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Abstract: As climate change, biodiversity loss, and biological invaders are all on the rise, the signifi-
cance of conservation and pest management initiatives cannot be stressed. Insect traps are frequently
used in projects to discover and monitor insect populations, assign management and conservation
strategies, and assess the effectiveness of treatment. This paper assesses the application of YOLOv5
for detecting insects in yellow sticky traps using images collected from insect traps in Portuguese
tomato plantations, acquired under open field conditions. Furthermore, a sliding window approach
was used to minimize insect detection duplicates in a non-complex way. This article also contributes
to event forecasting in agriculture fields, such as diseases and pests outbreak, by obtaining insect-
related metrics that can be further analyzed and combined with other data extracted from the crop
fields, contributing to smart farming and precision agriculture. The proposed method achieved good
results when compared to related works, reaching 94.4% for mAP_0.5, with a precision and recall of
88% and 91%, respectively, using YOLOv5x.
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1. Introduction

The world population has increased and is expected to continue to grow [1]. In recent
decades, this growth has driven the demand for agricultural goods, resulting in an increase
in crop areas [2]. However, traditional agricultural production is not economically or
environmentally sustainable; hence, it is critical to make optimal use of resources to enable
high-yield crops [2].

Furthermore, crop productivity is constantly threatened by insect pests. It is predicted
that worldwide food supplements are declining by 40% on average every year owing to
plant diseases and insect outbreaks [3]. Each year invasive insects cost the global economy
around USD 70 billion [4].

Temperature influences the rate of population expansion in several insect species. In
addition, the rise in global temperature caused by climate change influences insect damage
and development. The metabolic rates of insects increase when the temperature rises,
causing them to consume more food and inflict more harm. Crop losses due to insect pests
are expected to increase by 10% to 25% for every degree of average global warming of the
Earth’s surface [5].

Tomato is a fruit–vegetable that has great potential to be cultivated since it is a source
of vitamins and minerals. In terms of improving yields and fruit quality, tomatoes rank
among the horticultural commodities with high economic value that still require careful
handling [6]. It is critical to preserve these kinds of plantations against diseases and pests,
in order to improve the quality and quantity of the crop [7]. According to data from the
Food and Agriculture Organization of the United Nations, tomato production in Western
Europe has increased considerably from at least 2000 to 2019 [8].

Numerous fungal, bacterial, and viral diseases have severely afflicted this plant,
with symptoms appearing in various areas of the plant, such as the leaf, stem, fruit, etc.
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Wilt, rot, stains on fruits, browning of foliage, and stunted development are some of the
symptoms [9].

The advancements in information technology have allowed for the development of
more precise farm management systems that overcome these invaders. Insect traps (ITs)
are essential for keeping track of insect activity and are frequently used in pest detection
and control programs, such as in [10], where trapping techniques for emerald ash borer
and its introduced parasitoids were addressed. In [11], the authors address trapping, detec-
tion, control, and regulation of tephritid fruit flies, lures, area-wide programs, and trade
implications associated with them. In [12], the authors address the use of pheromone traps
to monitor the distribution and population trends of the gypsy moth; for further references,
please also see [13–15]. ITs are also used to assess biodiversity, plan conservation [16–18],
and evaluate pest activity and research initiatives, such as in [19], where over a two-year
period, the association between female mating success and background male moth densities
along the gypsy moth western front in northern Wisconsin, USA, was measured. In [20],
the authors describe the usage of automated pheromone-baited traps, utilizing recording
sensors and data loggers to collect male unique date–time stamps when they entered the
trap; for further references, please also see [21–23].

As a result of the use of IT, a lot of research has been conducted to determine the
effectiveness of traps, such as reference [24], where attraction and trapping capabilities of
bucket- and delta-style traps with different pheromone emission rates for gypsy moths were
compared. In [25], the performances of pheromone-baited traps to monitor the seasonal
abundance of tortrix moths in chestnut groves were analyzed. In [26], the authors evaluated
gravid traps for the collection of culex quinquefasciatus; for further references, please also
see [27–30]. The research was also carried out to estimate the range of attraction, such as
in reference [31], where the authors presented a novel method for estimating a pheromone
trap attraction range to the pine sawyer beetle monochamus galloprovincialis. In [32], the
range of attraction of pheromone traps to agriotes lineatus and agriotes obscurus was assessed.
In [33], the authors assessed the attraction range of sex pheromone traps to agriotes male
click beetles in South-Eastern Europe. In [34], the authors addressed the space of pheromone
plume and its relationship with the effective attraction radius in applied models; for further
references, please also see [35–38]. Work is also being conducted around the probabilities
associated with insects, such as in [39,40]. Regarding the work in [39], the probability of
detecting Caribbean fruit flies was addressed. Concerning the work in [40], the regional
gypsy population trends (in an expanding population using a pheromone trap catch and
spatial analysis) were predicted. This work on the probabilities associated with insects was
conducted to better understand trap catches and to relate them to the absolute population
density [41–47]. Regarding reference [41], the gypsy moth was used as the simulation model
to interpret the capture of moths in pheromone-baited traps used for the surveillance of
invasive species. Regarding the work in [44], the European pine sawfly was monitored with
pheromone traps in maturing Scots pine stands. As for the work in [45], the autumn gum
moth was monitored regarding relationships between pheromone and light trap catches and
oviposition in eucalypt plantations.

