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Resumo 

Este trabalho propõe e avalia o uso de técnicas de machine learning (ML) em sistemas de curto 

alcance com ritmo binário superior a 200 Gb/s utilizando receptores Kramers-Kronig (KK) e 

fibras multinúcleo (MCF). Os sistemas de curto alcance usualmente encontrados em conexões 

intra-data centers (DC) exigem receptores de deteção direta (DD) de baixo custo. Os receptores 

KK permitem a combinação de sistemas de modulação de maior ordem, tais como o 16-QAM, 

usado em sistemas coerentes, com o baixo custo dos receptores DD. Portanto, o uso de 

receptores KK permite melhorar o ritmo binário e eficiência espectral e manter a eficiência de 

custo dos sistemas DD, o que é importante em DC. O uso de fibras multinúcleo permite o 

aumento da capacidade do sistema, bem como a densidade de cabos. No entanto, o uso de MCF 

introduz uma distorção adicional no sistema conhecida como inter-core crosstalk (ICXT). Para 

mitigar os efeitos do ICXT aleatório, são propostas e avaliadas técnicas de ML de baixa 

complexidade como k-means clustering, k nearest neighbor (KNN) e rede neuronais artificiais 

(ANN). 

O desempenho associado à utilização de algoritmos de ML (k-means, KNN e duas redes 

neuronais do tipo feedforward (FNN): uma para estimação e outra para classificação), é 

avaliado e comparado com o desempenho do sistema obtido sem o uso de ML. A utilização de 

FNN para estimação e classificação conduziram a uma melhoria significativa no desempenho 

do sistema, mitigando o impacto do ICXT no sinal recebido. Isso é alcançado com o uso de 

uma rede neuronal com uma arquitetura muito simples contendo quatro entradas e 10 neurónios 

na camada escondida. Foi demonstrado que os algoritmos k-means e KNN não proporcionam 

melhoria de desempenho em comparação com o sistema sem o uso de ML. Essas conclusões 

são válidas para sistemas DD de curto alcance baseados em MCF com o produto entre o skew 

(atraso relativo entre os núcleos) e o ritmo de símbolos muito menor que um (𝑠𝑘𝑒𝑤 × 𝑠𝑦𝑚𝑏𝑜𝑙 

𝑟𝑎𝑡𝑒 ≪ 1). Com o uso das ANNs, o sistema apresenta uma melhoria de aproximadamente 12 

dB na probabilidade de indisponibilidade quando comparado com o sistema sem o uso de ML. 

Para o limite de BER de 10−1.8, e comparado com o sistema padrão sem o uso de técnicas de 

ML, o sistema com o uso de ANN mostra uma melhoria na potência óptica recebida de quase 

3 dB e uma melhoria no nível de ICXT de aproximadamente 9 dB em relação ao BER médio. 

Palavras-chaves: Redes de curto alcance, fibra multi-núcleo, diafonia entre núcleos, redes 

neuronais, aprendizagem máquina, receptores Krames-Kronig. 
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Abstract 

 

This work proposes and evaluates the use of machine learning (ML) techniques on >200 Gb/s 

short-reach systems employing weakly coupled multicore fiber (MCF) and Kramers-Kronig 

(KK) receivers. The short-reach systems commonly found in intra data centers (DC) 

connections demand low cost-efficient direct detection receivers (DD). The KK receivers allow 

the combination of higher modulation order, such as 16-QAM used in coherent systems, with 

the low complexity and low cost of DD. Thus, the use of KK receivers allows to increase the 

bit rate and spectral efficiency while maintaining the cost of DD systems as this is an important 

requirement in DC. The use of MCF allows to increase the system capacity as well as the system 

cable density, although the use of MCF induces additional distortion, known as inter-core 

crosstalk (ICXT), to the system. Thus, low complexity ML techniques such as k-means 

clustering, k nearest neighbor (KNN) and artificial neural network (ANN) (estimation 

feedforward neural network (FNN) and classification feedforward neural network) are 

proposed to mitigate the effects of random ICXT.     

The performance improvement provided by the k-means clustering, KNN and the two types 

of FNN techniques is assessed and compared with the system performance obtained without 

the use of ML. The use of estimation and classification FNN prove to significantly improve the 

system performance by mitigating the impact of the ICXT on the received signal. This is 

achieved by employing only 10 neurons in the hidden layer and four input features. It has been 

shown that k-means or KNN techniques do not provide performance improvement compared 

to the system without using ML. These conclusions are valid for direct detection MCF-based 

short-reach systems with the product between the skew (relative time delay between cores) and 

the symbol rate much lower than one (𝑠𝑘𝑒𝑤 × 𝑠𝑦𝑚𝑏𝑜𝑙 𝑟𝑎𝑡𝑒 ≪ 1). By employing the proposed 

ANNs, the system shows an improvement of approximately 12 dB on the ICXT level, for the 

same outage probability when comparing with the system without the use of ML. For the BER 

threshold of 10−1.8 and compared with the standard system operating without employing ML 

techniques, the system operating with the proposed ANNs show a received optical power 

improvement of almost 3 dB and a ICXT level improvement of approximately 9 dB when the 

mean BER is analized. 

Keywords: Short-reach network, multicore fiber, intercore crosstalk, neural networks, machine 

learning, Kramers-Kronig receivers. 
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CHAPTER 1  

Introduction 

1.1 Motivation  

 

Current optical fiber networks are reaching the so-called capacity crunch of 100 Tb/s per single 

core fiber [1]. Over the last years, the traffic in data centers has been increasing exponentially, 

demanding new cost-efficient solutions for short-reach optical communications [2]. To solve this 

problem, different classes of space division multiplexing (SDM) have been proposed, such as 

multicore fiber (MCF) and few-mode fiber (FMF). These technologies can increase the capacity 

by increasing the number of spatial paths, where each one can be used to transmit a different signal. 

Different types of receivers, such as Stokes vector detection, differential coherent detection and 

Kramers-Kronig (KK) receivers have been proposed to increase spectral efficiency [1]. MCF 

improves the capacity as well as the interconnects density and KK receivers will allow the use of 

direct detection (DD) which brings lower power consumption and lower cost for higher bit rates 

[3]. The performance of these technologies can be highly affected by the inter-core crosstalk 

(ICXT) caused by the MCF.  

SDM has been proposed as a powerful solution to provide an ultimate capacity increase as it 

explores the only known physical dimension left to be exploited in optical networks. This 

dissertation is based on MCFs, where N independent cores provide a N-fold capacity increase when 

compared with standard single-mode fiber used typically in current networks. MCF-based SDM 

systems have been mainly proposed to respond to:   

i) The growing capacity demands in core networks, through new advanced transmission 

 techniques and/or modulation formats.  

ii) The space limitations in short-reach networks as intra data-center communications.  

Due to cost purposes, short-reach MCF-based networks should employ direct-detection 

receivers. However, these receivers lead to nonlinear impairments that can severely limit the 

achievable capacity and reach. Thus, network solutions based on direct-detection followed by 

digital signal processing (DSP) based on the KK technique have been proposed for performance 

improvement and complexity reduction [4]. With the KK technique, linearization of the receiver is 
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attained, and machine learning techniques can be used to optimize the end-to-end performance of 

these next generation MCF short-reach networks. Different classes of neural networks (NN), such 

as radial basis function NNs, recurrent NNs, and convolutional NNs have been already employed 

and validated in different short-reach scenarios [5, 6]. In this work, DSP equalization based on low-

complexity and memoryless machine learning algorithms are implemented to improve the end-to-

end performance of next generation short-reach networks employing multicore fibers and direct 

detection.  

  

1.2 Objectives   

 

The general purpose of this work is to unlock the capacity supported by next generation optical 

access networks. This is accomplished by proposing a direct-detection SDM short-reach network 

with a per optical channel capacity of >200 Gb/s using machine learning for end-to-end 

optimization. Particularly, the following objectives are pursued:  

      i) To integrate a software platform for simulation of short-reach >200 Gb/s SDM optical fiber 

networks employing direct-detection and KK receiver linearization.  

      ii) To identify the main advantages and challenges of different classes of machine learning 

techniques.  

      iii) To implement a machine learning technique in the simulator for end-to-end performance 

optimization in short-reach >200 Gb/s SDM optical fiber networks employing direct-detection. 

      iv) To assess the impact of the random nature of the inter-core crosstalk (ICXT) along time on 

the performance of the proposed machine learning equalizer. 

 

1.3 Dissertation structure  

The dissertation is structured as follows:  

• Chapter 2 presents the literature review in which the fundamentals concepts such as data 

center, space division multiplexing giving particular attention to homogenous multicore 

fiber, KK receivers and machine learning are addressed. 

• In chapter 3, the system model used for this study is presented and described in detail. The 

concept of dual-polarization discrete change model is presented to describe the ICXT 

induced by the MCF. Also, the system performance without the use of ML is assessed and 
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the parameters used for the system are presented with the corresponding reasoning for their 

usage.  

• Chapter 4 presents assessment of the system performance when impaired by the random 

ICXT and then an in-depth description of the ML techniques employed is presented. The 

system performance when employing ML is assessed compared with the system without 

the use of ML. 

• Chapter 5 depicts the main conclusions and suggestions for future work. 

  

1.4 Main contributions 

This work presents the following contributions: 

• Implementation of ML techniques to mitigate the effects of the random ICXT induced by 

MCF. 

• Demonstration that ANNs can significantly improve the system performance. 

• Confirmation that memoryless and simple ANNs are suitable to mitigate the effects of the 

random ICXT in systems with skew × symbol rate <<1. 

• The work performed in the scope of this dissertation resulted in an article published at the 

Photonics journal (see the appendix). This article summarizes the proposed system and its 

outcomes, described in chapters 3 and 4 of this dissertation, respectively. 

• The work performed in the scope of this dissertation resulted in a presentation at the IX 

Seminar in Multi-Gigabit Optical Networks, June 3rd, 2022. The presentation was 

performed by the supervisor (PhD Tiago Manuel Ferreira Alves), where the proposed 

system and its outcomes were summarized. 

• Next generation >200 Gb/s multicore fiber short-reach networks employing machine 

learning. 
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CHAPTER 2  

Literature review 

 

2.1 Overall review on optical fiber communications    

  

The network traffic grows every year due to the demands of the new technologies and the 

dependencies of the users on the internet services. Data centers experienced an IP (internet 

protocol) traffic growth of 26,8% from 2015 to 2020 [1], while the optical interface rates have 

growth at 20%, and the electronic technology rates had a growth of 10% [2]. This shows an 

exponential growth of the traffic demand, while the modern technologies are reaching its limits in 

terms of bandwidth and spectral efficiency [1, 2, 7].   

The invention of erbium-doped fiber amplifier (EDFA) promoted the use of wavelength 

division multiplexing (WDM) systems which became more cost-efficient [8, 9]. Through the years, 

the use of WDM in optical fiber communications and then the DWDM (dense WDM), managed to 

keep up the traffic demand, because it allowed the transmission of multiple optical channels in one 

fiber, which improves the capacity [2]. The use of coherent detection enabled the increase of the 

spectral efficiency by increasing the number of bits transmitted in one symbol, up to 64 bits on 64-

QAM (quadrature amplitude modulation) [10]. Combined with coherent detection polarization 

division multiplexing (PDM) still enable to further increase the capacity [2]. Coherent detection 

allows to digitally compensate the chromatic dispersion (CD) and to equalize linear transmission 

impairments, such as group-velocity dispersion (GVD) and polarization-mode dispersion (PMD) 

of transmission fibers via digital signal processing [8, 11]. The main disadvantage of this 

technology is the complexity and the power consumption as it demands a local oscillator at the 

receiver and several photodetectors to detect the in-phase and quadrature components of the x and 

y polarizations.    
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Figure 1 - Comparison of products and research records in terms of per-carrier interface rates 

and WDM capacities [2]. 

