption with the
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Figure 13.2: Average throughput regarding preemption.
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Sources of variation Degree of freedom Average square

Preemption 11 3374239 †

Error 188 163458

Total 199

Overall average 32,148

Coefficient of variation (%) 1.25
† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 13.3: Variance analysis of the throughput for preemption evaluation.

highest average of the throughput, group «b» refers to the preemption with
the second-highest, group «c» refers to the preemption with the third-highest,
and group «d» refers to the preemption with the lowest average of the
throughput. The preemptions of 50,000 and 1,500,000 tasks were in group «a»
with the highest average of of throughput. The preemptions of 100, 10,000,
25,000, 100,000, 1,000,000, and 2,000,000 tasks were in group «b». The preemp-
tions of 1,000, 75,000, and 500,000 tasks were in group «c». The preemption of
500 tasks was in group «d» with the lowest average of of throughput.

Preemption
Average square

Throughput

50,000 32,671 «a»

1,500,000 32,658 «a»

100 32,219 «b»

10,000 32.177 «b»

25,000 32.245 «b»

100,000 32.218 «b»

1,000,000 32.331 «b»

2,000,000 32.219 «b»

1,000 31.855 «c»

75,000 31.932 «c»

500,000 31.958 «c»

500 31.298 «d»
Error level of 5% by the Scott & Knoot model.

Table 13.4: Scott & Knott test for preemption.
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Discussion

In the experiment with the simulations of execution of the integration pro-
cesses confirmed the value for near-optimal preemption found by the PSO
algorithm. The best average throughput was 32,671 msg/s using a preemp-
tion of 50,000 tasks. The worst case was the throughput of 31,298 msg/ms,
using a preemption of 500 tasks. A parable of concave down, in the interval
between 25,000 and 75,000 msg, represents the behaviour of the through-
put as a function of the preemption. This parable confirms that there is
a preemption in which the throughput is maximal. The PSO algorithm
found the near-optimal preemption, but its response time was 2,001 min-
utes, far superior to the average execution time of the simulation of the
integration process (60s). So, this meta-heuristic must be used as a prelimi-
nary method, in cases of high workloads, in which the interval of values for
preemption is larger since choosing the proper preemption is a challenge.

The use of different preemption generates a significant difference in the
average of the throughput, cf. Table 13.3, so the search for a proper preemp-
tion is justified. The low values for the coefficients of variation indicate the
adequacy and reliability of the experiment. In the Scott & Knott avera-
ges comparison test, there were three different groups of throughputs, cf.
Table 13.4. A statistical difference between the three groups of preemp-
tion was found, but there was no difference between the preemptions of the
same group. In group «a», which contain the best averages of through-
put, it is possible to opt by any preemption to obtain the same statistic result
for the throughput.

The performance of the qPrior was also evaluated using different preemp-
tion, including those found by PSO algorithm. First, we verified if there was a
significant difference in the performance of the qPrior heuristic, using differ-
ent preemptions. The performance metric used was the throughput, and the
statistic test was the ANOVA. Then, we use Scott & Knoot test to group the
similar ranges, in which there was no statistic difference between the use of
the ranges belonged to the same group.

Regarding the research question:

RQ: The performance evaluated by the throughput of the execution of a real-
world integration process under high workloads, improved by the use
of the preemption found by PSO algorithm in the task scheduling
carried out by qPrior heuristic.



13.3. Workload evaluation 145

By the experiment, we confirm our hypothesis:

H: The PSO algorithm found out a near-optimal preemption for the task
scheduling using the qPrior heuristic, resulting in higher through-
put of the execution for the integration processes under high workload
than using other random values for the preemption.

13.3 Workload evaluation

In this experiment, we compared the performance of executions of the in-
tegration processses by the heuristics FIFO and qPrior, varying the workload.
The goal is to verify the impact for workload in performance of executions.

Research Question and Hypothesis

This experiment aims to answer the following research question:

RQ: What is the behaviour of the performance of the executions of
integration processes using qPrior when the workload increases?

Our hypothesis to this research question is that:

H: The performance of the executions of integration processes is better when
using qPrior than when using FIFO when the workload increases.

Variables

The independent variables controlled in the execution of the algorithm are:

Heuristic. The heuristic used to task scheduling. The heuristics tested were:
FIFO and qPrior.

Integration process. The conceptual model of the integration process. The
model tested were: case study 1, case study 2, case study 3, and case
study 4.

Workload. The number of inbound messages. The value tested for this vari-
able were 1,000, 10,000, 100,000, 500,000, 1,000,000, 1,500,000, 2,000,000,
and 2,500,000 msg.
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Initial workload. The initial number of inbound messages. The value tested
for this variable was 1,000 msg.

Rate of inbound messages. The number of inbound messages added period-
ically to the integration process. The value tested for this variable was
1,000 msg.

Preemption. The number of task executed at each time queue checking. The
values tested for this variable was 50000 tasks.

The dependent variable measured in the execution of the algorithm is:

Processed messages. This variable corresponds to the number of inbound
messages that are entirely processed by the integration process.

Remained messages. This variable corresponds to the number of inbound
messages that are not processed by the integration process.

Throughput. The number of processed messages by time unit.

Makespan. The elapse time between the start time of the first message that
entered and the end time of the last message that leaves the integration
process.

Environment and supporting tools

We carried out the experiments on a machine equipped with 16 proces-
sors Intel Xeon CPU E5-4610 V4, 1.8 GHz, 32GB of RAM, and operating
system Windows Server 2016 Datacenter 64-bits. We used the Java program-
ming language, version 8.0 update 152, to implemented and execute the
IPS simulator. We used the Genes [38] software, version 2015.5.0, to pro-
cess the descriptive statistics, ANOVA and Scott & Knoot tests for the
performance metrics used in this study.

Execution and data collection

The experiment was conducted using the IPS simulator, which simu-
lates the execution of the case studies aforementioned. The simulation starts
with a workload of 1,000 msg and receives 1,000 inbound messages every 100
executions of tasks. The execution time of each task varies within an inter-
val, in seconds, according to the profile of the integration process. For the
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Heuristics FIFO and qPrior 2

Integration Processes case study 1, case study 2, case study 3, and
case study 4

4

Total workloads 1,000, 10,000, 100,000, 500,000, 1,000,000,
1,500,000, 2,000,000, and 2,500,000 msg

8

Rate of inbound messages 1,000 msg 1

Initial workload 1,000 msg 1

Preemption 50,000 tasks 1

Repetitions 1...25 25

Scenarios 2 x 4 x 8 x 1 x 1 x 1 x 25 1600

Table 13.5: Scenarios for comparison of heuristics regarding workloads.

qPrior heuristic, the preemption used, number of tasks performed at a
time, was set to 50,000 tasks. We set the maximal number of inbound mes-
sages and the maximal time of duration for the simulation to 60s. Thus, the
simulator stops the generation of messages when it reaches this maxi-
mal number of messages and stops the running after 60s. Then, the simulator
stores the workload, the number of processed messages, the number of re-
mained message, the makespan, and the throughput in a text file. After, we
handled and statistically analysed these metrics. We tested the execution us-
ing 8 workloads and 4 case studies. For each one of them, we repeated 25
times the execution using qPrior and 25 times using FIFO, resulting in 1600
scenarios, summarised in Table 13.5.