For several insect trap systems, a relationship was found between trap catches and
subsequent egg mass [44,45,48,49] and larval density [50–52]. However, translating trap
catches into absolute population density and, in particular, interpreting zero catches,
remains challenging at the quantitative level [12,24,41,53].

By gathering data on the target pest’s existence, abundance, and dispersion, insect
pest monitoring is often carried out in agriculture and forestry to evaluate the pest status
in specific sites (such as a greenhouse, field, orchard/vineyard, or forest). The ultimate
objective of insect pest monitoring within integrated pest management programs in agri-
culture is to give growers a useful decision-making tool. For instance, the intervention
thresholds are crucial for optimizing the control method and grower inputs for a given
insect pest infestation in a particular field at the ideal time. Insect population outbreaks can
be predicted using monitoring data to develop prediction phenological models, providing
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extra knowledge to enhance control methods and maximize the use of insecticides [54].
Similarly, forestry relies heavily on the detection and monitoring of both native insect pests
and invasive species to set up effective management programs. This is because forest insect
species can have a serious negative influence on the biodiversity, ecology, and economy of
the afflicted area [55].

The impetus for this work stemmed from the necessity to monitor insects that invade
crops. The monitoring of insect populations potentiates an increased crop yield as the use
of pesticides can be more efficient. Therefore, this work can contribute to precision agri-
culture [56]. On the other hand, the proposed technique for the detection and subsequent
counting of insects, which corresponds to the number of bounding boxes retrieved, con-
tributes to smart farming. To this end, use was made of YOLOv5 and a tiled image-splitting
technique in order to optimize the model’s performance.

Images from insect traps acquired in the open fields are subject to a wide variety of
illumination conditions due to weather conditions, day-cycle light, landscape elements that
cast shadows (e.g., trees, buildings, mountains), etc. The camera trap setup is also subject
to oscillations due to the wind, which may result in lesser image quality due to motion
blur. Trap imagery acquired in the open fields may also contain objects other than insects,
such as leaves that stick to the traps. Machine learning models that use images acquired
under these conditions tend to achieve worse results since they need to deal with such
variability. On the other hand, images acquired in the laboratory are usually captured under
fully controlled conditions (constant illumination, no wind, etc.), while images captured
in greenhouses may also be subject to some uncontrolled environmental conditions (e.g.,
illumination variability), but not as adverse as on images captured in the fields.

This paper considers the much less controlled scenario of images acquired on the
tomato crop fields, aiming to evaluate the applicability of YOLOv5 for the detection of
insects in yellow sticky traps.

2. State-of-the-Art

Insect populations that exceed the economic threshold can cause significant harm
to plants and, hence, diminish yields. The quantity of pests at an observed location
is frequently determined by visually inspecting sticky surfaces in IT and counting the
captured insects and this is a time-consuming job [57]. To overcome this problem, there has
been much development of Internet of Things (IoT) systems with the support of machine
learning for monitoring IT. This paper was developed in this direction, using images of
IT captured by an IoT system to detect the number of insects present in the traps in the
agricultural field through machine learning. This section will discuss some of the work that
has been done in this area.

Deep learning was used to detect, identify, and count specific pest species in ITs in [58].
To reduce the impact of illumination variations on detection performance, a color correction
variation [59] of the “gray-world” technique [60] was adopted. The authors suggested a slid-
ing window-based detection pipeline that applies a convolutional neural network (CNN)
to image patches at various locations to calculate the probability that they contain certain
pests. Their work was inspired by algorithms proposed for pedestrian detection, analyzed
in [61]. The final detections were produced via non-maximum suppression (NMS) [62]
and thresholding of image patches based on their positions and related confidences. To
evaluate the precision of the bounding boxes, the intersection-over-minimum (IoM) was
computed. It was concluded that many of the errors occurred because the same moth could
have various wing positions, occlusion levels, lighting circumstances, and decay patterns
throughout time, indicating that the algorithm would improve in well-managed sites.