2.2 Limitation of optical fiber communication systems  

 

As the demand increases, the need of scaling the network capacity also increases. The global traffic 

is exponentially growing at approximately 45% per year [2]. As shown in figure 1 there is a growth 

of approximately 20% per year on the optics capacity, and the slow growth is demanding a need of 

research on optical areas.  

      To identify how the capacity of the optical systems can be increased, we can analyze the 

information theory of Shannon [2]. The Shannon’s theory relies on the study of five physical 

properties available for modulation and multiplexing of electromagnetic waves (time, frequency, 

quadrature, polarization and space), and with these parameters, the maximum capacity reliable to 

communicate over an equivalent additive white Gaussian noise channel, is given by:  

 

    𝐶 = 𝑀𝑝𝑎𝑡ℎ × 𝐵 × 2 × log2(1 + 𝑆𝑁𝑅),                                                        (2.1) 

 

where B is the signal bandwidth, the factor 2 is related to PDM, 𝑀𝑝𝑎𝑡ℎ is the number of spatial paths 

and SNR is the signal-to-noise ratio. 

Years  
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2.2.1 Bandwidth limitations  

 

As shown in (2.1), increasing the bandwidth is a way to increase the capacity. For many years it 

was believed that optical communications had infinite bandwidth, so the solution was a matter of 

increasing the number of WDM channels or increasing the bitrate per channel. The increasing of 

bandwidth starts being problematic due to the complexity of the optical equipment such as lasers, 

receivers and optical amplifiers. The complexity of optical components grows with their 

bandwidth, which can be costly and not economically efficient. One of the main limitations on the 

bandwidth scaling, is the optical amplifiers, mostly EDFAs [12], which their gains is on the C-band 

(1550 nm to 1565 nm) and L-band (1565 nm to 1625 nm) [2].  

Building optical systems with relatively large bandwidth can be a complex and costly task, 

since increasing the bandwidth relies on the improvement of individual components, such as optical 

amplifiers, lasers and optical filters.  Hence, it becomes clear that the expansion of the bandwidth 

has limited use, which is not attractive on research point of view.  

  

2.2.2 SNR limitation   

 

Another way of scaling the capacity shown in (2.1) is increasing the SNR. Despite all the efforts 

that can be made for increasing the SNR, this will lead to a logarithmic return on the capacity 

increase. Higher SNR can be achieved through lower-noisily amplification or lower-nonlinearity 

fibers [2]. In [13], ultra-low-noise amplification of an analog optical signal with an inline phase-

sensitive frequency-non-degenerate fiber parametric amplifier was demonstrated and achieved a 

figure noise close to the Raman limit of 0.45 dB. Other types of low noise phase sensitive amplifiers 

(PSA) have been proposed. For instance, in [14] the authors reported a noise figure below 3 dB 

with a 20 dB gain in a PSA using directly bonded periodically poled LiNbO3 (PPLN), and in [15], 

an average noise figure of 1.7 dB at a 23.2 dB gain was achieved with a PSA using an phase-locked 

pump. On the other hand, in [16] a low-loss and low-nonlinearity pure-silica-core fiber for C and 

L-band was proposed and achieved a low loss of 0.15 dB/km and an effective area (Aeff) of 130 

µm2. 
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2.2.3 Space division multiplexing 

The last possible way of increasing the capacity of the optical system is by increasing the number 

of spatial paths. Unlike the previous solutions, SDM has been proposed as a suitable solution for 

the demand as the capacity increases with the increase of the number of special paths. The simplest 

use of SDM in optical communications is the use of multiple fiber cables and for the last years is 

has been the solution for the capacity demand [17]. However, this approach is not advantageous as 

it increases the power consumption and cost.  

Lately new types of SDM such as FMF and MCF have been proposed to increase the capacity 

of optical system as well as the fiber density. These two technologies allow the transmission of 

several spatial channels in just one fiber cable [7, 18]. Nevertheless, these technologies present 

some disadvantages which will be addressed in further sections.     

 

2.3 Data center  

  

A traditional data center (DC) architecture is based on 3 tiers (presentation, application and data). 

This topology is efficient on the called “north-south” traffic, which is related to client-server 

applications [19]. Although, in recent years, the internet content providers (ICPs) start hosting a 

large amount of information, mainly due to video streaming and cloud computing, this traffic 

growth is mostly internal, between servers or even between data centers. The traditional 

architecture is not well equipped to handle this type of traffic. Due to virtualization and cloud 

computing, the solution for handling the increasing traffic is to switch from a three-tier to a two-

tier architecture, which is more suitable to deal with “east-west” traffic, related with the 

communication between servers or closed data centers (less than 100 km) [1, 20].  
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Figure 3 - Two-tier data center topology. 

Figure 2 shows a diagram for three-tier architecture. In this scheme, the servers are connected to 

the access switches which are connected to the aggregation routers and the core routers. The traffic 

Figure 2 - A traditional three-tier data center architecture. 

2 
Data center 1 Data center 2 
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on this type of architectures goes from the core routers to the servers which is efficient to the north-

south traffic, but inefficient to connections between different data centers. A diagram showing the 

two-tier architecture is depicted in figure 3. As can be observed, the data centers are connected by 

the border leaf switches and it allows a more efficient solution to transmit data between data 

centers.  

The intra-data center links reach up to 10 km and use wavelength near the second window of 

optical fiber communications (1310 nm) to minimize the dispersion. With this, there is no need to 

compensate the dispersion and, due to the short-reach of the link, there is no need of amplification.   

Inter-data centers (up to 100 km), use wavelength near 1550 nm due to the band of EDFAs, 

thus amplification is needed due to the long fiber distance. With this wavelength and higher 

distance, the residual dispersion needs to be compensated using digital compensation or dispersion 

compensating fiber (DCF) [1].  

Nowadays data centers are using intensity modulation with on/off keying or N-Pam (pulse 

amplitude modulation) with DD due to the simplicity and lower power consumption of the 

receivers. For the multiplexing, data center links use coarse WDM with wavelength spacing of 20 

nm or LAN-WDM with wavelength spacing of 4.5 nm to avoid the power-hungry [1]. 

 

2.4 Space division multiplexing    

 

As previously mentioned, the optical systems are reaching the capacity crunch, and, as showed in 

(2.1), the parameter that remains to be explored is the number of parallel paths. To address this 

question, space division multiplexing (SDM) was introduced [2]. SDM is the use of multiple spatial 

paths to transmit information. By increasing the number of paths, the capacity increases in the same 

ratio.  

Nowadays, the data centers use SDM in the form of multiple fiber cables. For example, data 

centers use 10 parallel links of 10 Gb/s or 4 of 25 Gb/s for 100 Gb/s links [17]. This approach is 

not scalable for higher bit rates, since it imposes high cost, complexity and power consumption. 

To overcome this problem, two main SDM approaches can be followed, multicore fiber (MCF) 

and multimode fiber (MMF) [7, 18]. MCF consists in one fiber with multiple cores for information 

transmission. These cores can interfere with each other depending on the structure, which may 

cause high or low crosstalk [18]. MCF transmission is almost equivalent to single-mode fibers 
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(SMF), where the difference is the intercore crosstalk (ICXT). This means that each core can be 

used as a separate WDM system and the capacity increase is proportional to the number of cores. 

These types of approaches are well suited for data centers with low distance interconnections, 

because there is no need for amplification, which can be difficult due to multiple cores and 

dispersion compensation in cases where DD are used. MMF uses multiple modes of propagation 

for information transmission. In this context, research is nowadays focused on a type of MMF 

known as few-mode fibers (FMF). FMF allows the transmission of channels using few orthogonal 

modes. These transmissions require multiple-input multiple-output (MIMO) equalization due to 

the mode mixing [18]. In FMFs, differential mode delay (DMD) and mode dependent loss (MDL) 

can be a problem and demand more complex MIMO receivers [21]. DMD can be briefly described 

as a spread of the signal in time domain, and MDL consists of different loss in each mode, which 

demands multi-mode optical amplifier to amplify each mode separately [21]. 

The main goal on SDM is to combine the two proposed technologies (MCF and FMF), thus it 

can drastically increase the capacity, because each core of the fiber can be used as a multi-mode 

core, and each mode can transmit a different WDM signal, as shown in [21]. 

 

2.4.1 Multicore fiber  

 

In recent years, multicore fibers (MCF) have shown to be a solution to overcome the capacity 

limitations in short-reach systems [7]. Figure 4 depicts an illustration of the cross-section of a two 

core MCF.  

 

 

 

 

 

 

 

 

 

 

Figure 4 - MCF cross-section illustration. 
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There are two types of MCF, weakly-coupled MCF and strongly-coupled MCF. The weakly-

coupled MCF consists of a fiber with multiple cores distributed in a less dense distribution. The 

inter core crosstalk (ICXT) decreases by decreasing the distance between the cores, therefore it 

will not allow as many cores as strongly-coupled MCF. Strongly-coupled MCFs have a higher core 

density, that can provide more capacity to the fiber, although the lower distance between the cores 

increase the ICXT and may lead to the need of MIMO DSP for the strong mode mixing [18]. In 

[22, 23], MIMO-based signal processing was proposed on 56 Gb/s and 112 Gb/s PDM-QPSK for 

strongly-coupled three cores fiber and both achieved a low penalty in presence of crosstalk as large 

as -4 dB. 

MCFs can be also characterized as homogeneous MCF and heterogeneous MCF. 

Homogeneous MCFs have cores with the same characteristics, and this can result on simpler 

systems without the need of high complexity MIMO equalization. In [24], a spectral efficient 

modulation was demonstrated with a 22-cores homogeneous MCF using PMD-64-QAM at 24.5 

Gbaud assuming a 20% forward error correction (FEC) overhead and a BER of 2.7 × 10−2 . 

Heterogeneous MCF uses different propagation constants between the cores which can be used as 

a form to suppress the ICXT, although the delay difference between cores demands the use of high 

complexity MIMO equalization [18].    

 

2.4.2 Advantages and disadvantages of MCF   

 

The most important advantage of MCF is increasing the capacity in the same ratio as the number 

of cores. Every core can be used as a separate WDM system, which increases drastically the 

capacity of the data centers links [7, 18]. Another way of increasing the capacity is the combination 

of MCF with FMF, although it has a disadvantage which is the increase of system complexity. 

Other advantage of MCF is the reduction of the number of fiber cables. The number of cores can 

represent a reduction of the same number of cables and keeps the same capacity. For example, fiber 

transmission links in DCs as PSM4 (Parallel Single Mode 4 lane) are good candidates of MCF 

applications [25]. PSM4 link can be realized by 1 strand of 8 cores fiber or 2 strands of 4 cores 

fibers, which means that 8 SMFs ribbon cable and 8 connectors can be replaced by one or two 

MCFs thinner cable and simplex/duplex single-MCF connectors. These simplifications of the cable 

and connectors could reduce the cost [7, 26].  
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One disadvantage of MCFs is the complexity comparing to SMFs, because MCFs demand a 

restructuring of the systems. For example, it demands a scalable manufacturing of fan-in/fan-out 

to connect the MCFs to the standards devices [7, 26].  The main disadvantage of MCF is the ICXT 

[7]. The ICXT is a random process whose statistical properties depends on time, length of the fiber, 

number cores and distance between cores [27]. The ICXT affects the system performance as one 

signal transmitted in one core (interfered core) is directly affected by the signal transmitted at the 

other cores (interfering cores).     