Results

The average values of dependent variables obtained in the 25 repeti-
tions of the simulation for every value of the workload are shown
in scatter charts. The x-axis represents the workload for every heuris-
tic. The y-axis represents the metric measured. We consider 1,000, 10,000,
100,000, and 500,000 inbound messages as low workloads and 1,000,000,
1,500,000, 2,000,000, and 2,500,000 inbound messages as high workloads. Fig-
ures 13.3, 13.11, 13.19, and 13.27 represent the average processed with low
workloads; and Figures 13.4, 13.12, 13.20, and 13.28 represent the aver-
age processed with high workloads. Figures 13.5, 13.13, 13.21, and 13.29
represent the average remained messages with low workload; and Fig-
ures 13.6, 13.14, 13.22, and 13.30 represent the average remained messages
with high workloads. Figures 13.7, 13.15, 13.23, and 13.31 represent the
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average throughput with low workloads; and Figures 13.8, 13.16, 13.24,
and 13.32 represent the average throughput with high workloads. Fig-
ures 13.9, 13.17, 13.25, and 13.33 represent the average makespan with low
workloads; and Figures 13.10, 13.18, 13.26, and 13.34 represent the average
makespan with high workloads.

Results for case study 1

The average of processed messages in the execution of the case study 1 are
shown in Figure 13.3 and Figure 13.4. In the simulations with low work-
loads: 1,000, 10,000, 100,000, and 500,000 msg, both heuristics, FIFO and
qPrior, processed the inbound workloads entirely. In the simulation with a
workload of 1,000,000 msg, the average of processed messages was equal
to 1,000,000 msg with two heuristics: FIFO and qPrior. In the simulation
with a workload of 1,000,000 msg, the average of processed messages was
equal to 1,000,000 msg with two heuristics: FIFO and qPrior. In the simula-
tion with 1,500,000 msg, the average of processed messages when using FIFO
was equal to 522,315 msg, whereas using qPrior, all messages were success-
fully processed. In the simulation with 2,000,000 msg, 656 msg in average,
were processed when using FIFO and 1,911,304 msg were processed when
using qPrior. In the simulation with 2,500,000 msg, no message was pro-
cessed when using FIFO in the elapsed time of the simulation; and, in case of
qPrior, the average of processed messages was equal to 1,876,829 msg.
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qPrior 1,000 10,000 100,000 500,000
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Figure 13.3: Average processed messages in case study - low workload.

The average of remained messages in the execution of the case study 1 are
shown in Figure 13.5 and Figure 13.6. In the simulations with low work-
loads: 1,000, 10,000, 100,000, and 500,000 msg, and with a high workload of
1,000,000 msg, there were no remained messages. In the simulation with
1,500,000 msg, the average of remained messages was equal to 1,359,833 msg
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Figure 13.4: Average processed messages in case study 1 - high workload.

when using FIFO and no message when using qPrior. In the simulation with
2,000,000 msg, 1,999,344 msg remained on average when using FIFO and
88,696 msg when using qPrior. Then, in the simulation with 2,500,000 msg, all
message remained when using FIFO and 623,171 msg remained on average
when using qPrior.
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Figure 13.5: Average remained messages in case study 1 - low workload.

The throughput in the execution of the case study 1 are shown in Fi-
gure 13.7 and Figure 13.8. In the simulation with a workload of 1,000 msg, the
average throughput achieved, in messages per seconds, was 24,554 msg/s
when using FIFO and 29,116 msg/s when using qPrior. In the simula-
tion with 10,000 msg, the average throughput achieved was 27,494 msg/s
when using FIFO and 33,393 msg/s when using qPrior. In the simula-
tion with 100,000 msg, the average throughput achieved was 27,078 msg/s
when using FIFO and 34,090 msg/s when using qPrior. Then, in the simula-
tion with 500,000 msg, the average throughput achieved was 25,365 msg/s
when using FIFO and 32,937 msg/s when using qPrior.
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Figure 13.6: Average remained messages in case study 1 - high workload.

In the simulation with a workload of 1,000,000 msg, the average
throughput achieved, in messages per seconds, was 24,034 msg/s when us-
ing FIFO and 31,700 msg/s when using qPrior. In the simulation with
1,500,000 msg, the average throughput achieved was 2,334 msg/s when us-
ing FIFO and 31,744 msg/s when using qPrior. In the simulation with
2,000,000 msg, the average throughput achieved was 11 msg/s when us-
ing FIFO and 31,855 msg/s when using qPrior. Then, in the simulation with
2,500,000 msg, the average throughput achieved was 0 msg/s when using
FIFO and 31,280 msg/s when using qPrior.
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Figure 13.7: Average throughput in case study 1 - low workload.

The makespan in the execution of the case study 1 are shown in Figure 13.9
and Figure 13.10. In the simulation with a workload of 1,000 msg, the aver-
age makespan achieved, in seconds, was 0.04s when using both FIFO and
qPrior. In the simulation with 10,000 msg, the average makespan achieved
was 0.36s when using FIFO and 0.30s when using qPrior. In the simulation
with 100,000 msg, the average makespan achieved was 4s when using FIFO
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Figure 13.8: Average throughput in case study 1 - high workload.

and 3s when using qPrior. In the simulation with 500,000 msg, the average
makespan achieved was 20s when using FIFO and 15s when using qPrior.

In the simulation with a workload of 1,000,000 msg, the average makespan
achieved, in seconds, was 42s when using FIFO and 32s when using qPrior.
In the simulation with 1,500,000 msg, the average makespan achieved was
60s when using FIFO and 47s when using qPrior. In the simulation with
2,000,000 msg, the average makespan achieved was 60s with both heuristics.
In the simulation with 2,500,000 msg, the average makespan did not calculate
when using FIFO because no message was processed in the elapsed time of
the simulation; and in case of qPrior, the average makespan achieved was 60s.
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Figure 13.9: Average makespan in case study 1 - low workload.

Results for case study 2

In case study 2, there are three possible paths to an inbound message, cf.
mentioned in 8.3. However, only 0.1% of the messages pass-through of the
path, composed by tasks {tstart, t1, t2, t2end}, which the path corresponds to
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Figure 13.10: Average makespan in case study 1 - high workload.

«Invalid Items Log». So, we consider that this path has 0.1% of chance of oc-
curs during a simulation. The average of processed messages in the execution
of this case study are shown in Figure 13.11 and Figure 13.12. In the simula-
tion with the workloads of 1,000, 10,000, 100,000, 500,000, 1,000,000 and
1,500,000 msg, all messages were successfully processed with both heuristics,
FIFO and qPrior. In the simulation with 2,000,000 msg, 669,026 msg, in aver-
age, were processed when using FIFO and, when using qPrior, all messages
were successfully processed. Then, in the simulation with 2,500,000 msg,
883,017 msg was processed when using FIFO and 2,331,044 msg when using
qPrior.
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Figure 13.11: Average processed messages in case study 2 - low workload.