In [63], the authors’ main objective was to create a model that detects whiteflies and
thrips from sticky trap images in greenhouse settings. They developed a model based
on faster region-based convolutional neural network (R-CNN), the “TPest-RCNN”, and
trained it using transfer learning with a public data set in the first phase. They utilized their
data set with the weights from the first phase to the second phase. The model was proven
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to be accurate in detecting microscopic pests in images with varied pest concentrations
and light reflections. It was also concluded that for recognizing insect species from images
captured in sticky yellow traps, the best results were achieved by the proposed model,
beating the faster R-CNN architecture and techniques employing manual feature extraction
(color, shape, texture).

The research in [64] focuses on a four-layer deep neural network based on light traps
with a search and rescue optimization strategy for identifying leaf folders and yellow
stemborers. The search and rescue optimization approach was employed in the deep neural
network to find the ideal weights to enhance the convergence rate, reduce the complexity
of learning, and increase detection accuracy. The proposed method achieved 98.29% pest
detection accuracy.

The proposed work in [65] studies the monitoring of spotted wing drosophila IT using
image-based object detection with deep learning. The authors trained the ResNet-18 deep
CNNs to detect and count the insect in question. From an image captured from a static
position, an area under the precision–recall curve (AUC) of 0.506 was obtained for the
female and 0.603 for the male. From the observed results, it was concluded that it is possible
to use deep learning and object detection to monitor the insects.

In [66], the authors performed automatic insect detection where they first used a
spectral residual model; different color features were then extracted. In the end, whiteflies
and thrips were identified using a support vector machine classifier. The classification
accuracies for the whiteflies and thrips were 93.9% and 89.8%, respectively. As for the
detection of the trap, a precision of 93.3% was obtained.

To identify whiteflies and thrips, researchers in [67] presented an image-processing
approach that included object segmentation and morphological processing of color features
combined with classical neural networks. The images were acquired under controlled
conditions, in a laboratory environment, from sticky traps moved from greenhouses. The
proposed algorithms achieved 96% and 92% precision, respectively.

In [68], a pheromone-trapping device was developed. In this work, the original image
was cropped into several sub-images with 30% overlap. These sub-images were then
used to train the tested models, which were the images reconstructed with the detections
performed. The results showed a mean average precision (mAP) of 94.7%.

Using IoT and deep learning frameworks, the work in [69] provided a real-time remote
IT monitoring system and insect identification algorithm. The authors used the faster R-
CNN ResNet 50 and an average accuracy (using different databases) of 94% was obtained.

The study in [70] used machine vision and deep learning to detect and count Aphis glycines
automatically. To detect the insect, the authors used a sliding windows approach with a size
of 400 × 400 pixels to slide over the acquired images with a stride of 400 pixels. Each image
framed by the sliding windows in each step was fed into the faster R-CNN developed by the
authors. The results demonstrate the high potential of the method proposed.

In [71], the authors proposed using low-cost cameras to capture and upload images
of insect traps to the cloud. The authors used R-CNN and YOLO models to detect the
insects, whitefly in this case, in yellow sticky traps. They used a public data set [72] for
training the models. However, the images used for training were acquired under controlled
illumination conditions. The authors do not explicitly state whether the images were split
or used as a whole. The model with the best mAP was YOLOv5x, with a mAP of 89.70%.

The technique proposed in [73] combines high-tech deep learning with low-tech sticky
insect traps. The authors propose a high-throughput cost-effective approach for monitoring
flying insects as an enabling step towards “big data” entomology. In this work, the traps
were captured a few days after being composed of a high number of insects, and images
of them were only obtained after that capture, under laboratory and field conditions. The
images were split into segments of 500 × 500 pixels. The authors concluded that the model
was more likely to miss important images than it was to incorporate irrelevant ones.

Regarding the work in [74], the authors used yellow insect traps for the detection
of Trioza erytreae and Scaphoideus Titanus Ball using image-processing techniques and the
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FASTER R-CNN and YOLOv4 models. In order to promote the robustness of the models,
images of the traps were taken by a 12-megapixel camera under different light conditions,
backgrounds, and distortions. The authors did not perform splits on the images in order
to train the models with tiles of the images instead of the images as wholes. The authors
concluded that the models performed poorly with and without image processing.

Considering the methodologies stated, open-source solutions may be employed to
aid in the detection process’s implementation. In [75], this approach is followed, using
the Computer Vision Annotation Tool (CVAT) (https://github.com/openvinotoolkit/cvat,
accessed on 9 December 2021), which contains a feature for automatic annotation/labeling.
This software can also be powered by Nuclio (https://nuclio.io/, accessed on 9 December
2021), a serverless technology that allows deploying trained models to CVAT. This tool was
analyzed and it was concluded that it could be interesting to use it given the infrastructure
of the project, as CVAT allows to create and carry out annotation tasks and, with Nuclio,
deploy trained models [76].