  

2.4.3 Studies on ICXT  

 

In homogeneous weakly-coupled MCF, the cores have similar properties and similar propagation 

time which increases the coupling between cores. The strong coupling leads to a high ICXT that is 

more aggravated by the fiber length [27]. 

The ICXT is the main challenge of MCFs and it can drastically affect the system performance 

[27]. Research has shown that the ICXT levels have a random longitudinal and time variation [27]. 

The longitudinal part can be caused by the imperfections of the fiber fabrications and the time 

variation can be caused by changes of the environment around the fiber. It is a stochastic process 

and its impact on the performance is significantly dependent on modulation format, data-rate and 

temporal skew between cores [27]. The effects of ICXT become more significant for higher core 

count and shorter core-to-core distance [28, 29]. This may lead to significant fluctuations over time, 

and it can be more relevant as high ICXT are observed over several minutes or even hours leading 

to service shutdown or outage over large time periods [29] – [31]. As the ICXT impacts the service 

quality, studies have been made to characterize the ICXT in different aspects. For example, in [32] 

the theoretical characterization of the decorrelation bandwidth of ICXT in weakly-coupled MCF 

was performed, and it was validated experimentally that the decorrelation bandwidth 

corresponding to uncorrelated ICXT is approximately given by the inverse of the skew between 

cores. It has been established that when the signal bandwidth is broader than the inverse of the 

skew, the ICXT can be treated as a Gaussian noise, and when the signal bandwidth is narrower 

than the inverse of the skew, the ICXT should be treated as a static component coupled to the signal 

[32, 33]. 
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Different techniques for ICXT suppression have been proposed. One of these techniques is the 

trench-assisted MCF, where each core has a low-index trench layer [18]. This technique aims to 

decrease the coupling between the cores. Another technique is the heterogeneous MCF which has 

different intrinsic index between the adjacent cores. The index difference causes different 

propagation constants, and it contributes to decrease the coupling between cores [18].    

Table 1 shows some results of the ICXT studies on the last years. These results prove that 

MCFs can be used while achieving low levels of crosstalk.  

 

Table 1- Crosstalk achieved employing MCF in recent years [18]. 

Number of cores Cladding diameter 

[μm] 

100 km worst crosstalk 

[dB] at 1550 nm 

7 186.5 -31 

12 225 -42 

19 200 -14.3 

19 220 -36.8 

30 228 -42 

   

2.4.4 MCF in data centers 

The traffic growth caused by the increasing demands from clouds services, is requiring a scalable 

cost-effective infrastructure for data center network, and simply increasing the number of optical 

fiber links may be costly. SDM has been a candidate to achieve a cost-efficient scaling. In recent 

years some studies have been made on MCF in short-reach links mainly on data centers. In [26], a 

study was made on MCF on an economically point of view to evaluate the possibilities of MCF 

applications on data center links. In this study, some MCFs compatible with 250𝜇𝑚 diameter 

coating standards was presented, along with their required fan-in/fan-out dimensions (2D and 3D). 

In [7], a penalty-free BER down to 10−12  was presented from system tests on 200 meters of 8-

core MCF and up to 2 km in dual-core MCF. It was shown that the 8-core MCF is compatible with 

100 Gb/s PSM4 silicon photonic systems that use surface coupling with four cores allocated to 
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transmit in one direction and four cores allocated to transmit signals on the other direction. The 4-

core MCF can be used with surface or edge-coupled 100Gb/s PSM4 systems where the transmitter 

and receiver are in different chips or in separate location on the same chip. And lastly, the 2-core 

MCF can be used on WDM system consisting of four 25 Gb/s WDM signals transmitted on one 

core and four 25 Gb/s signals received on the other core.  

It has been demonstrated the suitability of MCF in data centers by achieving relatively high bit 

rates. For example, in [34], it was possible to demonstrate an achievement of 53.3 Tb/s capacity on 

a 7 spatial channels PDM-QPSK system and on an 8 spatial channel PDM-8PSK with a capacity 

of 83.3 Tb/s. In [35], the performance of 24 WDM channels, each with a 320 Gb/s PDM-16-QAM 

signal has been studied for a 7-core MCF in the presence of ICXT, and it was concluded that a 10 

km link can support 50 Tb/s when the ICXT is lower than -18.5dB, and over 10 km when the laser 

linewidth is below 5 MHz.       

     

2.5 Kramers-Kronig receiver  

 

As mentioned in section 2.1, coherent systems are optimal from a standpoint of spectral efficiency, 

as they allow the encoding in both quadratures and polarization of the electric field. While coherent 

systems are a solution to long-reach links, the cost can be a problem to short-reach links [36]. One 

of the solutions proposed to achieve a similar performance, is the Kramers-Kronig (KK) receiver. 

They realize a small size, low cost and simple structed systems [3, 4, 37, 38].   

These receivers are based on the Kramers-Kronig relation, and they can retrieve the complex 

signal from the photocurrent, if the minimum phase condition is ensured. The phase of the signal 

can be reconstructed by applying Hilbert transform to the logarithm of the current [4]. This kind of 

advanced DD receiver enables the digital compensation of chromatic dispersion on direct detection 

systems. Another advantage of KK receivers is the cancelation of the signal-to-signal beat 

interference, which is a nonlinearity induced by the square law detection that may cause significant 

performance degradation [39].  
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In figure 5, the structure of an ideal KK receiver is shown as this work considers an ideal KK 

receiver to focus the attention on the study of ICXT effects and to evaluate the performance of the 

machine learning algorithms to mitigate the impact of the ICXT. KK receivers have been 

successfully used in optical communications. For example, in [3] it was possible to achieve a single 

channel of 215 Gb/s over 200 km of fiber using KK receiver. On the same study, it was possible to 

achieve a 1.72 Tb/s WDM transmission over 200 km of fiber. 

The KK receiver has also been studied in DC scenarios as shown in [37] where it was proven 

to be a feasible option to achieve the cost-efficiency demanded by DC links. 

In [40] KK was used with SDM. It was possible to transmit 3663 channels (37 SDM and 99 

WDM) with reliable error-free performance achieving 909.5 Tb/s. 

 

2.6 Machine learning   

 

Artificial intelligence (AI) is a field of computer science where computer systems are trained to 

perform tasks that require intelligence. By employing such cognitive process, the computer is 

expected to store knowledge, use the acquired knowledge to solve a proposed problem and finally 

acquire new knowledge during the active phase to improve the performance on solving such 

problems [41]. 

Machine learning (ML) is a type of AI that focus on learning patterns by acquiring a large 

amount of data through different algorithms in which enables it to perform tasks such as prediction, 

classification and decision. ML learning has been attracting the attention in a wide range of areas 

such as health, telecommunications and image processing. In optical communications, ML has also 

been proposed and studied to improve the system performance by mitigating signal distortions or 

acting directly in the network configuration by performing dynamic resource allocation according 

H(.) – Hilbert transform. 

𝐶𝐷−1– Chromatic dispersion compensation. 

Figure 5 - KK receiver scheme. 
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to the real time state of the networks enabling the maximum system capacity through software 

defined network (SDN) [42]. For example, in optical communications, ML can be used to 

compensate nonlinearities such as square-law detection in direct detection, for converting the 

nonlinear effects into linear ones [43]. In this work, we propose the use ML techniques to mitigate 

the impact of the random ICXT on the system performance. More specifically, ML algorithms will 

be proposed for performing tasks such as classification of the used QAM signal, reconstruction of 

the ICXT-impaired signal to perform static standard symbol decision and, lastly, direct symbol 

decision by learning patterns on the affected signal.   

Machine learning can be classified in supervised learning, unsupervised learning and 

reinforcement learning (subject addressed in the following sections). 

 

2.6.1 Supervised learning  

 

In supervised learning, the algorithm is provided with a large amount of input samples whose 

outputs are known in advance (ground-truth), and the main goal is to find the relationship between 

the input and the output. A training data set comprises multiples samples of the input and the 

corresponding output values and several test and validation stages are performed until the algorithm 

reach its optimum performance [44]. One way to apply supervised learning on optics 

communications is for example, to train an algorithm using a dataset that consists the characteristics 

of the link (path, wavelengths, modulation) as input and the corresponding BER, then it can 

estimate the approximate BER in correspondence to new inputs [41]. Another way to use 

supervised learning is to classify and to perform the symbol decision on the signal impaired by the 

random ICXT.   

 

2.6.1.1 K-nearest neighbors  

 

K-nearest neighbors (KNN) algorithm is based on the distance between the new data and its closest 

k neighbors. In the training phase the algorithm stores the vector of the features and the 

corresponding known classes. On the classification phase, a new input is classified into the group 

of data with the greatest frequency among its k closest neighbors. Thus, in order to get better 

performance, the k parameter has to be well chosen [41, 44]. One application of KNN is the 
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classification of symbols on decisions, for example, it can decide boundaries in M-QAM systems 

and classify each input as a symbol on the constellations as shown in [45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows the importance of choosing the proper k value, since different values of k can 

lead to different classification outcomes, as illustrated in the figure. In the case of k=1 the input 

would be classified to the green class and with k=7, it would be classified as blue class. 

 

2.6.1.2 Artificial neural network 

 

Artificial Neural Network (ANN) is a class of machine learning algorithms which is biologically 

inspired on the human brain. 

An ANN consists of multiple units (or nodes) called neurons, which are organized into layers. 

A typical Artificial Neural Network comprises an input layer, a set of intermediate layers, called 

hidden layers, and an output layer, whose result is an estimate or a prediction. Each neuron at a 

given layer is usually connected to all neurons of the previous layer. Each connection between 

neurons has an associated weight and each neuron computes a weighted sum of the values 

Figure 6 - Example of KNN with k=1 and k=7.  

k=1 

k=7 



18 

 

presented at its input connections. The output of a neuron is the result of an activation function 

applied to the weighted (and biased) sum of its inputs. The weights of the interconnection between 

neurons are determined during a training process using back propagation algorithm [41, 44]. In the 

ANNs these connections are simpler and normally designed to solve a single problem. The 

complexity of the ANN is based on the complexity of the proposed problem to be solved.  

In the context of this work, where the objective is to mitigate the effects of the ICXT, simple 

and memoryless ANN can be used as the ICXT can be considered as a low-complexity problem if 

certain conditions are assured (topic explored in chapter 4). Since ANN can be used in a wide range 

of areas to solve numerous problems, there are different types of ANN which configurations can 

be simple, such as feedforward neural network or more complex ANNs, such deep learning-based 

networks, which can have several layers and can require allocated memory (e.g., recurrent neural 

network). These more advanced NN can be used for predicting different strategies for routing and 

spectrum assignments for elastic optical networks [46]. 

In optical communications ANNs can be used to perform equalizations to compensate the 

impairments caused by fiber dispersion, bandwidth limitations, laser chirp, noise and square-law 

in the case of IM/DD. They are well suited to perform optical performance monitoring due to their 

ability to learn the complex mapping between samples or extracted features from the symbols and 

optical fiber channel parameters, such as OSNR, PMD, Polarization-dependent loss (PDL) and CD 

[41]. 