The average of remained messages in the execution of the case study 2 are
shown in Figure 13.13 and Figure 13.14. In the simulation with the workloads
of of 1,000, 10,000, 100,000, 500,000, 1,000,000 and 1,500,000 msg, there were
no remained messages in neither case. In the simulation with 2,000,000 msg,
1,330,974 msg on average remained when using FIFO and no messages re-
mained when using qPrior. Then, in the simulation with 2,500,000 msg,
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Figure 13.12: Average processed messages in case study 2 - high workload.

1,666,983 msg remained when using FIFO and 168,956 msg remained when
using qPrior.
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Figure 13.13: Average remained messages in case study 2 - low workload.

The throughput in the execution of the case study 2 are shown in
Figure 13.15 and Figure 13.16. In the simulation with a workload of
1,000 msg, the average throughput achieved was 30,078 msg/s when us-
ing FIFO and 34,236 msg/s when using qPrior. In the simulation with
10,000 msg, the average throughput achieved was 33,373 msg/s when us-
ing FIFO and 39,878 msg/s when using qPrior. In the simulation with
100,000 msg, the average throughput achieved was 33,005 msg/s when us-
ing FIFO and 41,354 msg/s when using qPrior. Then, in the simulation with
500,000 msg, the average throughput achieved was 30,226 msg/s when using
FIFO and 39,023 msg/s when using qPrior.

In the simulation with a workload of 1,000,000 msg, the average through-
put achieved was 28,301 msg/s when using FIFO and 39,566 msg/s when
using qPrior. In the simulation with 1,500,000 msg, the average throughput
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Figure 13.14: Average remained messages in case study 2 - high workload.

achieved was 27,594 msg/s when using FIFO and 39,364 msg/s when us-
ing qPrior. In the simulation with 2,000,000 msg, the average throughput
achieved was 11,250 msg/s when using FIFO and 37,904 msg/s when using
qPrior. Then, in the simulation with 2,500,000 msg, the average through-
put achieved was 14,667 msg/s when using FIFO and 38,851 msg/s when
using qPrior.
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Figure 13.15: Average throughput in case study 2 - low workloads.

The makespan in the execution of the case study 2 are shown in Fi-
gure 13.17 and Figure 13.18. In the simulation with a workload of 1,000 msg,
the average makespan achieved was 0.03s when using FIFO and 0.03s when
using qPrior. In the simulation with 10,000 msg, the average makespan
achieved was 0.30s when using FIFO and 0.25s when using qPrior. In the sim-
ulation with 100,000 msg, the average makespan achieved was 3s when using
FIFO and 2s when using qPrior. Then, in the simulation with 500,000 msg, the
average makespan was 16s when using FIFO and 13s when using qPrior.
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Figure 13.16: Average throughput in case study 2 - high workloads.

In the simulation with a workload of 1,000,000 msg, the average makespan
achieved was 35s when using FIFO and 25s when using qPrior. In the simula-
tion with 1,500,000 msg, the average makespan achieved was 54s when using
FIFO and 38s when using qPrior. In the simulation with 2,000,000 msg, the
average makespan achieved was 59s when using FIFO and 52s when us-
ing qPrior. Then, in the simulation with 2,500,000 msg, the average makespan
was 57s when using FIFO and 60s when using qPrior.
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Figure 13.17: Average makespan in case study 2 - low workloads.

Results for case study 3

The average of processed messages in the execution of the case study 3 are
shown in Figure 13.19 and Figure 13.20. In the simulation with a work-
load of 1,000, 10,000, 100,000, 500,000, and 1,000,000, all messages were
successfully processed with both heuristics, FIFO and qPrior. In the simula-
tion with 1,500,000 msg, 696,806 msg, in average, were processed when
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Figure 13.18: Average makespan in case study 2 - high workloads.

using FIFO and, when using qPrior, all messages were successfully pro-
cessed. In the simulation with 2,000,000 msg, 2,200 msg was processed when
using FIFO and 1,651,450 msg when using qPrior. Then, in the simula-
tion with 2,500,000 msg, 143 msg was processed when using FIFO and
1,711,751 msg when using qPrior.
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Figure 13.19: Average processed messages in case study 3 - low workloads.

The average of remained messages in the execution of the case study 3 are
shown in Figure 13.22. In the simulation with a workload of of 1,000, 10,000,
100,000, 500,000, and 1,000,000 msg, there were no remained messages in both
heuristics. In the simulation with 1,500,000 msg, 1,045,748 msg on average re-
mained when using FIFO and no messages remained when using qPrior. In
the simulation with 2,000,000 msg, 1,997,800 msg on average remained when
using FIFO and 348,550 msg remained when using qPrior. Then, in the simu-
lation with 2,500,000 msg, 2,499,857 msg remained when using FIFO and
788,249 msg remained when using qPrior.
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Figure 13.20: Average processed messages in case study 3 - high workloads.
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Figure 13.21: Average remained messages in case study 3 - low workloads.

The throughput in the execution of the case study 3 are shown in
Figure 13.23 and Figure 13.24. In the simulation with a workload of
1,000 msg, the average throughput achieved was 22,745 msg/s when us-
ing FIFO and 26,446 msg/s when using qPrior. In the simulation with
10,000 msg, the average throughput achieved was 24,895 msg/s when us-
ing FIFO and 30,453 msg/s when using qPrior. In the simulation with
100,000 msg, the average throughput achieved was 24,420 msg/s when us-
ing FIFO and 31,034 msg/s when using qPrior. Then, in the simulation with
500,000 msg, the average throughput achieved was 22,860 msg/s when using
FIFO and 29,685 msg/s when using qPrior.

In the simulation with a workload of 1,000,000 msg, the average through-
put achieved was 21,765 msg/s when using FIFO and 28,780 msg/s when
using qPrior. In the simulation with 1,500,000 msg, the average through-
put achieved was 7,573 msg/s when using FIFO and 28,880 msg/s when
using qPrior. In the simulation with 2,000,000 msg, the average through-
put achieved was 37 msg/s when using FIFO and 27,524 msg/s when using
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Figure 13.22: Average remained messages in case study 3 - high workloads.

qPrior. Then, in the simulation with 2,500,000 msg, the average throughput
achieved was 2 msg/s when using FIFO and 28,529 msg/s when using qPrior.
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Figure 13.23: Average throughput in case study 3 - low workloads.

The makespan in the execution of the case study 3 are shown in Fi-
gure 13.25 and Figure 13.26. In the simulation with a workload of 1,000 msg,
the average makespan achieved was 0.05s when using FIFO and 0.04s when
using qPrior. In the simulation with 10,000 msg, the average makespan
achieved was 0.40s when using FIFO and 0.33s when using qPrior. In the sim-
ulation with 100,000 msg, the average makespan achieved was 4s when using
FIFO and 3s when using qPrior. Then, in the simulation with 500,000 msg, the
average makespan was 22s when using FIFO and 17s when using qPrior.