From the state-of-the-art, it is not always clear that the approach used to split the
image into tiles will feed the trained model. This is important, because in the case of
splitting the image, in order to optimize the model performance, duplicated detections can
arise. This problem is addressed in this paper and an approach to solve it is demonstrated.
Furthermore, the main contribution of this paper was to test the application of YOLOv5 in
detecting insects in traps (tomato plantations in this case). From the reviewed works, using
YOLOv5, images acquired under controlled conditions (laboratory or greenhouses) were
usually used. Thus, this paper contributes to the future developments of insect detection in
images that are split using YOLOv5 and an approach that optimizes the performance of
the trained model and the non-appearance of duplicate detections. Furthermore, this paper
contributes to the monitoring and detection of insects in crop traps and, consequently, to
the prediction of events in the agricultural field, by providing a new metric to be analyzed
and correlated with other data from the crop.

3. Materials and Methods

In this article, a method was developed to detect insects in IT, yellow sticky cards,
placed in agricultural fields. The work carried out in this article arose in the context of AI
for new devices and technologies at the edge (ANDANTE) [77] project and, consequently,
the data used in this work were provided by project partners. To carry out this work, first,
the image was prepared to feed the artificial intelligence (AI) model, then the model was
trained, and the results were evaluated and analyzed. This section presents the data set
used and the pipeline of the method developed.

Given that there was no manual annotation on the images provided, the first stage of
development was to manually annotate some yellow sticky cards and insects in the images.
The open-source software CVAT, its application programming interface (API), and Nuclio
(open source and managed serverless) were used in the developments described, making
model training, manual and automatic detection, data management, and selection easier.

CVAT and its API allowed the creation of a website where all images were available and
could be annotated manually and automatically. It was through CVAT that the bounding
boxes of the yellow sticky cards and insects were manually created in the first phase.
Through its API, it was possible to select images and access those same bounding boxes in
the desired formats. With this access, everything was ready to start the development and
training of the models with manual annotations. After the training, Nuclio was used to
put the developed models into practice in CVAT, i.e., it became possible on the website to
select a set of images in CVAT and apply the developed models to them with the immediate
output of the results, in this case, the automatic bounding boxes of the yellow sticky cards
and insects. This is because Nuclio allowed incorporating the developed models with the
extra processing done, such as the splitting of the images into tiles and their consequent
reconstruction, already with the respective automatic bounding boxes resulting from the
annotations made by the model, thus providing CVAT with the coordinates of the bounding

https://github.com/openvinotoolkit/cvat
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boxes to be placed on the image concerned. From CVAT API, it is thus possible to obtain
the bounding boxes presented in each image and, consequently, the number of insects on
the image in question.

3.1. Data Set

The data set used was related to Portuguese tomato plantations in the Ribatejo region,
namely Valada, Castanheira, and Lezria, where ANDANTE Portuguese partners collected
the data. Information about the tomato crop fields can be found in Table 1.

Table 1. Information on the tomato crop fields where data were acquired.

Location Area (ha) Planting Date Central GPS Point

Castanheira 23 19 April 2021 38.982300, −8.954110

Lezíria 27 27 April 2021 and 10 May 2021 39.006537, −8.881018

Valada 20 07 May 2021 39.067730, −8.772214

The tomato cultivation fields where data were collected were fully mechanized, from
planting to harvesting. The crop consists of natural tomato varieties, obtained from cross-
pollination, without any kind of genetic modification. Sowing was in a greenhouse, starting
at the end of January. Seedling production lasted about one-and-a-half to two months. The
crop was staggered with a cycle of about 120 days, depending on the tomato varieties,
and the start of planting took place between the end of March and the beginning of June.
Planting was in 1.52 m wide ridges. Planting density was about 33,000 plants per hectare
with drip irrigation.

The data set used contains 5646 images of IT captured by cameras placed in front of the
traps. These were webcams with 12 megapixels. The traps were composed of chromotropic
cards, yellow cards in this case, with glue, yellow in order to attract insects, such as bemisia
tabaci. In addition, pheromones were placed in delta-type traps in order to attract the male
insects so that they did not create offspring, such as helicoverpa armigera. The chromotropic
leaves and pheromones were used in the biotechnical fight. In the whole data set, only
4637 images were considered legitimate since several did not correspond to IT or were not
adequate to improve the model’s performance. These images were considered invalid. This
filtering is shown in Table 2.

Table 2. Data on the insect trap images where data were acquired.