 For example, in [43], it was demonstrated that a NN-based equalizer was able to accurately 

reconstruct the received signal affected by inter symbol interference in a 4 km 32 Gbaud IM/DD 

system with 8-PAM. This demonstration showed that ANNs can be well suited for intra data centers 

due the short distance and the low complexity.  

In SDM systems, machine learning techniques were proposed to support the design of 

crosstalk-aware schemes used for resources allocation [47] or to mitigate the impact of the crosstalk 

power between mode groups in mode-multiplexed M-quadrature amplitude modulation (QAM) 

OFDM-IM-DD systems [48]. NNs were also used to speed up coating loss estimation in 

heterogeneous trench-assisted MCF design [49]. 
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2.6.2 Unsupervised learning   

 

Unlike supervised learning, unsupervised leaning is based on creating classification of the inputs 

without knowing the right answer. It aims to classify the data according to the characteristics or 

relationships between them by clustering into groups. This technique can be well used in cases 

where the correct outputs are not known in advance. 

 One unsupervised learning algorithm is k-means clustering. It focuses on splitting the input 

into k clusters according to dissimilarity metrics and it creates groups centered on the mean of all 

the samples of each one [41, 44]. In case of high bitrates links, high modulations indexes are used 

and the smallest variations on the system can highly affect the system. k-means clustering can be 

used as an adaptive machine learning-based nonsymmetrical decision technique to mitigate the 

time varying impairments as demonstrated in [6].     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 depicts an example of a k-means clustering classification of 16-QAM signal. 

 

2.6.3 Reinforcement learning 

 

In reinforcement leaning, an autonomous entity known as the agent learns by evaluating the 

feedback of its actions. The feedback is often referred as the reward [41]. The goal is to maximize 

the performance in long term, thus it evaluates the consequences of its actions on the future. In 

Figure 7- k-means clustering classification for a 16-

QAM signal. 
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reinforcement learning, there is not an explicit learning phase since the algorithm updates are based 

on the agent’s interaction with its own environment [44]. One application of reinforcement learning 

in optic networks is, for example, self-configuration, including resource allocation and service 

reconfiguration [44].   

 

2.6.4 Studies with machine learning on IM/DD systems   

 

To minimize the nonlinearity effects, studies have been made using machine leaning on systems 

with intensity modulation/direct detection (IM/DD) [50]. For example, an experimental study with 

end-to-end deep learning design proves the great potential of ANN based transceivers. In this 

experiment, it was possible to transmit 42 Gb/s beyond 40 km with BERs below the 6.7% HD-FEC 

threshold. The system was based in IM/DD with PAM2/PAM4 modulation and conventional 

receiver equalization [50].     

Other studies have been developed using different types of ANNs, such as feedforward neural 

network (FNN), radial basis function neural network (RBF-NN), auto-regressive recurrent neural 

network (AR-RNN) and layer-recurrent neural network (L-RNN). These studies were made on a 

50 Gb/s PAM4 direct detection link. Among all these based equalizer techniques with the same 

number of input and hidden neurons, AR-RNN achieved the best performance while FNN showed 

the lowest computational complexity. In all of them, only few tens of multiplications are needed to 

achieve the FEC threshold, showing high potential of use on optical systems [5]. In [51] it was 

experimentally demonstrated a 100 Gb/s PAM4 short-reach optical link via a 15 km fiber using 

only post-equalization. A cascade RNN-based equalizer was proposed to effectively compensate 

signal distortion, showing better BER performance than FNN or RNN-based equalizers. With the 

aid of cascade RNN, BER lower than 7% FEC threshold is achieved when the receiver sensitivity 

is above 5 dBm. 

In [52], NN and KNN were tested on a 56 Gbaud PAM4 system. In both cases achieved a good 

performance with the NN equalizer demanding a higher complexity.  

Besides NN, other ML techniques have been studied on optical communications. In [53] k-

means was proposed as a low-cost ML technique to monitor the changes in the fiber environment 

via monitoring changes in the state of light polarization without the utilization of methods based 

on back-scattered light. 
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2.7 Summary   

 

In this review, some concepts related to optical communications have been introduced. In section 

2.1 an overall of optical communications has been presented and the exponential growth of the 

traffic has been addressed. Then the limitations of optical communications have been presented in 

section 2.2 where Shannon’s theory of information has been presented to evaluate the possibilities 

of capacity scaling. Furthermore, in section 2.3, current data center architecture has been 

introduced along with its main specifications. In section 2.4 SDM has been introduced as a solution 

for the capacity scaling according to Shannon’s theory. Section 2.5 presented the KK receivers as 

a solution to solve the nonlinearities of DD to achieve a low-cost system and enabling the digital 

chromatic compensation, and finally, in section 2.6, machine learning techniques have been 

introduced to mitigate the nonlinearities as well the ICXT introduced by the MCFs.    
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CHAPTER 3  

System model and performance assessment 

In this chapter, the MCF short-reach system employing the KK receiver is presented and the system 

performance in absence of ICXT is assessed. The system model is described in section 3.1, where 

the transmitter block is described in detail, the dual polarization discrete change model (DP-DCM) 

is introduced to describe the behavior of the random ICXT, and the receiver block is detailed 

including the description of the KK receiver. In section 3.2, the figures of merit used for system 

performance are presented. In section 3.3, the performance of the baseline system is assessed. 

 

3.1 System model 

 

Figure 8 depicts a block diagram of the system setup considered in this work for assessing the 

performance of machine learning algorithms on mitigating the impact of the ICXT. The system is 

composed by the optical transmitters, which generates QAM root-raised-cosine (RRC) shaping. 

Then, the signals at the output of the transmitter are launched into two different cores of a MCF: i) 

core n, the interfered core, and ii) core m, the interfering core which induces ICXT in core n. Then, 

the optical receiver includes a PIN photodetector, an electrical amplifier (which induces thermal 

noise), the RRC filter, the KK algorithm where the compensation of the dispersion is employed 

and the ML block to mitigate the impact of the ICXT. Finally, the bit error ratio (BER) is estimated 

using Monte Carlo simulation. 
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3.1.1 Optical transmitter  

The optical transmitter is responsible by converting the information signal from the electrical to 

the optical domain. First, a QAM Nyquist signal with a roll-off factor of 5% is generated using 

distinct random sequences for both components (in-phase and quadrature) of the signal. The 

modulator is a dual parallel Mach-Zehnder modulator (DPMZM) with the ability to modulate the 

I and Q components of the electrical field. This is achieved by biasing the inner MZMs at the null 

bias point and the outer MZM at the quadrature bias point.  

Figure 8 - Schematic diagram of the short-reach MCF based system employing KK 

receivers. 
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To obtain an almost rectangular spectrum of the transmitted signal, the signal need to be filtered 

by a Nyquist filter, which transforms a non return-to-zero (NRZ) pulse into a RRC pulse. The 

transfer function of the Nyquist filter is obtained as   

 

                                   𝐻(𝑓) = √𝐻𝑅𝐶(𝑓)
𝜋𝑓𝑇

sin (𝜋𝑓𝑇)
,                                                                (3.2) 

 

where 𝐻𝑅𝐶(𝑓) is defined as 

 

   𝐻𝑅𝐶(𝑓) =

{
 
 

 
 𝑇 ,   0 ≤ |𝑓| ≤

1−𝜌

2𝑇
𝑇

2
{1 + cos [

𝜋𝑇

𝜌
(|𝑓| −

1−𝜌

2𝑇
)]},    

1−𝜌

2𝑇
≤ |𝑓| ≤

1+𝜌

2𝑇

0,    |𝑓| >
1+𝜌

2𝑇

,                                   (3.3) 

  

where T is the symbol duration, f is the frequency and 𝜌 is the roll off factor.  

The QAM modulation uses two signals modulated in amplitude (I and Q components). The 

electrical field of the QAM signal after the modulator is defined as  

 

     𝑒𝑜𝑢𝑡(𝑡) =
𝐸𝑖𝑛

2
[exp (𝑗

𝜋

2𝑉𝑠𝑣
𝑉𝑏,3)

𝑒1(𝑡)

𝐸𝑖𝑛,1
+ exp (−𝑗

𝜋

2𝑉𝑠𝑣
𝑉𝑏,3)

𝑒2(𝑡)

𝐸𝑖𝑛,2
],                            (3.4) 

 

where 𝑉𝑠𝑣 is the switching voltage of the outer modulator, 𝑉𝑏,3 is the bias voltage of the modulator 

and 𝑒1(𝑡) and 𝑒2(𝑡) are given by 

 

  𝑒1,2 (𝑡) =
𝐸𝑖𝑛1,2

2
[exp (𝑗

𝜋

2𝑉𝑠𝑣
𝑣1 (𝑡)) + exp (−𝑗

𝜋

2𝑉𝑠𝑣
𝑣2 (𝑡))],                              (3.5)  

 

Eq 3.5 corresponds to the electric field at the output of the upper and lower arms of the DPMZM 

where 𝑣1 (𝑡) and 𝑣2 (𝑡) are given by 

 

            𝑣1,2 (𝑡) = 𝑉𝑏 1,2 + 𝑣𝐴𝐶 1,2 (𝑡),                                             (3.6) 
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where 𝑉𝑏 1 and 𝑉𝑏 2 are the bias voltage of the inner MZMs which are biased at the null bias point 

(𝑉𝑏 1,2 = 𝑉𝑠𝑣), and 𝑣𝐴𝐶 1 (𝑡) and 𝑣𝐴𝐶 2 (𝑡) are the in-phase  and quadrature components of the QAM 

signal, respectively. The signal at the output of the modulator is a carrier suppressed QAM. 

The carrier (an optical tone) is added to the signal to fulfill the minimum phase condition 

required by the KK receiver. In the simulation, the optical carrier is added into the optical domain. 

The optical carrier can be added in three different ways: i) by adequately biasing the MZM; ii) by 

using an external laser; iii) by generating a virtual carrier within the DACs. The drawback of the 

first approach is the bandwidth. The maximum bandwidth of the transmitted signal achievable is 

the electrical bandwidth of the information signal, this means that it is not possible to add an 

additional spacing between the carrier and the information signal. There is no bandwidth limitation 

with the second approach, hence it is possible to add a spacing between the carrier and the 

information signal in order to avoid additional distortion. This approach demands more complex 

implementation as it requires phase synchronization between the carrier and the MZM as well as 

polarization control. This increase significantly the implementation cost and complexity. As for 

the virtual carrier-based option, the optimum bandwidth can be achieved at a low complexity 

implementation. 

 

 

 

 

 

 

 

   

      

             a)        b)   

Figure 9 shows the spectrum of the signal at the output of the transmitter. In figure 9-a), an 

illustrative spectrum is presented. The optical tone is added to the signal to fulfill the minimum 

phase condition for the KK receiver [36]. Figure 9-b) shows the power spectral density (PSD) of 

 Figure 9 -  a) Illustrative spectrum of the signal at the transmitter output. b) Power spectral 

density obtained by simulation of the signal at the transmitter output. 

 

Optical tone 

Signal spectrum 

Spacing 
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the signal at the transmitter output obtained by simulation. The spacing between the carrier and the 

signal must be chosen to maximize the spectral efficiency without adding distortion to the received 

signal (this subject will be further developed later on this work).    