In the simulation with a workload of 1,000,000 msg, the average makespan
achieved was 46s when using FIFO and 35s when using qPrior. In the simula-
tion with 1,500,000 msg, the average makespan achieved was 60s when using
FIFO and 52s when using qPrior. In the simulation with 2,000,000 msg, the
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Figure 13.24: Average throughput in case study 3 - high workloads.

average makespan achieved was 59s when using FIFO and 60s when us-
ing qPrior. Then, in the simulation with 2,500,000 msg, the average makespan
was 58s when using FIFO and 60s when using qPrior.
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Figure 13.25: Average makespan in case study 3 - low workloads.

Results for case study 4

The case study 4 has two mandatory outputs, thus the number of
outbound messages is higher than the number of inbound messages. The av-
erage of processed messages in the execution of this case study are shown
in Figure 13.27 and Figure 13.28. In the simulation with a workload of
1,000, 10,000, 100,000, 500,000, and 1,000,000, all messages were success-
fully processed with both heuristics, FIFO and qPrior. In the simulation
with 1,500,000 msg, 2,913,107 msg, in average, were processed when using
FIFO and, when using qPrior, 3,000,000 msg were processed. In the simula-
tion with 2,000,000 msg, 209,779 msg was processed when using FIFO and
4,000,000 msg when using qPrior. Then, in the simulation with 2,500,000 msg,
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Figure 13.26: Average makespan in case study 3 - high workloads.

3,640 msg was processed when using FIFO and 4,238,093 msg when using
qPrior.
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Figure 13.27: Average processed messages in case study 4 - low workloads.

The average of remained messages in the execution of the case study 4 are
shown in Figure 13.29 and Figure 13.30. In the simulation with a workload of
1,000, 10,000, 100,000, 500,000, and 1,000,000, there were no remained mes-
sages in neither case. In the simulation with 1,500,000 msg, 86,893 msg on
average remained when using FIFO and no messages remained when using
qPrior. In the simulation with 2,000,000 msg, 2,944,075 msg on average re-
mained when using FIFO and no messages remained when using qPrior.
Then, in the simulation with 2,500,000 msg, 2,516,476 msg remained when
using FIFO and 380,954 msg remained when using qPrior.

The throughput in the execution of the case study 4 are shown in
Figure 13.31 and Figure 13.32. In the simulation with a workload of
1,000 msg, the average throughput achieved was 56,098 msg/s when us-
ing FIFO and 64,619 msg/s when using qPrior. In the simulation with
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Figure 13.28: Average processed messages in case study 4 - high workloads.
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Figure 13.29: Average remained messages in case study 4 - low workloads.

10,000 msg, the average throughput achieved was 61,950 msg/s when us-
ing FIFO and 74,917 msg/s when using qPrior. In the simulation with
100,000 msg, the average throughput achieved was 61,581 msg/s when us-
ing FIFO and 76,612 msg/s when using qPrior. Then, in the simulation with
500,000 msg, the average throughput achieved was 56,986 msg/s when using
FIFO and 73,342 msg/s when using qPrior.

The throughput in the execution of the case study 4 is shown in Fi-
gure 13.32. In the simulation with a workload of 1,000,000 msg, the average
throughput achieved was 49,937 msg/s when using FIFO and 72,950 msg/s
when using qPrior. In the simulation with 1,500,000 msg, the average
throughput achieved was 48,681 msg/s when using FIFO and 72,489 msg/s
when using qPrior. In the simulation with 2,000,000 msg, the average
throughput achieved was 3,511 msg/s when using FIFO and 72,491 msg/s
when using qPrior. Then, in the simulation with 2,500,000 msg, the aver-
age throughput achieved was 62 msg/s when using FIFO and 70,635 msg/s
when using qPrior.
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Figure 13.30: Average remained messages in case study 4 - high workloads.

1,000 10,000 100,000 500,000

FIFO 5�,0�� �1���� �1,5�� 5�����

qPrior ������ ������ ������ �����2

0

20,000

�0,000

�0,000

��,000

 
¡
¢£
¤
¥
¡
¦
¤
§

Workload

Figure 13.31: Average throughput in case study 4 - low workloads.

The makespan in the execution of the case study 4 are shown in Fi-
gure 13.33 and Figure 13.34. In the simulation with a workload of 1,000 msg,
the average makespan achieved was 0.04s when using FIFO and 0.03s when
using qPrior. In the simulation with 10,000 msg, the average makespan
achieved was 0.32s when using FIFO and 0.27s when using qPrior. In the sim-
ulation with 100,000 msg, the average makespan achieved was 3s when using
FIFO and 3s when using qPrior. Then, in the simulation with 500,000 msg, the
average makespan was 18s when using FIFO and 14s when using qPrior.

In the simulation with a workload of 1,000,000 msg, the average makespan
achieved was 40s when using FIFO and 27s when using qPrior. In the simula-
tion with 1,500,000 msg, the average makespan achieved was 60s when using
FIFO and 41s when using qPrior. In the simulation with 2,000,000 msg, the
average makespan achieved was 60s when using FIFO and 55s when us-
ing qPrior. Then, in the simulation with 2,500,000 msg, the average makespan
was 59s when using FIFO and 60s when using qPrior.
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Figure 13.32: Average throughput in case study 4 - high workloads.
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Figure 13.33: Average makespan in case study 4 - low workloads.

Statistical analysis

We used the ANOVA test to verify the influence of random factors in
the measurements of the dependent variables. The ANOVA test was ap-
plied for the scenarios in which the averages of the dependent variables, for
both heuristics, were different of zero. The workload of 2,500,000 msg for
case study 3 was ignored because the throughput in this case was near zero.
The selected scenarios are summarised in Table 13.6. The analysis of vari-
ance for every value of the workload is shown in Tables 13.7, 13.9, 13.11, and
13.13. Since there were statistical differences between the results with differ-
ent scenarios, we follow the comparison of averages of the dependent
variables by Scott & Knott test. The results of the Scott & Knoot test are
shown in Tables 13.8, 13.10, 13.12, and 13.14. In these tables, the heuristics are
in the first column. For each dependent variable, there is a column for the av-
erage and a column for the group of Scott & Knott. Two groups were found:



164 Chapter 13. Experiments

1,000,000 1,500,000 2,000,000 2,500,000

FIFO Ò0 Ó0 Ó0 5Ô

qPrior 2Õ Ö1 55 ×0

0

15

30

Ö5

ÓØ

Ù
Ú
Û
Ü
Ý
Þ
Ú

n

Workload

Figure 13.34: Average makespan in case study 4 - high workloads.

«a» and «b». Group «a» refers to the heuristic with the highest of the depen-
dent variables, namely, average of processed messages, remained messages,
throughput, and makespan and group «b» refers to the heuristic with the
lowest average of these variables.