Trap 001 Trap 002 Trap 003 Trap 004 Trap 005 Trap 006

Field Valada Castanheira Valada Lezíria Lezíria Castanheira

Period of
operation

27 May 2021 to
3 September

2021

26 May 2021 to
8 September

2021

27 May 2021 to
8 September

2021

27 May 2021 to
23 September

2021

27 May 2021 to
24 September

2021

26 May 2021 to
6 September

2021

Total images 848 948 901 945 1071 933

Valid Images 733 756 784 763 845 756

The images were captured every day, between the dates shown in Table 2. Furthermore,
the acquisition was mostly done between 11 a.m. and 8 p.m. at different times of the
day (11 a.m., 11.30 a.m., 12 midday, 4 p.m., 4.30 p.m., 5 p.m., 7 p.m., 7.30 p.m., and
8 p.m.), usually nine images were captured per day. The ANDANTE partners defined this
configuration based on their understanding of the insect’s behavior.

Figure 1 presents an example image for each of the six traps utilized.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of the data set. (a) Insect Trap 001. (b) Insect Trap 002. (c) Insect Trap 003.
(d) Insect Trap 004. (e) Insect Trap 005. (f) Insect Trap 006.

3.2. Method Pipeline

An analysis of the images from the data set was carried out; a method was chosen in
which the trap was first detected and then the insects presented in that trap through the
bounding box resulting from the detection of the trap, the yellow sticky card.

Since ITs differ physically and are sensitive to varied lighting circumstances during
image acquisition, we exclusively employed AI models for object detection, abandoning
the usage of manual image-processing processes for insect detection. In addition, because
the colors of the insects were generally the same as the colors of the lines on the yellow
sticky cards, only AI models were used. Taking this into account, and the literature
review [63,78–83], it was observed that AI models were increasingly being used, performing
better and replacing more traditional methods that involved manual image processing;
the manual image processing was discarded despite being considered at an early stage.
Regarding the work in [79], it was verified that a YOLO model could perform better than
the model used in the research for segmenting blueberries from an input image. In [63],
the authors concluded that the faster R-CNN proposed had better results than techniques
employing manual feature extraction for detecting whiteflies and thrips from sticky trap
images in greenhouse conditions.

The insect detection process went as follows: the yellow sticky card in the original
image was detected; the resultant bounding box was divided into tiles; the insects on each
tile was detected; the original image was rebuilt with all bounding boxes. For the sake
of improving the performance and results, cropping techniques were adopted [84]; the
bounding box corresponding to the yellow sticky card, i.e. the result of the yellow sticky
card detection model was split into tiles, and these tiles were used to train the insect models
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tested. From the performed detection, the number of insects presenting in each image can
be directly inferred. Figure 2 depicts this pipeline split into two phases, A and B.

Input

Yellow
sticky
cards
model

detection

Yellow sitcky card annotation

Yellow sticky card model detection result

Image split
into tiles

Each tile

Reconstruction of the image with  
the detections performed

Insects
model

detection

Output

Phase A

Phase B

Figure 2. Pipeline for insect detection.

The YOLOv5 object detection model was used to perform the insect detection task. This
choice is justified since YOLO is a widely used model that has been proposed for numerous
object detection-based tasks and, its most recent version, the one used in this work, is
showing an increasing usage trend [81]. Considering this trend and other works already
mentioned in Section 2, it was decided to use YOLOv5 due to its potential performance
in object detection tasks. Transfer learning was applied to train the model for insects and
yellow sticky card detection.

The YOLOv5 model has different versions (YOLOv5s with a small size, YOLOv5m
with a medium size, YOLOv5l with a large size, and YOLOv5x with an extra large size)
and the basic structures of all these versions are the same. Their differences rely on the size
of the model, with a multiplier that influences the width and the length (deepness) of the
network. Generally, the larger the model, the better the performance at the expense of more
processing time and required memory [85].

The parameters presented in Table 3 were used in all developments involving the use
of YOLOv5.

Table 3. YOLOv5 insect trap image parameters.

Epochs Batch Size Optimizer Patience

300 16 Stochastic Gradient Descent (SGD) 100
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The results of YOLOv5 were obtained and analyzed through MLflow [86] integration.
This integration made it possible to visualize the mAP_0.5, mAP_0.5–0.95, precision, recall,
and loss during each training epoch. At the end of the training process, it was also possible
to observe the F1 curve, as well as precision/recall curves. Of all the metrics obtained,
due to the nature of the problem, the evaluation of the results was based on the mAP_0.5,
mAP_0.5–0.95, precision, recall, F1 score, and F1 score curve.