 

3.1.2 MCF model  

The MCF allows the transmission of multiple optical channels in different cores. In this work, only 

two cores are considered: one serving as the interfering core, i.e., the core that induces the ICXT, 

and other acting as the interfered core, i.e., the core impaired by the ICXT. The ICXT induced by 

the MCF is modeled by the dual polarization discrete change model (DCM) with two cores 

presented in [27, 54, 55]. Each core operates as a linear single mode fiber (SMF), i.e., it is modeled 

by the SMF propagation transfer function. Random polarization rotation induced by the fiber 

birefringence is also included in the transmission model [53].  

The dual polarization DCM is a model that generalizes the ICXT in weakly-coupled 

homogeneous MCF into a dual polarization scheme (x and y). The amplitude of the field at the 

input of the interfering core is distributed between the two polarizations. The power distribution is 

controlled by 𝜁 ∈ {0,1} , where the amplitude of both polarizations is given by                                   

𝑒𝑚,𝑥(𝑡) = √𝜁 ∙ 𝑒𝑚(𝑡) and 𝑒𝑚,𝑦(𝑡) = √1 − 𝜁 ∙ 𝑒𝑚(𝑡) [54].   

 

 

 

 

 

 

 

 

 
Figure 10 - Conceptual illustration of the DP-DCM (adapted from [54]). 
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Figure 10 depicts an illustration of the DP-DCM. The two polarizations of the ICXT at the output 

of the core n can be obtained by using the transfer functions 𝐹𝑥,𝑥, 𝐹𝑥,𝑦, 𝐹𝑦,𝑥 and 𝐹𝑦,𝑦, which are 

given by 

 

    𝐹𝑎,𝑏(𝜔) = −𝑗
𝐾̅𝑛𝑚

√2
exp[−𝑗𝛽𝑛̅̅ ̅(𝜔)𝐿]∑ [exp[−𝑗∆𝛽𝑚𝑛̅̅ ̅̅ ̅̅ ̅(𝜔)𝑧𝑘]exp[−𝑗𝜙𝑛𝑚,𝑘

𝑎,𝑏 ]]𝑁
𝑘=1 ,          (3.7) 

 

where L is the fiber length, 𝜔 is the angular frequency, 𝑎, 𝑏 ∈ {𝑥, 𝑦}, 𝐾̅𝑛𝑚 is the discrete coupling 

coefficient, which considers the average inter-core coupling coefficient of both polarizations, 

𝛽𝑛̅̅ ̅(𝜔) is the average of the intrinsic propagation constants of the two polarizations directions of 

core n and ∆𝛽𝑚𝑛̅̅ ̅̅ ̅̅ ̅(𝜔) is given by  

 

  ∆𝛽𝑚𝑛̅̅ ̅̅ ̅̅ ̅(𝜔) = ∆𝛽0,𝑚𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑑𝑚𝑛ω− ∆𝐷𝑚𝑛𝜆
2𝜔2 (4𝜋𝑐)⁄ ,                               (3.8) 

 

where ∆𝛽0,𝑚𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ is the difference between the averages of the propagation constants at 𝜔 = 0, 𝑑𝑚𝑛 

is the walkoff parameter between core n and m, and ∆𝐷𝑚𝑛 is the difference between the dispersion 

parameters of core m and n. 𝜙𝑛𝑚,𝑘
𝑎,𝑏

 are the random phase shifts (RPS) that model the random 

fluctuations of the ICXT induced by structural fiber perturbations in bending radius. The RPSs are 

random variables with uniform distribution between 0 and 2𝜋, and each RPS is introduced at the 

k-th random coordinate 𝑧𝑘, which is uniformly distributed between (k−1)L/N and kL/N, where N is 

the number of phase matching points (PMP) and k is an integer between 1 and N.  

The ICXT induced by core m at the output of the core n, is given by 

 

     𝑒𝑖𝑐𝑥𝑡(𝑡) = 𝑒𝑖𝑐𝑥𝑡,𝑥(𝑡) + 𝑒𝑖𝑐𝑥𝑡,𝑦(𝑡),           (3.9) 

 

where 𝑒𝑖𝑐𝑥𝑡,𝑥(𝑡) and 𝑒𝑖𝑐𝑥𝑡,𝑦(𝑡) are given by 

 

           𝑒𝑖𝑐𝑥𝑡,𝑥(𝑡) = 𝐹
−1[𝑒𝑚,𝑥(𝜔)𝐹𝑥,𝑥(𝜔)] + 𝐹

−1[𝑒𝑚,𝑦(𝜔)𝐹𝑦,𝑥(𝜔)],        (3.10) 

 

           𝑒𝑖𝑐𝑥𝑡,𝑦(𝑡) = 𝐹
−1[𝑒𝑚,𝑦(𝜔)𝐹𝑦,𝑦(𝜔)] + 𝐹

−1[𝑒𝑚,𝑥(𝜔)𝐹𝑥,𝑦(𝜔)],          (3.11) 
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where 𝑒𝑚,𝑥(𝜔) and 𝑒𝑚,𝑦(𝜔) are the QAM signals transmitted in core m.    

As mentioned, each core operates as a SMF. Thus, the MCF propagation in each core is described 

by the fallowing transfer function 

 

                        𝐻𝑓(𝜔) = exp (−𝑗𝛽0𝐿 − 𝑗𝛽1𝜔𝐿 − 𝑗
𝛽2

2
𝜔2𝐿 − 𝑗

𝛽3

6
𝜔3𝐿) . exp (−

𝛼

2
𝐿),               (3.12) 

 

where  𝛽0=𝑛𝑒𝑓𝑓2𝜋 𝜆0 ⁄ is the propagation constant, 𝛽1 = 1 𝑣𝑔⁄ is the propagation time delay, 𝛽2 is 

the group velocity dispersion, 𝛽3 is the higher order dispersion and 𝛼  is the fiber attenuation 

coefficient. These are given, respectively, by 

 

                  𝛽2 = −
𝜆0
2𝐷𝜆0

2𝜋𝑐
,                                                                   (3.13) 

𝛽3 = (
𝜆0
2

2𝜋𝑐
)
2

𝑆𝜆0 +−
𝜆0
3𝐷𝜆0

2𝜋2𝑐2
,                                                       (3.14) 

     𝛼 =
𝛼[𝑑𝐵/𝑘𝑚]

104log10(𝑒)
 ,                                                                      (3.15) 

 

where 𝜆0 is the operating optical wavelength, 𝐷𝜆0is the dispersion parameter at 𝜆0, 𝑆𝜆0is the slope 

of the dispersion parameter and c is the light speed in vacuum (c=299792458 m/s). 

The random polarization rotation induced by the fiber birefringence is also included in the 

transmission model [55]. Thus, the signal at the output of the interfered core is given by 

 

𝑒𝑛
′ (𝑡) = [𝑒𝑛,𝑥

′ (𝑡) + 𝑒𝑖𝑐𝑥𝑡,𝑥(𝑡)] + [𝑒𝑛,𝑦
′ (𝑡) + 𝑒𝑖𝑐𝑥𝑡,𝑦(𝑡)],                            (3.16)     

                                    

where 𝑒𝑛,𝑥
′ (𝑡) and 𝑒𝑛,𝑦

′ (𝑡) are given by 

 

   𝑒𝑛,𝑥
′ (𝑡) = [exp(𝑗𝜃) cos(𝛤) . 𝑒𝑛,𝑥(𝑡) − exp(−𝑗𝜓) sin(𝛤) . 𝑒𝑛,𝑦(𝑡)] ∗ 𝐹

−1[𝐻𝑓(𝜔)],    (3.17) 

 

   𝑒𝑛,𝑦
′ (𝑡) = [exp(𝑗𝜓) sin(𝛤) . 𝑒𝑛,𝑥(𝑡) + exp(−𝑗𝜃) cos(𝛤) . 𝑒𝑛,𝑦(𝑡)] ∗ 𝐹

−1[𝐻𝑓(𝜔)],   (3.18) 
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where 𝑒𝑛(𝑥,𝑦)(𝑡) is the QAM signal transmitted at the core n at each polarization (x or y), 𝜃, 𝜓 and 

𝛤  are random processes uniformly distributed between 0 and 2𝜋, and they can be considered 

constant during a short time duration where the ICXT is considered constant as the decorrelation 

time of the ICXT is of the order of minutes. 

 

3.1.3 Optical receiver  

After passing through the MCF, the QAM signal impaired by the ICXT arrives at the input of the 

KK receiver, which includes a PIN photodetector, the RRC filter and a DSP block implementing 

the KK algorithm.  

 

3.1.3.1 PIN photodetector   

The PIN is responsible to convert the optical signal back into electric domain. The electric current 

at the PIN output is given by 

 

                   𝑖(𝑡) =  𝑅𝜆|𝑒(𝑡)|
2 + 𝑛𝑒(𝑡),                                                        (3.19) 

 

where |𝑒(𝑡)|2 is the instantaneous power of the optical signal at the PIN input, 𝑛𝑒(𝑡) is the electric 

noise generated by the transimpedance amplifier (TIA) stage of the PIN and 𝑅𝜆  is the PIN 

responsivity given by 

 

     𝑅𝜆 =
𝜂𝑞

ℎ𝜈
,                                                                         (3.20) 

 

where 𝜂 is the PIN efficiency, q is the electron charge, 𝜈 corresponds to the optical frequency of 

the input signal and h is the Planck’s constant. In this work, a PIN responsivity of 𝑅𝜆 =0.7 A/W is 

considered. 

3.1.3.2 KK algorithm  

 

The KK algorithm is based on the Kramers-Kronig relation and, if the minimum phase condition 

(when the time trajectory of the signal in the complex plane does not include the origin) is ensured, 
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it enables to retrieve the complex field at the PIN input from the photocurrent detected by the PIN. 

To retrieve the signal from its intensity, it is necessary that the power of the carrier is larger than 

the peak power of the information-bearing signal. In other words, the carrier-to-signal power ratio 

(CSPR),  

 

    𝐶𝑆𝑃𝑅 =  |𝐴|2/〈|𝑆 (𝑡)|2〉,                                                             (3.21) 

 

should be larger than the peak-to-average-power ratio (PAPR) of the information-bearing signal, 

given by 

 

 𝑃𝐴𝑃𝑅 = max (|𝑆 (𝑡)|2)/〈|𝑆 (𝑡)|2〉,                                                 (3.22) 

 

where  𝑆(𝑡) is the information-bearing signal and A is the amplitude of the optical carrier.  

With the minimum phase condition ensured, the phase of the signal can be calculated as   

 

    𝜑 (𝑡) = 0.5 𝐻(ln(𝑖(𝑡))),                                                          (3.23) 

 

where H (x) is the Hilbert transform of x.  

Then the signal can be reconstructed as  

 

𝑠(𝑡) = [√𝑖(𝑡) × exp(𝑗𝜑(𝑡)) − 𝐴],                                           (3.24) 

 

After the reconstruction of the complex signal, the digital compensation of the chromatic 

dispersion can be performed. For the sake of simplicity, in this work, this compensation is 

performed using an analog filter with transfer function given by 

 

                             𝐻𝐶𝐷(𝜔) = 𝐻𝑓(𝜔)
∗,                                                     (3.25) 

 

 where 𝐻𝑓(𝜔)
∗ is the complex conjugate of 𝐻𝑓(𝜔). 
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3.2 Figures of merit for performance evaluation  

After the description of the system model, the figures of merit employed for performance 

evaluation are presented in this section. In particular, a brief description of error vector magnitude 

(EVM) and bit error rate (BER) are presented. 