Integration Process Workload

case study 1 2,000,000

case study 2 2,500,000

case study 3 2,000,000

case study 4 2,500,000

Table 13.6: Scenarios for statistical tests.

Statistical analysis for case study 1

The analysis of variance was applied for the workload of 2,000,000 msg,
cf. Table 13.7. In this analysis of the the processed messages, the aver-
age square was 45,632,197,248,800 for the heuristics and 164,179,376 for error.
The overall average was equal to 955,980 msg, and the coefficient of variation
was 1.34%. In the analysis of variance of the remained messages, the aver-
age square was 45,632,197,248,800 for the heuristics and 164,179,376 for error.
The overall average was equal to 1,044,020 msg, and the coefficient of varia-
tion was 1.22%. In the analysis of variance of the throughput, the average
square was 12,675,555,787 for the heuristics and 45,605 for error. The over-
all average was equal to 15,933 msg/s, and the coefficient of variation
was 1.34%. Then, in the analysis of variance of the makespan, the aver-
age square was 2.94 for the heuristics and 0.17 for error. The overall average
was equal to 59.75s, and the coefficient of variation was 0.69%.
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Sources of

variation

Degree of

freedom

Average square

Processed

messages

Remained

messages
Throughput Makespan

Heuristics 1 45632197248800 † 45632197248800 † 12675555787 † 2.94 †

Error 48 164179376 164179376 45605 0.17

Total 49

Overall average 955980 1044020 15933 59.75

Coefficient of variation (%) 1.34 1.22 1.34 0.69
† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 13.7: ANOVA test for case study 1.

The results of the Scott & Knoot test for workload of 2,000,000 msg are
shown in Table 13.8. Regarding processed messages, FIFO was in group «b»
with the lowest average of 656 msg and qPrior in group «a» with the high-
est average of 1,911,304 msg. Regarding the remained messages, FIFO was
in group «a» with the highest average of 1,999,344 msg and qPrior in
group «b» with the highest average 88,696 msg. When analysing through-
out, FIFO was in group «b» with the lowest average of 11 msg/s and
qPrior in group «a» with the highest average of 31,855 msg/s. Regard-
ing makespan, FIFO was in group «b» with the lowest average of 59.51s and
qPrior in group «a» with the highest average of 60s.

Heuristic

Average square

Processed

messages

Remained

messages
Throughput Makespan

FIFO 656 «b» 1999344 «a» 11 «b» 59.51 «b»

qPrior 1911304 «a» 88696 «b» 31855 «a» 60 «a»
Error level of 5% by the Scott & Knoot model.

Table 13.8: Scott & Knott test for case study 1.

Statistical analysis for case study 2

The analysis of variance was applied for the workload of 2,500,000 msg,
cf. Table 13.9. In this analysis of the processed messages, the average square
was 28,051,074,641,357 for the heuristics and 685,476,247 for error. The over-
all average was equal to 1,582,030 msg, and the coefficient of variation was
1.65%. In the analysis of variance of the remained messages, the aver-
age square was 2,8051,074,641,357 for the heuristics and 685,476,247 for error.
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The overall average was equal to 917,969 msg, and the coefficient of varia-
tion was 2.85%. In the analysis of variance of the throughput, the average
square was 7,310,834,073 for the heuristics and 275,672 for error. The over-
all average was equal to 26,758 msg/s, and the coefficient of variation
was 1.96%. Then, in the analysis of variance of the makespan, the aver-
age square was 125 for the heuristics and 1.15 for error. The overall average
was equal to 58s, and the coefficient of variation was 1.83%.

Sources of

variation

Degree of

freedom

Average square

Processed

messages

Remained

messages
Throughput Makespan

Heuristics 1 28051074641357 † 28051074641357 † 7310834073 † 125 †

Error 48 685476247 685476247 275672 1.15

Total 49

Overall average 1582030 917969 26758 58

Coefficient of variation (%) 1.65 2.85 1.96 1.83
† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 13.9: ANOVA test for case study 2.

The results of the Scott & Knoot test for 2,500,000 msg are shown in Ta-
ble 13.10. Regarding processed messages, FIFO was in group «b» with the
lowest average of 833,016.9 msg and qPrior in group «a» with the highest av-
erage of 2,331,044.3 msg. Regarding the remained messages, FIFO was in
group «a» with the highest average of 1,666,983.0 msg and qPrior in group
«b» with the lowest average of 168,955.68 msg. When analysing through-
out, FIFO was in group «b» with the lowest average of 14,666.7 msg/s and
qPrior in group «a» with the highest average of 8,850.74 msg/s. Regard-
ing makespan, FIFO was in group «b» with the lowest average of 56.83s and
qPrior in group «a» with the highest average of 60s.

Heuristic

Average square

Processed

messages

Remained

messages
Throughput Makespan

FIFO 833016.96 «b» 1666983.04 «a» 14666.72 «b» 56.83 «b»

qPrior 2331044.32 «a» 168955.68 «b» 38850.74 «a» 60 «a»
Error level of 5% by the Scott & Knoot model.

Table 13.10: Scott & Knott test for case study 2.
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Statistical analysis for case study 3

The analysis of variance was applied for the workload of 2,000,000 msg,
cf. Table 13.11. In this analysis of the processed messages, the average square
was 34,000,312,934,250 for the heuristics and 101,107,444 for error. The over-
all average was equal to 826,824 msg, and the coefficient of variation was
1.21%. In the analysis of variance of the remained messages, the aver-
age square was 34,000,312,934,250 for the heuristics and 101,107,444 for error.
The overall average was equal to 1,173,175 msg, and the coefficient of varia-
tion was 0.85%. In the analysis of variance of the throughput, the average
square was 9,444,360,032 for the heuristics and 28,087 for error. The over-
all average was equal to 13,780 msg/s, and the coefficient of variation
was 1.21%. Then, in the analysis of variance of the makespan, the aver-
age square was 3.88 for the heuristics and 0.34 for error. The overall average
was equal to 59s, and the coefficient of variation was 0.98%.

Sources of

variation

Degree of

freedom

Average square

Processed

messages

Remained

messages
Throughput Makespan

Heuristics 1 34000312934250 † 34000312934250 † 9444360032 † 3.88 †

Error 48 101107444 101107444 28087 0.34

Total 49

Overall average 826824 1173175 13780 59

Coefficient of variation (%) 1.21 0.85 1.21 0.98
† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 13.11: ANOVA test for case study 3.

The results of the Scott & Knoot test for workload of 2,000,000 msg are
shown in Table 13.12. Regarding processed messages, FIFO was in group «b»
with the lowest average of 2,200 msg and qPrior in group «a» with the high-
est average of 1,651,449.80 msg. Regarding the remained messages, FIFO was
in group «a» with the highest average of 1,997,800 msg and qPrior in group
«b» with the lowest average of 348,550.16 msg. When analysing through-
out, FIFO was in group «b» with the lowest average of 36.92 msg/s and
qPrior in group «a» with the highest average of 27,524.17 msg/s. Regard-
ing makespan, FIFO was in group «b» with the lowest average of 59.44s and
qPrior in group «a» with the highest average of 60s.
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Heuristic

Average square

Processed

messages

Remained

messages
Throughput Makespan

FIFO 2200.00 «b» 1997800.00 «a» 36.92 «b» 59.44 «a»

qPrior 1651449.84 «a» 348550.16 «b» 27524.17 «a» 60 «b»
Error level of 5% by the Scott & Knoot model.