The mAP, corresponds to the mean over classes, of the interpolated average of precision
(AP), of each class (out of N classes), given by the area under the precision/recall curve [87],
and is calculated as follows:

mAP =
1
N

N

∑
i=1

APi (1)

The precision measures the model’s accuracy in classifying a sample as positive. It is
calculated as the ratio between the number of positive samples correctly classified to the
total number of samples classified as positive:

Precision =
TruePositives

TruePositives + FalsePositives
(2)

The recall of the model assesses its ability to recognize positive samples. The more pos-
itive samples identified, the larger the recall. The recall is computed as the ratio of positive
samples that are properly categorized as positive to the total number of positive samples:

Recall =
TruePositives

TruePositives + FalseNegatives
(3)

The F1 score combines the precision and recall of a classifier into a single metric by
taking their harmonic mean. The F1 score formula is shown here:

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

4. Results
4.1. Yellow Sticky Card Model Detection

Phase A of the detection pipeline (see Figure 2), concerning yellow sticky card de-
tection, was developed to use detection data to later detect the insects contained in the
sticky cards.

From the valid images, explained in Section 3.1, 1272 insect trap images were manually
annotated, which were the images of the data set used in this phase; 80% of the data set
was used for training, 10% for validation, and the remaining 10% for testing. The images
were resized to 640 by 640 pixels in the training process.

The lightweight YOLO model, YOLOv5s, was enough to achieve near-perfect results,
as shown in Table 4, with the mAPs, precision, and recall reaching the maximum possible
values or very close to them. With the developed trap detection model achieving good
results, all of the images that had not been manually annotated were passed through the
developed model and the correct detection was verified by the model.

Table 4. YOLOv5s yellow sticky card model results.

Phase mAP_0.5 mAP_0.5–0.95 Precision Recall

Training 0.995 0.995 1 1

Testing 0.995 0.995 1 1



Agriculture 2022, 12, 1967 10 of 19

4.2. Insect Model Detection

The insect detection model was developed considering only the bounding box corre-
sponding to the detection of the yellow sticky card. The YOLO model was again used, but
in this case, more powerful versions of YOLOv5 were tested.

Initially, the tiles were obtained with increments of the base tile sizes; in cases where
these increments were not divisive of the widths and/or lengths of the images, the tiles in
the margins (right and/or bottom) were smaller than the remaining tiles (Figure 3c); this
approach was termed the pure split (PS). In the second phase, in order to keep all tiles with
the same dimensions, black/yellow/white borders were added to the tiles with smaller
dimensions (Figure 3d); this approach was termed pure split with border (PSB). However,
these approaches were discarded since it was possible for an insect to be split between tiles
in these approaches. This could lead to two detections representing the same object—one
corresponding to the part of the object that was in a certain tile and the other to the part of
the object that was in a tile in the vicinity of the previous one. This situation is illustrated in
Figure 4.

This situation would complicate the process of reconstructing the bounding boxes in
the original image as the creation of the new bounding boxes (based on the original ones)
would become complex and there would be a wide variety of possibilities when verifying
which bounding boxes belong to the same object.

Due to this potential problem, the development focused on two new alternative
approaches, namely:

• Overlapping with the different size(s) (ODS): Tiles with different dimensions depend
on the positions of the tiles relative to the image and overlapping occurs (Figure 3a);

• Overlapping with the same size(s) (OSS): The tiles are the same dimensions (320 × 320 px).
Zones may have more overlapping areas than others (Figure 3b).

(a) (b) (c)

(d) (e)

Figure 3. Yellow sticky card splitting approaches. (a) ODS approach. (b) OSS approach. (c) PS
approach. (d) PSB approach. (e) Original image.
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Tile 10Tile 00

Tile 11Tile 01

Figure 4. Illustration of splits without overlapping the split insects.

For all the tests performed, the number of images used was the same—248 insect
trap images. However, due to the different approaches to performing the splitting, the
tile numbers used to train the models were different for each approach. For ODS and
OSS 11,375 and 5092 tiles were used when training and testing the models, respectively.
In all approaches, 80% of the data set was used for train, 10% for validation, and the
remaining 10% for the test.

The overlapping of tiles was done with caution making sure that the overlapping
zone occupied an area of 160 × 160 px (Figure 5). By analyzing the images and the
insects presenting in them, and questioning experts in the area, it was discovered that the
maximum area that a bounding box could occupy is below these values. In this way, the
problem that arose was solved. If an insect is split between tiles it will be partially detected
in some tiles but will always be fully detected on a neighboring tile; this type of situation
is illustrated in Figure 5. Thus, when reconstructing the image, it became only necessary
to understand which detections overlapped, by checking and comparing each bounding
box position, which ones had the largest area and confidence, and removing the duplicated
ones. This way, only the bounding boxes detecting the whole object would remain.