 

3.2.1 EVM  

One method to assess the performance of QAM signals is the EVM, which quantifies the difference 

between the transmitted and the received symbols. 

 

                𝑒𝑣𝑚 =
∑ |𝑠0(𝑘)−𝑠𝑖(𝑘)|

2𝑁𝑠𝑖𝑚
𝑘=1

∑ |𝑠𝑖(𝑘)|
2𝑁𝑠𝑖𝑚

𝑘=1

,                                                        (3.26)      

          

                     𝐸𝑉𝑀 = 10log10(𝑒𝑣𝑚),                                                               (3.27) 

 

where 𝑁𝑠𝑖𝑚 is the number of the transmitted symbols and 𝑠0(𝑘) and 𝑠𝑖(𝑘) are the coordinates of 

the received and transmitted symbols, respectively. The EVM can be related with the SNR by 

 

𝐸𝑉𝑀 = −𝑆𝑁𝑅,        (3.28) 

 

3.2.2 BER 

BER is another figure of merit that is commonly used for evaluating the optical system 

performance. In the presence of Gaussian noise, the BER can be theoretically computed from the 

EVM. The relation between these two figures of merit can be used to validate the system model in 

the presence of Gaussian noise, as is the case of the noise induced by the photodetector.  

The BER can be calculated from EVM by  

 

𝐵𝐸𝑅 = 2
1−

1

√𝑀

log2(𝑀)
erfc (ට

3log2(𝑀)

𝑀−1

1

evm×log2(𝑀)
),         (3.29) 

 



32 

 

where M is the modulation index.  

The BER can also be calculated using Monte Carlo simulation, where a direct error count is 

performed and the BER is the ratio between the received bits with errors and the total received bits. 

In order to ensure an adequate confidence interval for the BER estimation, the Monte Carlo 

simulation runs until there is one hundred error occurrences. Monte Carlo simulation can be used 

in scenarios where there are additional distortions other than Gaussian noise. 

 

3.3 Performance of the baseline system 

In this subsection, the performance of the system is evaluated in absence of the ICXT. This 

assessment is performed without compensation of CD and then employing CD compensation. 

Furthermore, the BER is assessed in presence of the Gaussian noise induced by the PIN. The 

baseline system is the system when ICXT is not considered.3.3.1 System performance without 

dispersion compensation  

The system performance is assessed without the compensation of the CD in order to identify the 

signal degradation as a function of the fiber length for 16-QAM with a symbol rate of 60 Gbaud 

and 64-QAM signals with a symbol rate of 40 Gbaud. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the EVM as a function of the fiber length considering a CSPR of 13 dB, RRC 

pulses with a 0.05 roll off and the power of the signal at the input of the fiber is set to 0 dBm. It 

 

Figure 11 - EMV as function of the fiber length. 
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shows that the system is highly affected by the chromatic dispersion due to the high symbol rate. 

The 64-QAM is more tolerant to the CD compared to the 16-QAM as the 64-QAM has a better 

spectral efficiency. The results show that, for an EVM threshold corresponding to a BER of 10−1.8, 

the maximum reach attained with 64-QAM does not exceed 500 m.   

a) 16-QAM constellation             b)  64-QAM constellation 

 

 

Figure 12 depicts the constellations obtained for 16-QAM and 64-QAM signals impaired by the 

chromatic dispersion. With this symbol rate the system presents a lot of distortion in a few meters 

of fiber length, thus, the compensation of the dispersion should be employed.      

 

3.3.2 System performance with dispersion compensation   

As shown in figure 11, the CD highly affects the system and it limits the fiber reach to a few meters 

which is not ideal for inter data centers links, requiring CD compensation. 

The KK receiver allows the reconstruction of the complex signal from its intensity with the 

distortion depending on the CSPR and the frequency spacing between the optical tone and the 

signal. With the reconstruction of the complex signal, it is possible to compensate the CD. For this 

reason it is important to evaluate the KK receiver performance according to CSPR, CD and the 

frequency spacing between the optical tone and the signal spectrum.  

 

 

Figure 12 - Constellations with 350 m of fiber. 
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a) 16-QAM              b) 64-QAM 

Figure 13 shows the EVM as a function of the CSPR and the spacing between the tone and the 

QAM signal for 100 km of fiber. The results show that, beside the case which there is no spacing 

between the signal and the optical tone, with all the others spacings the EVM stabilizes at a CSPR 

of approximately 9 dB. For CSPR higher than 9 dB, the EVM remains the same, as in this case the 

thermal noise is not considered. As most of the spacings achieve the optimum performance at the 

same level of CSPR, the criteria to choose a spacing is based on spectral efficiency, hence in this 

work, we choose a spacing between the optical carrier and the signal of 3 GHz in 16-QAM and 2 

GHz in 64-QAM.  

 

3.3.3 System performance with thermal noise 

In this section, the system performance is assessed in the presence of the thermal noise induced by 

the PIN. First the parameters used in this work are chosen according to the best performance of the 

system when it is not impaired by the random ICXT. Furthermore, the main impairment will be 

the ICXT as the final objective is to assess the performance of a MCF based system.  

Figure 13 - EVM as a function of the CSPR and the spacing between the carrier and the QAM 

signal. 
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Table 2 - Signal parameters. 

Parameters Value 

Symbol rate (Gbaud) 60 

Roll-off factor 0.05 

Input MCF power [dBm] 0 

 

 

Table 3 - MCF parameters. 

Parameters Value 

Attenuation [dB/km] 0.22 

Interfered core effective 

refractive index 
1.4453 

Interfering core effective 

refractive index 
1.4455 

Wavelength [nm] 1552 

Skew×symbol rate 0.001 

ICXT level [dB] -13 

Length [km] 35 

 

To use a KK receiver, we need to ensure the minimum phase condition. Thus, the CSPR must 

be optimized. For this we have considered a standard value for the noise equivalent power (NEP) 

of 10 pW/√Hz. 
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a) 16-QAM      b)  64-QAM 

Figure 14 shows the BER as a function of the CSPR for four different fiber lengths. Results 

are obtained considering the absence of ICXT and perfect dispersion compensation. Figure 14 

shows that the optimum CSPR for the 16-QAM signal is approximately 13 dB. This optimum 

operation point results from a trade-off between SNR and verification of the minimum phase 

condition. For low CSPR levels, the condition is not satisfied. For high CSPR levels, the SNR 

degrades. The 64-QAM signal presents a minimum of BER of approximately 10−3 while the BER 

of 16-QAM signal is below 10−6. Thus, in the following, the modulation considered will be the 

16-QAM.  

 

  a) CSPR=5 dB (w/out KK receiver)                             b) CSPR=5 dB  

Figure 14 - BER as a function of the CSPR and fiber length. 
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                     c) CSPR= 13 dB      d) CSPR=20 dB 

Figure 15 depicts the constellation of the 16-QAM signal when using: a) a low CSPR of 5 dB 

without the distortion of the KK receiver; b) a low CSPR of 5 dB; c) the optimum CSPR of 13 dB 

and d) a high CSPR of 20 dB. The results show that for a low CSPR, the signal power is higher. 

With a higher signal power, the SNR is higher, although the signal is degraded due to the low CSPR 

which affects the minimum phase condition as shown in the comparation between figure 15-a) with 

figure 15-b). For a CSPR of 13 dB, the signal power decreases. At this operation point, the system 

achieves the lowest BER. The minimum phase condition is ensured, and the SNR is high enough 

to achieve a BER below 10−6. For a CSPR of 20 dB, the signal power decreases drastically due to 

the ratio between the optical carrier power and the signal power. The input power into the MCF is 

limited to 0 dBm, if we increase the CSPR, the signal power decreases and the SNR also decreases.    

After establishing all the parameters, it is important to confirm that the simulation works as 

expected. For this, it is necessary that the system performance evaluated by Monte Carlo 

simulation, when impaired only by Gaussian noise induced by PIN, agrees with the system 

performance calculated theoretically through EVM.  

 

 

Figure 15 - Constellation of a 16-QAM when using: a) CSPR of 5 (w/out KK receiver) dB; b) 

CSPR of 5 dB; c) CSPR of 12 dB; d) CSPR of 20 dB 
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Figure 16 depicts the BER as a function of the fiber length considering a CSPR of 13 dB. In 

simulation, the BER was obtained by Monte Carlo simulation while the theoretical BER was 

obtained through the theoretical expression shown in equation (3.29). The results show that the 

system model operates as expected in absence of the ICXT.  

 

3.4 Summary 

In this chapter, the system setup used to evaluate the performance of self-coherent >200 Gb/s 

shorth-reach MCF systems using ML techniques has been presented. The parameters of the 

different system blocks have been also introduced and discussed. The optical transmitter that 

generates QAM signals, the DP-DCM used to describe the ICXT, and the KK receiver that 

reconstructs the complex signal were presented and detailed. Then, the figures of merit for 

performance evaluation were presented with the focus on EVM and BER. The system performance 

was evaluated with and without the compensation of the chromatic dispersion. The optimization 

of the spacing between the optical carrier and the QAM signal, and the of CSPR have been also 

accomplished. We conclude that, with a spacing of 3 GHz and a CSPR of 13 dB, the system 

operates at its optimal point. 

 

Figure 16 - BER as a function of the fiber length. 
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CHAPTER 4  

Performance evaluation of the KK MCF system with ML 

In this chapter, the performance of the system in the presence of the random ICXT is assessed and 

the ML techniques to mitigate the impact of the ICXT are presented. In section 4.1, the statistic of 

the ICXT is studied and then, in section 4.2, the system performance with the ICXT is assessed. In 

section 4.3, k-means clustering and KNN are presented to perform a dynamic symbol decision. In 

section 4.4, the ANNs are presented to mitigate the random ICXT and then the optimization of the 

proposed ANNs is accomplished in section 4.5. Lastly, the outage probability of the proposed 

system is assessed in section 4.6.   

 

4.1 Validation of the ICXT statistic 

The ICXT varies randomly along time. The time scale of the ICXT fluctuations can be of the order 

of a few minutes or achieve longer periods of few hours [27]. Therefore, the concept of time 

fraction and short-term average inter-core crosstalk (STAXT) has been introduced to assess the 

performance of MCF-based networks. A time fraction is a small-time duration, much shorter than 

the ICXT decorrelation time, where the ICXT is considered constant [54]. STAXT is the average 

power of the ICXT measured over a time period much shorter than the ICXT decorrelation time. 

The ICXT varies randomly from time fraction to time fraction, as the time interval between time 

fractions is much larger than the ICXT decorrelation time.  

 

 

 

 

 

 

 

 

 

Figure 17 - Normalized STAXT power as a function of the time fraction. 
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Figure 17 shows the normalized STAXT power as a function of the time fraction. To obtain 

the presented results, a ICXT level (XT) of -15 dB was simulated on each time fraction where a 

constant signal (CW laser) was induced on the interfering core. The results were measured at the 

output of the interfered core. The MCF has a length of 35 km and the ICXT was generated with 

1000 RPS. Figure 17 shows that the variation of STAXT power along time exceeds 20 dB. As 

reference, the ICXT level is the ratio between the mean ICXT power and signal power, at the output 

of interfered core [17]. 

To validate the ICXT generation process implemented in the simulator, the in-phase (I) and 

quadrature (Q) components of the ICXT field were obtained and compared with the theoretical 

results. Theoretically, the variation of the ICXT is characterized by a Gaussian distribution [54].  