Table 13.12: Scott & Knott test for case study 3.

Statistical analysis for case study 4

The analysis of variance was applied for the workload of 2,500,000 msg,
cf. Table 13.13. In the analysis of variance of the processed messages, the av-
erage square was 224,132,428,021,831 for the heuristics and 2,091,387,333 for
error. The overall average was equal to 2,120,866 msg, and the coefficient of
variation was 2.15%. In the analysis of variance of the remained messages,
the average square was 57,005,699,011,272 for the heuristics and 544,808,966
for error. The overall average was equal to 1,448,714 msg, and the coefficient
of variation was 1.61%. In the analysis of variance of the throughput, the av-
erage square was 62,257,273,316 for the heuristics and 580,932 for error. The
overall average was equal to 35,348 mgs/s, and the coefficient of variation
was 2.15%. Then, in the analysis of variance of the makespan, the aver-
age square was 15.09 for the heuristics and 0.30 for error. The overall average
was equal to 59s, and the coefficient of variation was 0.93%.

Sources of

variation

Degree of

freedom

Average square

Processed

messages

Remained

messages
Throughput Makespan

Heuristics 1 224132428021831 † 57005699011272 † 62257273316 † 15.09†

Error 48 2091387333 544808966 580932 0.30

Total 49

Overall average 2120866 1448714 35348 59

Coefficient of variation (%) 2.15 1.61 2.15 0.93
† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 13.13: ANOVA test for case study 4.

The results of the Scott & Knoot test for workload of 2,500,000 msg are
shown in Table 13.14. Regarding processed messages, FIFO was in group «b»
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with the lowest average of 3,640 msg and qPrior in group «a» with the high-
est average of 4,238,093.24 msg. Regarding the remained messages, FIFO was
in group «a» with the highest average of 2,516,47 msg and qPrior in group
«b» with the lowest average of 380,953.60 msg. When analysing through-
out, FIFO was in group «b» with the lowest average of 61.66 msg/s and
qPrior in group «a» with the highest average of 70,634.90 msg/s. Regard-
ing makespan, FIFO was in group «b» with the lowest average of 58.90s and
qPrior in group «a» with the highest average of 60s.

Heuristic

Average square

Processed

messages

Remained

messages
Throughput Makespan

FIFO 3640.00 «b» 2516476.00 «a» 61.66 «b» 58.90 «a»

qPrior 4238093.24 «a» 380953.60 «b» 70,634.90 «a» 60 «b»
Error level of 5% by the Scott & Knoot model.

Table 13.14: Scott & Knott test for case study 4.

Discussion and comparison

In the simulation of the execution of the case study 1 with workload till up
1,000,000 msg, all messages were successfully processed when using FIFO
and when using qPrior heuristic. No overload was observed. However, in ex-
ecution with a workload higher than 1,500,000 msg, the number of remained
messages was much higher than the number of processed messages when us-
ing FIFO. It allow us to conclude that the integration process was overload
when using this heuristic, but qPrior had better result than FIFO. In execu-
tions with a workload higher than 2,000,000 msg, less than 1% of inbound
messages were processed when using FIFO; whereas when using qPrior,
about 96% of inbound messages were processed. In executions with a work-
load higher than 2,500,000 msg, no message was processed when using FIFO
in the elapsed time of the simulation, indicating that there was a threshold
from which this heuristic does not process messages in a given elapsed time;
whereas when using qPrior, about 75% of inbound messages were processed.

In the simulation of the execution of the case study 2 with workload till up
1,500,000 msg, all messages were successfully processed when using FIFO
and when using qPrior. No overload was observed. However, in execu-
tion with a workload higher than 2,000,000 msg, the number of remained
messages was much higher than the number of processed messages when us-
ing FIFO. It allow us to conclude that the integration process was overload
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when using this heuristic, but qPrior had better result than FIFO, process-
ing successfully all messages. In execution with a workload higher than
2,500,000 msg, about 33% of inbound messages were processed when us-
ing FIFO; whereas when using qPrior, about 93% of inbound messages were
processed.

In the simulation of the execution of the case study 3 with workload till up
1,000,000 msg, all messages were successfully processed when using FIFO
and when using qPrior. No overload was observed. However, in execu-
tion with a workload higher than 1,500,000 msg, the number of remained
messages was much higher than the number of processed messages when us-
ing FIFO. It allow us to conclude that the integration process was overload
when using this heuristic, but qPrior had better result than FIFO, process-
ing successfully all messages. In execution with a workload higher than
2,000,000 msg, less than 1% of inbound messages were processed when using
FIFO; whereas when using qPrior, about 82% of inbound messages were pro-
cessed. In execution with a workload higher than 2,500,000 msg, less than 1%
of inbound messages were processed when using FIFO in the elapsed time of
the simulation; whereas when using qPrior, about 68% of inbound messages
were processed.

In the simulation of the execution of the case study 4 with workload
till up 1,500,000 msg, approximately all messages were successfully pro-
cessed when using FIFO and when using qPrior.No overload was observed.
However, in execution with a workload higher than 2,000,000 msg, the num-
ber of remained messages was much higher than the number of processed
messages when using FIFO; thus, the integration process was overload
when using this heuristic, but qPrior had better result than FIFO, process-
ing successfully all messages. In execution with a workload higher than
2,500,000 msg, less than 1% of inbound messages were processed when us-
ing FIFO in the elapsed time of the simulation; whereas when using qPrior,
about 84% of inbound messages were processed.

The averages of the throughput in execution of integration processes were
higher when using qPrior than FIFO for all workloads and integration pro-
cesses tested. ANOVA test confirmed that the use of different heuristics
generates a significant difference in the average of processed messages, re-
mained messages, throughput, and makespan cf. Tables 13.7, 13.7, 13.7,
and 13.13. The coefficients of variation were reduced, indicating that the ex-
periment is adequate and reliable. The Scott & Knott test showed that the best
performance was achieved with the qPrior heuristic, in the execution of inte-
gration processes under an overload situation. This test confirmed that there
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was a statistically significant difference between the heuristics, cf. Tables 13.8,
13.10, 13.12, and 13.14. Regarding the research question and hypothesis:

RQ: When the workload increases and the integration processes enter in an
overload situation, qPrior improved the performance of the executions
of integration processes. ANOVA and Scott & Knott test proved that
there was a statistical difference between the heuristics, in these cases.

Our hypothesis for the research question was confirmed:

H: In terms of the number of processed messages per time unit, using the
qPrior heuristic, the performance of executions of integration pro-
cesses remains good even in overload situations in contrast to other
tested heuristics that degraded the performance.