From the tests carried out, a few incorrect detections or missing detections were
observed, but they were in the minority when compared to the accurate ones. These flaws
can be suppressed when the values obtained in each image are associated with groups,
for example, between 0 and 20—few insects, between 20 and 100—some insects, etc. This
association is important when analyzing the data and verifying the respective correlations
with additional crop data (e.g., for performing event forecasting). These types of failures are
reflected in the mAP_0.5–0.95 metric, which is significantly lower than the mAP_0.5 metric in
all tests performed (these results are depicted in Tables 5 and 6). This can be expected since
the mAP_0.5–0.95 is computed over different intersection over union (IoU) [88] thresholds,
from 0.5 to 0.95 with a step of 0.05, while mAP_0.5 uses a fixed threshold at 0.5.

From the tables, it can be observed that the results achieved across all the tested models
do not vary significantly. This means that, in cases where computational resources are
limited, the lighter models can be used and still achieve good performance. By analyzing
the precision, recall, and F1 score of all models, this situation becomes quite clear.
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Tile 10Tile 00

Tile 11Tile 01

Figure 5. Illustration of overlapping tiles that split insects.

Tables 5 and 6 also reflect that ODS and OSS approaches achieve similar results with
the YOLOv5x model, reaching the best results in both cases. However, due to the uniformity
that OSS provides to the dimensions of the tiles without the need for resizing, the OSS
approach was considered for the development of the remaining work.

Table 5. YOLOv5 insect model results for ODS.

Model Phase mAP_0.5 mAP_0.5–0.95 Precision Recall F1 Score

YOLOv5s
Training 0.973 0.678 0.982 0.935 0.958

Testing 0.945 0.539 0.937 0.89 0.913

YOLOv5m
Training 0.975 0.7 0.976 0.94 0.958

Testing 0.933 0.554 0.908 0.88 0.894

YOLOv5l
Training 0.979 0.724 0.986 0.947 0.966

Testing 0.952 0.567 0.938 0.906 0.922

YOLOv5x
Training 0.98 0.733 0.982 0.951 0.966

Testing 0.952 0.573 0.935 0.9 0.917

Table 6. YOLOv5 Insect Model results for OSS.

Model Phase mAP_0.5 mAP_0.5–0.95 Precision Recall F1 Score

YOLOv5s
Training 0.964 0.632 0.963 0.940 0.951

Testing 0.923 0.497 0.912 0.853 0.882

YOLOv5m
Training 0.975 0.691 0.982 0.946 0.964

Testing 0.946 0.542 0.946 0.874 0.909

YOLOv5l
Training 0.973 0.694 0.981 0.939 0.960

Testing 0.937 0.543 0.951 0.862 0.904

YOLOv5x
Training 0.976 0.713 0.983 0.95 0.966

Testing 0.944 0.559 0.942 0.88 0.910
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An analysis of the applicability of this development and communication with the
end users of ANDANTE led to the conclusion that it was preferable to have a balance
between false positives and false negatives. If too many false detections (false positives)
occur, it would mean a possible acquisition by end users of products, in vain, or a constant
check in the field of values reflected by the detection. On the other hand, if too many false
negatives occur, it would mean the possible appearance of pests without the perception
of the end user. Furthermore, this balance will always be the best situation to ensure that
the correlations performed with other data (acquired to make predictions regarding crop
events) are not biased. Therefore, the F1 score was analyzed since it is adequate when both
types of errors (false positives and false negatives) are not desired. Figure 6 depicts the
graph of the F1 score curve.

Figure 6. F1 score curve for the YOLOv5x model using the OSS approach.

By analyzing the plot of Figure 6, it is possible to have a significantly high confidence
value that optimizes the F1 score at the same time; this value is between 0.7 and 0.8.
Furthermore, mAP_0.5 is a metric that is mostly used in object detection [89], and good
results are obtained from it. Therefore, the analyses of the F1 score curve and mAP_0.5
reflect the good performance of the model.

Although a comparison with other works cannot be directly performed, due to the use
of different data sets and differences in the tasks performed by the object detection models,
the results reported in the related work presented in Section 2 are summarized in Table 7.
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Table 7. Comparison with other insect detection works.