 

 

a) In phase component of the ICXT 

amplitude at polarization x. 

 

b) Quadrature component of the ICXT 

amplitude at polarization x. 

 

c) In phase component of the ICXT 

amplitude at polarization y. 
d) Quadrature component of the ICXT 

amplitude at polarization y. 

 
Figure 18 - PDF of the quadrature components of the ICXT field. 
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Figure 18 shows the probability density function (PDF) of the in-phase and quadrature 

components of the ICXT field in both polarizations (x and y) directions. The simulation results of 

the ICXT are obtained with 1000 random phase shifts and for a ICXT level of -15 dB. A Gaussian 

PDF, obtained from the mean and variance of the simulation results, is also shown in figure 18, as 

reference. The results show that the ICXT components are well described by a Gaussian PDF, as 

predicted theoretically in [54]. 

 

4.2 Impact of the ICXT on the BER 

In this subsection, the impact of the ICXT on the system performance is studied. The main goal is 

to assess the BER behavior when the system is impaired by the random ICXT. This study is 

performed considering the ICXT as the main source of the system distortion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 shows the BER along 500 different time fractions. The ICXT level used is -15 dB and 

the system parameters are those presented in tables 2 and 3. The results show that the ICXT can 

cause high BER variations along time which can remain for several minutes or even hours. This is 

an unwanted effect as it may lead to variation of the service performance provided to the end users. 

 

Figure 19 - BER as a function of time fraction. 
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4.3 Machine learning algorithm for performance optimization 

In this work, three types of ML techniques are proposed and implemented: k-means clustering, 

KNN and ANN. The main goal of these techniques is to mitigate the impact of the random ICXT 

by performing different symbol decision other than the traditional decision with static boundaries, 

reconstruct the impaired signal or even perform the symbol decision. It has been demonstrated that 

the ICXT varies. Hence, a static symbol decision may not perform as expected. Thus, dynamic 

decision according to the ICXT or mitigate the impact of the ICXT for a static symbol decision 

may be alternative solutions with potential to provide system performance improvement.   

4.3.1 k-means clustering and KNN classification  

The first approach to improve the performance of the system impaired by the ICXT is to perform 

dynamic decision boundaries with k-means clustering or KNN. The proposed techniques can learn 

patterns on a two-dimensional space and then create different classes to represent each symbol.  

• KNN algorithm is based on the distance between the new data and the neighbors counted 

by the k parameter. The neighbor symbols are attributed by the training process where every 

input symbol has a correspondent output that matches with a class with the same 

characteristics. On the active phase, a new input symbol is classified into the group of data 

with the greatest number of nearest neighbor symbols according to the number of neighbors 

defined by the k parameter [44]. The classification used in the algorithm is based on the 

Euclidean distance. In this work, we divide the symbols into two group of samples (I and 

Q components of the QAM signal at the KK receiver output of the interfered core) for the 

training and active phase. 

• k-means clustering focuses on dividing the input into k clusters, which are automatically 

determined during the training process according to dissimilarity metrics. It creates groups 

centered on the mean of all the samples of each cluster (centroids). The algorithm uses 

Euclidean distance to perform the symbol decision [44]. As features for the classification, 

the k-means algorithm receives the in-phase and the quadrature components of the QAM 

signal received in the interfered core at the output of the KK receiver. 
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Figure 20 shows the BER of the received signal before and after using ML algorithms, 

considering an ICXT level of -13 dB. For each time fraction, the same samples of the random ICXT 

are used to ensure the same conditions for all algorithms. The results obtained show that k-means 

and KNN algorithms do not provide a significant performance improvement when compared with 

the performance obtained without using ML and in some cases the ML techniques perform worse 

than the case without using ML, as shown in table 4. This occurs because the ICXT is random and 

the simplest redesign of the decision boundaries does not allow to better identify the different 

clusters. 

 

Table 4 - BER 

 Mean Maximum Minimum 

k-means 0.0553 0.1441 0.0135 

KNN 0.0395 0.1113 0.0125 

W/out ML 0.0407 0.1001 0.0142 

Figure 20 - BER as a function of the time fraction for: absence of ML algorithm (circles), KNN 

(squares) and k-means clustering (crosses). 
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           a) k-means clustering classification    b) KNN classification  

Figure 21 depicts the constellation of the 16-QAM signal after the classification performed by 

the k-means clustering and KNN.  

 

4.3.2 Artificial neural networks  

The ANN consists of an input layer, fed by the feature values, hidden layers and an output layer, 

which provides the estimation or classification result. In this work one hidden layer is considered 

since the use of multiple layers increases the complexity, hence the training duration.  

As the simpler ML techniques presented in previous section do not provide performance 

improvement, ANN is considered as a new method that aims to improve the system performance. 

The objective is to learn the behavior of the ICXT to mitigate its impact on the system performance. 

This is performed by testing two neural networks: i) the estimation feedforward neural network 

(FNN), and ii) the classification FNN. The estimation FNN can be used to solve input to output 

problems. It is normally used to compensate nonlinearities and predict the output according to the 

input. The classification FNN is used to perform classification where a set of classes are defined in 

which its objective is to classify the input into a certain class. In this work, the implemented 

approaches are as follows: 

• An estimation FNN that aims to improve the performance of the system impaired by ICXT. 

To identify the required features employed by the FNN in the training phase to learn how 

Figure 21 - Constellation of the 16-QAM after k-means clustering and KNN classification. 
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to mitigate the ICXT impairment. The main goal of the FNN is to estimate the transmitted 

signal launched into interfered core, and then employ a static symbol decision approach. In 

this work the FNN is chosen as it is expected to mitigate the impact of the ICXT and predict 

the output according to the information feeded to the input.  

• A classification FNN to identify the required features employed by the FNN in the training 

phase to learn how to classify the symbols of the received signal at the interfered core. The 

objective is to perform the decision of the symbols, as it can learn the pattern and directly 

perform the decision. As the final objective is to retrieve the correct symbols, the estimation 

FNN can also be used to classify the received symbols as a QAM symbol. It is expected 

that it can perform the correct symbol decision without needing to reconstruct the ICXT 

impaired signal. 

 

4.3.2.1 ANN with two features  

  

 

 

     

 

 

 

 

 

 

 

a) Estimation FNN configuration. 

Received I comp. of core n 

Received Q comp. of core n 

 
 

Estimated I comp.  

 
Estimated Q comp.  
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b) Classification FNN configuration. 

 

 

Figure 22 depicts the scheme of the ANN employed with two inputs. The ANNs are feeded 

with two inputs (features): the in-phase and the quadrature components of the signal transmitted in 

the interfered core at the output of the KK receivers. The output of the estimation FNN is the I and 

Q components of the estimated signal, while the output of the classification FNN is the QAM 

symbols values.  

 

 

 

 

 

 

 

Figure 22 - Schematic diagram of the estimation and classification FNN used to mitigate the 

impact of the ICXT in DD-MCF short-reach networks. 

Received I comp. of core n  

 
Received Q comp. of core n  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 shows the performance of the estimation and classification FNN. The case in which 

the system is operating without the ML block is also shown, as reference. For this simulation a 

ICXT level of -13 dB is used. The results show that simple FNN configurations with only two 

inputs did not perform better than the system without the use of ML. The FNNs with two inputs do 

not present enough information to recognize patterns to mitigate the effects of the ICXT. As the 

ICXT depends on the signal injected into the interfering core m [29], [56], we may need to provide 

the signal detected at the output of core m as an input feature.  

 

4.3.2.2 ANNs with four features 

ANNs with two inputs cannot perform better due to the lack of ICXT information. The solution is 

to increase the number of inputs. In point-to-point links with skew × symbol rate << 1, it is possible 

to collect the information of the signal received at the interfering core.  

 

 

 

Figure 23 - BER as a function of the time fraction for: absence of ML (circles), estimation FNN 

(squares), classification FNN (crosses). 
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Figure 24 depicts the scheme of the inputs of the FNNs. The NNs are feeded with the I 

component and Q component at the output of the interfered and interfering core. 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 shows the BER of the received signal before and after using ML algorithms, considering 

an ICXT level of -13 dB. Both FNNs have a single hidden layer of 10 neurons. The optimization 

algorithm used in the training phase was the scaled conjugate gradient, and the activation function 

used was the tangent sigmoid. The only difference between these FNNs and the previous FNNs 

Figure 24 - Scheme of the inputs of the FNNs. 

Figure 25 - BER as a function of the time fraction for: the absence of ML, with the estimation 

and classification FNN. 

KK receiver 

of core n 
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of core m 

 

I comp.  
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configuration is the number of inputs. Thus, with four inputs, the FNNs are expected to learn how 

a core (interfering core) can affect the other (the interfered). In contrast to previous ML techniques, 

figure 25 shows that the 4-input estimation and classification FNN enable the mitigation of the 

ICXT-induced BER degradation. This is confirmed by the comparison between the constellations 

obtained without ML and after employing the estimation FNN, shown in figure 26 a) and b), 

respectively. 

 

a) Constellation of the received signal                      b) Reconstructed signal by the estimation 

         FNN 

 

4.4 Optimization of the ANNs 

 

The previous section has proven that the ANNs can improve the performance of the system by 

reconstructing the distorted signal or by performing the symbol decision. Now, it is important to 

optimize the NNs configuration according to best performance while maintaining a low 

complexity. To perform the optimization, the number of neurons used and the training symbols are 

studied.  

Figure 26 - Constellation of the 16-QAM signal before and after using the FNN. 
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4.4.1 Number of neurons 

The number neurons in the hidden layer are studied in this subsection. The BER is used to evaluate 

the system performance when employing the FNN techniques according to the number of neurons. 

The number of iterations as a function of the number of neurons on the hidden layers is used to 

evaluate the training phase complexity. 

a) BER vs Neurons           b) Iterations vs Neurons 

 

Figure 27 shows the performance of the FNNs as function of number of neurons in the hidden 

layer. Figure 27 a) represents the BER as a function of number of neurons in three different time 

fractions. It shows that in FNNs with number of the neurons higher than two, the performance is 

basically the same. According to the theory, if the relation between the inputs and the output is 

nonlinear, it is necessary at least two neurons at the hidden layer [57]. Figure 27 b) shows the 

number of iterations required for each training process. The higher the number of iterations needed 

to train the FNN, the higher the duration of the training process. Thus, the number of neurons can 

be chosen according to the number of iterations as long as it is higher than one neuron. The number 

of iterations stabilizes at two neurons for the estimation FNN while the number of iterations starts 

to stabilize at 10 neurons on the classification FNN. In this work 10 neurons are used, as it is 

Figure 27 - Performance of the NNs as function of a) number of neurons and b) number of 

training iterations as a function of the number of neurons. 
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relatively a low number of neurons and achieve the optimum number of iterations for training 

process of the classification FNN. 

It is important to point out that estimation FNN takes significantly less iterations in the training 

phase than the classification FNN. This is due the loss function used for error optimization in each 

case, as the estimation FNN uses mean square error loss function and the classification FNN used 

the crossentropy loss function, which is a more sophisticated function that requires more iterations 

to achieve the optimum performance. Thus, the training duration on estimation FNN is much 

smaller than the classification FNN training duration. 

 

4.4.2 Number of training samples 

Another important parameter is the number of samples used to train the network. In this section, 

the BER is assessed according to the number of samples used in the training set. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 shows the evolution of the BER as a function of the number of training samples. The 

results show that the higher the number of training samples, the better the NNs performs. 