13.4 Threats to validity

We evaluated the factors that can influence the results of the experi-
ments and how we tried to mitigate them. These factors are threats to validity
present in any empirical research [39, 198]. Four types of threats to valid-
ity are discussed here, they are: constructor validity, conclusion validity,
internal validity, and external validity.

Constructor validity

Constructor validity discusses whether the planning and execution of the
study are well adequate to answer the research question. We planned the ex-
periments according to procedures from empirical software engineering [17,
95, 198]. First, we defined our research questions, formulated our hypotheses,
and defined the independent and dependent variables. We also provided in-
formation about the execution environment, supporting tools, execution and
data collection. Then, we performed the experiments in different scenarios
and used statistical techniques to evaluate the results.

Conclusion validity

As reported by Wohlin et al. [198], conclusion validity “is concerned with
issues that affect the ability to draw the correct conclusion about relations be-
tween the treatment and the outcome of an experiment”. To assure that the
actual outcome observed in our experiment is related to the used heuristics
and that there was a significant difference amongst them, we used statistical
techniques such as ANOVA, Scott & Knott, and Regression analysis.
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Internal validity

Internal validity aims to ensure that the treatment caused the outcome,
mitigating effects of other uncertain factors or not measured [57]. Instrumen-
tation and source of noise are possible threats. We experimented with the
same machine, which was on security mode, with minimal features and dis-
connected from the Internet during the executions to minimise interference in
the execution time of the experiments. We built our algorithms in Java, so, the
first executions of codes are slower, and it is advisable to let the virtual ma-
chine eventually perform code optimisation [148]. Then, first execution were
to warm up the Java virtual machine and so dropped. Additionally, the re-
searchers accurately inspected the procedures and used statistical tests to
validate the measures.

External validity

External validity focuses on the generalisation of the results outside
the scope of our study [57]. This study is generalised for integration plat-
forms that adopt the integration patterns by Hohpe and Woolf [85], the style
Pipes-and-Filters, and task-based execution model. We reported this study
following a practical guideline [198], so that exact repetition is possible,
required by scientific methods. The experiments are valid to test other pa-
rameters, such as integration processes, message arrival rate, simulation
duration.

13.5 Summary

The goal of this chapter was reported two experiments that validated the
proposed heuristic. For this, we simulated the execution of four case stud-
ies, of which, two are benchmarks of the EAI literature, and two are real
integration processes. These experiments were designed according to proce-
dures from empirical software engineering and statistical techniques were
used to evaluate the results. In the first of them, we used the PSO meta-
heuristic to find the near-optimal preemption for qPrior to maximise the
throughput of executions of an integration process with a given workload. In
the second, we compared the performance of the executions of integration
processes when using the qPrior heuristic with the performance when us-
ing FIFO heuristic. We analysed statistically the results of these experiments
and examined their restrictions and elements that could bias them.
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Conclusion

A ship in port is safe, but that’s not what ships are built for.

Grace Hopper, American computer scientist (1906-1992)

C
loud computing has provided several services to companies that
have leveraged their business processes. The business processes re-
quire the integration of different applications that compose the
software ecosystem. Thus, companies use software tools such as

integration platforms that allow for keeping information on all these systems
consistent and synchronised. Usually, an integration platform is composed of
a domain-specific language, a development toolkit, a run-time system, and
monitoring tools. The runtime system is responsible for running integra-
tion processes and, therefore, its performance is what most frequently drives
the decision of companies when choosing an integration platform.

We reviewed the runtime systems of integration platforms to identify
properties that can have an impact on their performance when executing in-
tegration processes. These properties were organised into two dimensions,
namely: message processing and fairness execution. The former dimension
addresses the efficiency of the runtime system to process a message, which
refers to the improvement of the rate of messages processed in an integra-
tion process. The latter dimension focuses on the assignment of threads to
tasks to provide a minimum process time for a message in an integration pro-
cess. We evaluated the runtime systems of nine different current open source
message-based integration platforms. Taking these dimensions and proper-
ties, we analysed research gaps to be solved to improve the performance
of runtime systems from the perspective of message processing and fair-
ness execution. One of the gaps concerns with optimisation of the task
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scheduling and the allocation of threads in the runtime systems of integra-
tion platforms. Current runtime systems are not endowed with a proper
task scheduling heuristic to handle high and continuous rates of data of
the contemporaneous environments. Overload situations cause a degrada-
tion in performance of the execution of integration processes with the current
heuristics and consequently, financial damage for the companies.

The current studies regarding task scheduling propose taxonomies and
methods that provide directives to deal with dynamic scheduling in similar
environments. Based on these studies, we characterised the task scheduling
of the execution of integration processes. Besides, we developed a representa-
tion for integration processes as a directed graph, called the Integration
Operation Typed Graph or IOTG, that takes into account the function and the
logic operation of the task. Our approach for task sequencing and tim-
ing uses low complexity heuristic as well as hybrid methods to make
decisions based on the current integration processes status.

In the context of Cloud computing, task scheduling concerns with the re-
duction of costs [68], with the handling of high workloads [179], and with
quality of software in terms of flexibility and response time [56]. The high
workloads can cause situations of overload in integration processes; in such
cases, the average of processed messages is lower than the average of mes-
sages that remained in queues waiting to be processed. Most of the open
source integration platforms adopt the FIFO heuristic for their task schedul-
ing. This heuristic is mainly used when the scheduling requirements are
unknown because it is a straightforward heuristic and achieves consis-
tent results in the major of the scenarios. However, the performance of this
heuristic depends on several factors and is rarely optimal for all situa-
tions, such as, situations of overload. In these situations, the scheduling
following FIFO tends to concentrate on initial tasks of the workflow, degrad-
ing the performance of the execution of the integration processes. So, a fair
task scheduling that provides an optimal resources allocation to maximise
performance is necessary. This optimal resources allocation requires an ac-
tive and dynamic task scheduling heuristic, which is capable of increasing the
number of processed messages per time unit.

In this thesis, we develop a heuristic called Queue Priority (qPrior), that
addresses task scheduling for the execution of integration processes, main-
taining performance even in overload situations. In this heuristic, there are
multiple prioritised queues to store instances of tasks that wait for available
threads to execute. In the order of priority, a task that has more predeces-
sor tasks has more priority in its execution. Threads available in the pools



177

check the queues according to this order of priority and execute a predefined
number of tasks at each checking. The number of tasks is called preemp-
tion and was found by the Particle Swarm Optimisation meta-heuristic, in
order to maximise the number of processed messages per time unit.

We also modelled the average processed messages as a function of the ele-
ments of the characterisation and of the workload. We created three models,
namely: «average processed messages vs. workload», «average processed
messages vs. IOTG», and «generic average processed messages». In ev-
ery model, we verified the elements of the characterisation that impacted the
average of messages processed. We applied the models and compared the ob-
served values and estimated values for average processed messages. The
high correlation coefficient confirmed that the model indeed explains the
behaviour of the average of messages processed.