Reference Image Acquisition Performance Metric Year

Proposed Field, no controlled conditions 94.4% | 94.2% mAP_0.5 | Precision 2022

[63] Greenhouse 95.2% Accuracy 2021

[66] Greenhouse 93.9% (whitefly) 89.8% (thrips) Precision 2022

[67] Laboratory 96% (whitefly) and 92% (thrips) Precision 2016

[68] Field, controlled conditions 94.7% (black pine bast scale) mAP_0.5 2022

Using a faster R-CNN object detection model, the work in [63] achieved a mean F1
score of 94.4% and an accuracy of 95.2% in the detection of whiteflies and thrips as well as
insect trap images acquired in greenhouses. In the approach followed in [66], automatic
insect detection was conducted using a spectral residual model followed by the extraction
of color features that were sent to a SVM classifier. The goal was to identify whiteflies and
thrips; accuracies of 93.9% and 89.8% were achieved, respectively. As for the detection
of the trap, a precision of 93.3% was obtained, which is less than the one achieved by
the model proposed in this paper (100%). By comparing the results in both works, the
approach using a deep learning-based object detection model in [63] seems to lead to better
results than the approach in [66], which relies on image-processing techniques and classical
machine learning models. As for [67], the images used for training and testing the system
were acquired under controlled laboratory conditions, from sticky traps that were collected
from greenhouses. They achieved precision rates of 96% and 92% for the detection of
whiteflies and thrips. These results seem aligned with the ones achieved in [63]; however,
since the images were acquired in a less adverse environment, the results may be biased
when compared with those resulting from images acquired directly in the greenhouse.
In [68], different object detection models were tested for detecting black pine bast scale
pests Among the tested models, YOLOv5 achieved the best results, reaching an F1 score of
0.90 and mAP of 94.7%. The setup used for the image acquisition process (besides being
used for a different task) was much more sophisticated than our own.

From Table 7, it can be seen that the approach presented in this paper is aligned
with other works. It shows the potential of using the proposed image splitting approach
together with YOLOv5 for detecting insects in sticky traps whose images are acquired in
more adverse image acquisition conditions.

5. Conclusions

This paper presents the use and performance of YOLOv5 object detection models for
insect detection in yellow sticky traps, using images acquired on tomato crop fields. The
insect detection process uses a sliding window approach that minimizes the appearance
of duplicate detections in yellow sticky card IT images. The presented YOLOv5 model
demonstrated robustness and resilience for performing well under various illumination
and adverse element exposure conditions. This work contributes to raising the bar for insect
detection and monitoring. Furthermore, by creating another metric related to crop fields,
this paper contributes to the development associated with forecasts of events regarding the
agriculture field, such as the forecasting of disease and pest appearances.

There were limitations due to the absence of manual annotations of insects, which
made it impossible to develop models for the detection and classification of insects trained
with all available images.

The detection associated with the yellow sticky card and the subsequent training of AI
models was performed in the first phase. In this phase, optimal results were obtained using
YOLOv5s, and it was possible to perform the detection of yellow stick cards in all data sets.

The second phase was dependent on the first, as it was supposed to use the bounding
box associated with the detection performed of the yellow sticky card in order to improve
the accuracy of the detections of the insects in the traps. At this stage, a problem that this
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paper contributed to solving was faced: how does one perform the splits on the yellow
sticky card bounding box image in a way that maximizes the quality of the model while not
causing insects to be lost during the process of splitting and reconstructing the bounding
boxes on the original image? The approach that ended up generally having the best results
was OSS, where the tiles were the same sizes and overlapped, with 94.2% of precision in
the test set with the YOLOv5x model. It can be concluded that the presented approach and
the YOLOv5 models have potential in the detection of insects in insect traps scattered in an
agricultural field.

It is possible to develop an insect detection model with the need for human supervision
at times since the number and location of bounding boxes may be inaccurate. However,
these errors are never in substantial quantities and can end up mostly suppressed when
associating the number of detections performed in an image to a group. This association
has advantages at the time of the data treatment and analysis.

6. Future Work

The annotation of all currently available images will be a part of future work, in
order to build larger training and test sets. This annotation can either be manual or semi-
automatic, assisted by the models presented in this paper. Larger data sets are expected to
lead to more robust and accurate machine learning models.

Another topic for future work is the identification of specific insect species among
those detected in the yellow sticky cards. For such a task, a larger number of images need
to be acquired since greater diversities of data are required for covering the various species
of insects to be identified.

It may also be valuable to evaluate the applications of other popular object detection
networks, (e.g., faster R-CNN or single shot detector (SSD)) using the image splitting
method proposed in this paper.

Future work will also involve testing the counting of insects themselves (in addition
to their detection). Since the count is directly associated with the number of detections, and
the detection model achieves high accuracy, we expect that the accuracies of insect counting
will achieve results similar to the detection process. Nevertheless, this experiment will be
put to the test and allow researchers to conclude its effectiveness in terms of considering
the sliding window approach presented in this paper.
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Abbreviations
The following abbreviations are used in this manuscript:

AI artificial intelligence
ANDANTE AI for new devices and technologies at the edge
API application programming interface
AUC area under the precision–recall curve
CVAT computer vision annotation tool
CNN convolutional neural network
FCT Fundação para a Ciência e a Tecnologia
ISTAR Information Sciences, Technologies, and Architecture Research Center
IoT Internet of Things
IT insect traps
mAP mean average precision
NMS non-maximum suppression
ODS overlapping with different size
OSS overlapping with same size
PS pure split
PSB pure split with borders
R-CNN region-based convolutional neural network
SGD stochastic gradient descent
SSD single shot detector
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