Nevertheless, it is not necessary a high number of training samples to achieve the desired 

performance. In DD systems with skew × symbols rate << 1, the ICXT can be treated as a static 

 
Figure 28 - BER as a function of the number of training samples. 
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distortion component coupled into the signal. Then, if we use 16-QAM mapping, each QAM 

symbol of the interfered core will be impaired by 16 different possibilities. In this case there are 

162 combinations of symbols transmitted into the two cores. Thus, it would be expected about 256 

samples required for training, as one sample corresponds in two QAM signals and the FNNs 

requires four inputs (Q and I components of each QAM signal). The results show that the BER 

starts to stabilize when using approximately 256 samples to train the NNs, which is aligned with 

the theory. In this work, 10000 samples corresponding to 10000 QAM symbols in each core were 

used to train the FNNs, as it is higher than the minimum required number. It is computationally 

fast to process and does not have a significant impact on the training duration.   

 

4.4.3 Product between the skew and symbol rate 

One of the most important parameters for the system performance with the use of ANNs is related 

to the MCF characteristics. As mentioned in chapter 2, the skew can determine the behavior of the 

ICXT. The skew is the relative delay between cores and the product between the skew and the 

symbol rate (skew×Rs) affects the behavior of ICXT [29]. If the skew×symbol rate is much bigger 

than one, several QAM signals at the interfering core may affect a symbol at the interfered core 

and the ICXT can be treated as Gaussian noise. On the other hand, if it is much smaller than one, 

the ICXT can be treated as a static component coupled to the signal, i.e., the ICXT induced in a 

given symbol of the interfered core only depends on the symbol transmitted in the interfering core 

at the same time instant. In this work, we consider a point-to-point link as it is possible to retrieve 

the information of the signal at the output of the KK receiver at the interfered and interfering cores. 

In a network scenario, it would be necessary to consider different strategies to retrieve all the 

information required for the NNs to perform the same as in a point-to-point configuration.  



53 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 depicts the BER as a function of the product between the skew and the symbols rate. 

For each skew, the same RPSs are used to generate the ICXT in order to guarantee the same 

conditions for every skew in a given time fraction. The results show that the NNs perform better 

when skew×symbol rate is lower than one. Thus, when skew×symbol rate is higher than one, the 

ICXT can be seen as additive Gaussian noise, and the ANNs is unable to learn the ICXT behavior. 

In the following, we will focus our attention on the case skew×symbol rate<<1.  

Table 5- FNN parameters. 

 

 

 

 

 

 

 

 

 

 

Parameters Value 

Number of inputs 4 

Number of hidden layers 1 

Number of neurons per 

hidden layer 
10 

Number of outputs 
2 (estimation) or 16 

(classification) 

Training symbols 10000 

Symbols to estimate the 

BER 
106 

Figure 29 - BER as a functions of 𝑠𝑘𝑒𝑤 × 𝑅𝑠. 
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At this point, the configuration of the FNNs is fully established. Table 4 outlines the parameters 

used by the FNNs. 

 

4.5 Outage probability 

 

The ICXT can cause the system to operate at a high BER during several minutes or even hours. 

This means that the BER can be higher than the FEC BER threshold along a significant time 

interval. When this happens, the system operates with an intolerant number of errors which may 

lead to system shoutdown or outage, as the FEC can not correct the errors. Due to this situation, 

the outage probability (OP) is introduced to evaluate the probability of the system being 

unavailable. In this work, an outage is considered when the BER in a given time fraction is higher 

than 10−1.8, which corresponds to the BER threshold of a 20% FEC [29]. To estimate the OP, the 

simulation runs until the number of outage occurrences (BER>10−1.8) is one hundred, then it 

divides by the total number of time fractions simulated. In other words, the OP is given by  

𝑂𝑃 =
100

𝑁
,          (4.30) 

where N is the total number of simulated time fractions before reaching 100 outage occurrences. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 - Outage probability as a function of the ICXT level. The absence of ML techniques 

and the use of estimation and classification FNN are considered. 

~12 dB 

ICXT level [dB] 
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Figures 30 depicts the outage probability as a function of the ICXT level (XT) when employing 

the two ML algorithms and without the use of ML. The simulation considered a 35 km link and all 

the link design is the same for the three presented scenarios (see in tables 2, 3 and 4). The results 

only present a minimum OP value of the order of 10−3  because the simulation for OP is 

computationally heavy and it can take several days or even months to calculate the OP when the 

XT decreases. This scenario is more aggravated when the ML techniques are used as for each time 

fraction, two ICXT must be generated and each FNN has its own training process. For instance, it 

takes 5 times more to obtain the outage when using ML techniques than to obtain the outage in 

absence of ML. Figure 30 shows that, compared with the case in which ML is not employed, an 

improvement of approximately 12 dB is achieved by using estimation or classification FNN. With 

these results it is reasonable to conclude that it is possible to employ a >200Gb/s short-reach MCF 

based system with almost no outage occurrences if the XT is kept low enough (below -20 dB).      

  

      a)                b) 

 

Figure 31 a) shows the mean BER as a function of the received optical power (ROP) 

considering an ICXT level of −15 dB. The BER is averaged over 1000 time fractions to obtain 

stabilized mean BER estimates. The results show that, for the BER = 10−1.8 (corresponding to the 

20% FEC threshold), the FNNs provide an additional ROP tolerance of almost 3 dB compared with 

the case in which ML is not employed. It is also shown that the BER = 10−1.8 is attained for 

Figure 31 - Mean BER as a function of a) the received optical power and b) mean BER as a function of 

the ICXT level. 

~9 dB 

~3 dB 
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ROP=−10 dBm. If we consider the typical power levels launched into the optical fiber (between 0 

and 10 dBm), this ROP level means a link budget between 10 and 20 dB. This link budget enables 

us to use recently fabricated MCFs where fiber loss does not exceed 0.2 dB/km and fan-in/fan-out 

insertion losses are typically below 1 dB [58, 59]. For ROPs below −14 dBm, the FNNs does not 

provide performance improvement as the system is limited by the thermal noise. Figure 31 b) shows 

the mean BER as a function of ICXT field and as expected, the FNNs provide a significantly 

improvement when comparing to the system without the use of ML. The results show that when 

employing ML, the system present a tolerance of approximately 9 dB when compared to the system 

without the use of ML. 

 

4.6 Summary  

 

In this chapter the self-coherent >200 Gb/s MCF system employing ML for performance 

improvement has been implemented, and the system performance was evaluated with and without 

the use of ML. In section 4.1 the validation of the ICXT model has been made. Section 4.2 

presented the impact of the ICXT on the performance of a 35 km MCF based system. In section 

4.3, machine learning techniques have been presented as a solution to mitigate the effects of the 

random ICXT. First, simpler algorithms such as k-means clustering and KNN have been proposed 

and implemented. Then, in section 4.4 more advanced ML techniques have been proposed to 

mitigate the impact of the ICXT. In this section, two different FNNs algorithms have been 

presented (estimation and classification) and they show a significant improvement on the 

performance of the system when using 4 features for training. In section 4.5, the optimization of 

the proposed FNNs has been performed according to number of neurons, training symbols and the 

skew × symbol rate. 

Finally, the system outage has been studied in section 4.6. In this section the outage probability 

is presented as a function of ICXT level, and it has been proved that the FNNs can significantly 

improve the system outage. It was possible to achieve an outage probability of approximately 12 

dB when employing FNN. The system operating with the FNN achieves and ROP improvement of 

3 dB and ICXT level improvement of 9 dB. 
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CHAPTER 5  

Conclusion and future work 

In this chapter, the conclusions of this dissertation are presented and then some future works are 

proposed. 

 

5.1 Final conclusion  

 

In this work, a >200Gb/s MCF short-reach network employing KK receiver and ML was studied, 

and the impact of the ICXT induced by the MCF on the system performance was analyzed. The 

proposed MCF based system employs an ideal KK receiver that takes into account the thermal 

noise, chromatic dispersion, random rotation of polarization and ICXT. Furthermore, the system 

was designed so that the main impairment is the ICXT, and then the ML techniques were 

implemented as a solution to mitigate the effects of ICXT.  

In chapter 2, the theoretical concepts used in this work were presented. First, an overall outline 

of the optical communications was presented for a better understanding of the current situation 

these networks. Then the MCF was presented as a solution to overcome the capacity crunch on 

inter data center links. Data centers use DD based receiver as cost-efficient solution. These 

receivers lead to nonlinear limitations, thus KK receiver was proposed as a solution for 

linearization, capacity increase and spectral efficiency. Furthermore, ML was proposed as a 

solution to mitigate the impact of the ICXT on the system performance and some previous works 

using ML in optical communications systems were detailed.  

Chapter 3 presented the system's model and then a detailed description of the different system 

blocks was performed. The system comprises an optical transmitter capable of transmitting QAM 

signal, as the KK receiver allows the reception of QAM signals employing DD. To describe the 

ICXT induced by the MCF, the DP-DCM was presented, and then the KK receiver was fully 

described. Furthermore, the performance of the system without ICXT was assessed in order to 

choose the better parameters for the best performance on the system base model.  

In chapter 4, the statistic of the ICXT was analyzed in order to validate the DP-DCM 

implemented in the simulator. Then the impact of the ICXT on the BER was evaluated, and high 
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BER variations was highlighted as a serious problem on the link. The ICXT varies from time 

fractions to time fractions, and in some time fractions, the BER can be higher than the BER limit 

permitted by the FEC used.  

In this work, three ML techniques were proposed as a solution to mitigate the impact of the 

ICXT on the system performance. Simpler techniques such as k-means clustering and KNN were 

implemented. It was concluded that these techniques do not provide additional performance 

improvement. ANNs were also proposed to mitigate the impact of the ICXT on the system 

performance. First, two simpler ANN with two inputs, namely the I and Q components of the signal 

at the output of the KK receiver of the interfered core, were implemented. As for the previous 

techniques, the performance was the same as the system without ML. Then, the next step was to 

increase the number of inputs, of the ANN. The ANN was fedded with four features (I and Q 

components of the signal received at the interfering and interfered core) to mitigate the effects of 

the random ICXT. The ANNs only could mitigate the impact of the ICXT when skew × symbol 

rate<<1.The proposed ANNs present a better result in every time fraction comparing to the system 

without ML. With the confirmation of the improvement on the system performance caused by the 

NNs, the next step was to optimize these ANNs to achieve the lowest complexity possible without 

compromising the performance. The estimation FNN achieves the optimum performance with 2 

neurons at the hidden layer, while the classification FNN achieves the optimum performance with 

10 neurons at the hidden layer. A brief study shows that the FNN techniques achieve the optimum 

performance using approximately 1000 samples for training.  

Lastly the system OP was studied, and it was concluded that, with FNNs, the system can 

achieve the same OP with higher XT. It was possible to achieve an ICXT level improvement of 12 

dB comparing to the case without the use of ML.  

5.2 Future work  

Based on the work performed in this dissertation, the following subjects are suggested for future 

work: 

• To assess the performance of the ML in long-haul amplified links.  

• To assess the performance of the ML with higher order modulations index, such as 64-

QAM or even 256-QAM. 

• To study the possibilities to increase the number of inputs of the ANNs to stabilize the BER 

at a certain value on every time fractions. 
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• To deepen the study of ICXT in scenarios characterized by skew×symbol rate>>1 in order 

to find ANN techniques able to mitigate the impact of the ICXT.  
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