We develop a software tool, called Integration Process Simulator (IPS), to
simulate the execution of integration processes. In our literature review, we
found simulators for heuristics in the research field of Cloud computing and
Grid systems. However, in the research field of EAI, we found a single arti-
cle that proposed an incipient tool to experiment a heuristic FIFO [80]. Our
tool allows the evaluation of heuristics for task scheduling of integration pro-
cesses carried out by runtime systems. The architecture of the IPS is flexible
and allows the incorporation of other heuristics by addition of Java classes.
Besides, IPS allows the variation of the simulation scenarios with differ-
ent messages input rates, the total workload of messages, the initial workload
of messages, simulation time, and integration processes. The performance
metrics computed by IPS are the makespan, the throughput, the num-
ber of processed messages, and the number of remained messages in the
execution of integration processes .

We performed two experiments to validate the qPrior heuristic. In the first
experiment, we evaluated the feasibility of the optimisation of the preemp-
tion of the qPrior using the PSO meta-heuristic. The results showed that the
throughput of the executions of integration processes with the preemp-
tion found by PSO is higher than the performance using other random values
for preemption. The statistical tests confirmed that different preemptions
generate significant differences in the averages of throughput, legitimat-
ing the optimisation of the preemption. Additionally, statistical tests showed
that for some intervals of values of preemption there is no difference in statis-
tic terms, i.e., any value into a given interval produces the same throughput
average. In the second experiment, we evaluated the performance of execu-
tions of the integration processes, varying the workload. The results showed
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that the executions when using qPrior responded more rapidly, process-
ing messages than when using FIFO when the integration processes are
under overload situations. Additionally, the performance metrics of execu-
tions with qPrior were better than with FIFO. We also observed that the FIFO
heuristic had the threshold at which did not process messages in time mea-
sured; whereas, the qPrior heuristic had few variations in the average of
processed messages. The fact that we have implemented qPrior algorithm in
the Java programming language, used by many open source integration plat-
forms, facilities its insertion into these platforms, because this dispenses with
the need for compatibility of codes or learning by software engineers.

We summarise the main contributions as follow:

• We have developed mathematical models for number of processed
messages of the execution of integration processes.

• We have implemented an heuristic for task scheduling for integra-
tion processes and demonstrated that it works. The results prove that it
is better than existing ones in terms of throughput.

• We have developed a model for representation of integration processes
according to their type of logic operation of the tasks.

• We have characterised the task scheduling of the execution of integra-
tion processes. This characterisation provides guidelines for that new
heuristics can be proposed and tested.

• We have implemented a simulation tool for the execution of integra-
tion processes, used it for evaluation of task scheduling heuristics and
for proving that the qPrior heuristic is better than existing ones in terms
of throughput.

This research work will continue in our research group, in which we in-
tend to experiment the qPrior heuristic with an extensive data set, involving a
large number of study cases and workloads; to evaluate the performance of
this heuristic with different amount of computational resource and var-
ied traffic of messages; to extract other performance metrics, such as memory
use, CPU cycles, and CPU time; to optimise other objectives, such as cloud
cost and quality of service; to implement qPrior heuristic in an integration
platform that follows the integration patterns documented by Hohpe and
Woolf [85] and the architectural style Pipes-and-Filters [2], and that adopt the
task-based execution model, such as the Guaraná integration platform; and to
validate the improvement of runtime systems by use of our heuristic in a real
scenario that involves cloud services with high data input rate.
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ProfilesofIntegrationProcesses

In this section, we present the profiles of case studies described in Chap-
ter 9. A profile is a set of parameters that characterises a conceptual model of
an integration process. The parameters are indicated as follow.

vectorIdTask - Identification of the integration process tasks.

vectorNextTask - Identification of the next task of each task of the integration
process.

vectorTimeExec - Identification of the execution time range of task of each
task of the integration process.

vectorOper - Identification of the logic operation type of task of each task of
the integration process.

vetorParallelTask - Identification of the parallel tasks of the integration
process.

lastTask - Identification of the last tasks of the integration process.

A.1 Profile of case study 1

vectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16};

vectorNextTask = {2}, {3}, {4,6}, {5}, {6}, {7}, {8}, {9,11,14}, {10}, {}, {12}, {13}, {},
{15}, {16}, {};

vectorTimeExec = {{1,2}, {1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {2,3}, {1,2}, {1,2},
{1,2}, {1,2}, {1,2}, {1,2}, {1,2}, {1,2}};
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vectorOper = {{}, {}, {"and"}, {}, {}, {}, {}, {"and"}, {}, {}, {}, {}, {}, {}, {}, {}};

vetorParallelTask = {0,0,0,0,0,4,0,0,0,0,9,10,0,9,10,13};

lastTask = {11}.

A.2 Profile of case study 2

vectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17};

vectorNextTask = {{2}, {3}, {4,12,17}, {5,7}, {6}, {7}, {8}, {9}, {10}, {11}, {}, {13,15},
{14}, {15}, {16}, {9}, {}};

vectorTimeExec = {{1,2}, {1,2}, {2,3}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {3,4}, {1,2},
{1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {1,2}};

vectorOper= {{}, {}, {"or"}, {"and"}, {}, {}, {}, {}, {}, {}, {}, {"and"}, {}, {}, {}, {}, {}};

vetorParallelTask = {0,0,0,0,0,0,0,0,0,0,0,4,5,6,7,8,4};

lastTask = {11,17}.

A.3 Profile of case study 3

vectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17,18,19};

vectorNextTask = {{3}, {3}, {4}, {5,7}, {6}, {7}, {8}, {9}, {10,18}, {11}, {12,14}, {13},
{14}, {15}, {16}, {17}, {}, {19}, {}};

vectorTimeExec = {{1,2}, {1,2}, {3,4}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {2,3}, {1,2},
{2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {1,2}, {1,2}, {1,2}, {1,2}};

vectorOper= {{}, {}, {}, {"and"}, {}, {}, {}, {}, {"or"}, {}, {"and"}, {}, {}, {}, {}, {}, {}, {},
{}};

vetorParallelTask = {0,1,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,16,17};

lastTask = {17,19}.
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A.4 Profile of case study 4

vectorIdTask = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

vectorNextTask = {{2}, {3}, {4,6}, {5}, {6}, {7}, {8}, {9,11,14}, {10}, {}, {12}, {13}, {},
{15}, {16}, {}};

vectorTimeExec = {{1,2}, {1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {2,3}, {1,2}, {1,2},
{1,2}, {1,2}, {1,2}, {1,2}, {1,2}, {1, }};

vectorOper = {{}, {}, {"and"}, {}, {}, {}, {}, {"and"}, {}, {}, {}, {}, {}, {}, {}, {}};

vetorParallelTask = {0,0,0,0,0,4,0,0,0,0,9,10,0,9,10,13

lastTask = {11,14,17}.
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IntegrationProcessSimulator

Figure B.1: Graphic interface of IPS for integration process.
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Figure B.2: Graphic interface of IPS for general parameters.

Figure B.3: Graphic interface of IPS for execution.
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