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Resumo 

 

Atualmente os Veículos Não Tripulados (VNT) encontram-se difundidos por todo o Mundo. 

A maioria destes veículos requerem um elevado controlo humano, e o sucesso das missões 

está diretamente dependente deste fator. Assim, é importante utilizar técnicas de 

aprendizagem automática que irão treinar os controladores dos VNT, de modo a automatizar o 

controlo, tornando o processo mais eficiente. 

As estratégias evolutivas podem ser a chave para uma aprendizagem robusta e adaptativa 

em sistemas robóticos. Vários estudos têm sido realizados nos últimos anos, contudo, existem 

lacunas que precisam de ser abordadas, tais como o reality gap. Este facto ocorre quando os 

controladores treinados em ambientes simulados falham ao serem transferidos para VNT 

reais.  

Este trabalho propõe uma abordagem para a resolução de missões com VNT, utilizando 

um simulador realista e estratégias evolutivas para treinar controladores. A arquitetura 

escolhida é facilmente escalável para sistemas com múltiplos VNT.  

Nesta tese, é apresentada a arquitetura e configuração do ambiente de simulação, 

incluindo o modelo e software de simulação do VNT. O modelo de VNT escolhido para as 

simulações é um modelo real e amplamente utilizado, assim como o software e a unidade de 

controlo de voo. Este fator é relevante e torna a transição para a realidade mais suave. É 

desenvolvido um algoritmo evolucionário para treinar um controlador, que utiliza behavior 

trees, e realizados diversos testes. 

Os resultados demonstram que é possível evoluir um controlador em ambientes de 

simulação realistas, utilizando um VNT simulado mas real, assim como utilizando as mesmas 

unidades de controlo de voo e software que são amplamente utilizados em ambiente real. 

 

Palavras-chave: Algoritmos evolucionários, Veículos não tripulados, Simulações 

realistas, controladores com behavior trees. 
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Abstract 

 

Nowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these 

vehicles require a great level of human control, and mission success is reliant on this 

dependency. Therefore, it is important to use machine learning techniques that will train the 

robotic controllers to automate the control, making the process more efficient.  

Evolutionary strategies may be the key to having robust and adaptive learning in robotic 

systems. Many studies involving UV systems and evolutionary strategies have been 

conducted in the last years, however, there are still research gaps that need to be addressed, 

such as the reality gap. The reality gap occurs when controllers trained in simulated 

environments fail to be transferred to real robots.  

This work proposes an approach for solving robotic tasks using realistic simulation and 

using evolutionary strategies to train controllers. The chosen setup is easily scalable for multi-

robot systems or swarm robots. 

In this thesis, the simulation architecture and setup are presented, including the drone 

simulation model and software. The drone model chosen for the simulations is available in the 

real world and widely used, such as the software and flight control unit. This relevant factor 

makes the transition to reality smoother and easier. Controllers using behavior trees were 

evolved using a developed evolutionary algorithm, and several experiments were conducted. 

Results demonstrated that it is possible to evolve a robotic controller in realistic 

simulation environments, using a simulated drone model that exists in the real world, and also 

the same flight control unit and operating system that is generally used in real world 

experiments. 

 

Keywords: Evolutionary algorithms, Unmanned vehicles, Realistic simulations, behavior 

tree controllers. 
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CHAPTER 1 

Introduction 

 

The study of automatic devices goes back to 10-70 A.D. during the influence of Hellenistic 

thinking and knowledge of science, with creations such as human statues that moved to 

imitate humans or devices to open and close temple doors.  Since then several inventions were 

created, and it is known that Leonardo da Vinci (1452 – 1519) designed a programmable 

robot and moving devices (Rossi et al., 2009). Nowadays, Unmanned Vehicles (UV) have an 

important role in our lives and the investment in this field is growing each day. In 2021 

Unmanned Aerial Vehicles (UAV) overall market was estimated to reach 27.4 billion dollars, 

and it is expected to reach 58.4 billion dollars in 2026, resulting in a compound annual growth 

rate of 16.4% (Markets and Markets, 2021). 

Several tasks can be performed using UV or even Swarm Robots (SR), where multiple 

robots work together by building beneficial structures and behaviors that are comparable to 

those seen in natural systems. The application of these systems can improve areas such as 

surveillance, search and rescue, military applications, agriculture, among others [3][4]. UV 

operation, and specifically, SR, brings numerous advantages. Some of the benefits of SR are 

flexibility, material risk instead of human, scalability, robustness, decentralized control, and 

self-organization (Oh & Suk, 2013).  

Most UVs still require a great level of human control, and mission success is directly 

reliant on this dependency. Examples of indirect control methods are usually based on manual 

programming and behavioral models. For specific and simple tasks this approach may have 

good results, however, with the increase in task complexity manual programming may not be 

viable. The disadvantages of the dependency on human control are even more evident in the 

usage of SR.  

Swarm intelligence is present in nature, as shown in the collective activities of insects and 

other swarming animals. Applications of SR inspired by this phenomenon have proven good 

results in several applications (Oh & Suk, 2013). One of the most important aspects of these 

systems is their ability to cooperate and evolve dynamically, understanding the surrounding 

environment and adapting. Therefore, artificial intelligence began to have a great impact on 

SR.  
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Evolutionary strategies may be the key to having robust and adaptative UV and SR. The 

evolutionary approach in single UV was presented in 1992 with the presentation of a neural 

network to control a walking robot (Lewis et al., 1992). Since then, many other studies 

involving SR and evolutionary strategies were conducted, resulting in promising outcomes 

(Rutkowski et al., 2012). Despite the potential of Evolutionary Robotics (ER), many issues 

still need to be studied and solved (Silva et al., 2015). ER has proven capable of performing 

simple tasks but fails when complexity scales.  

This thesis proposes an approach for solving robotic tasks using realistic simulation and 

physics software, using controllers and evolutionary strategies, that can be easily scaled for 

multi-robot systems or SR. The present chapter introduces this thesis motivation, objectives, 

research method, and structure. 

 

1.1. Motivation 

There are still many research gaps regarding ER. The first ER studies focused on developing 

evolutions online, in robotic hardware (Floreano & Mondada, 1999). This approach has 

benefits, such as the reliability on each robot and not on external entities to perform the 

evolution, and also the ability to modify the behavior if environmental or task conditions 

change. However, online evolution is still difficult to perform in real robotic hardware, as 

good solutions require large amounts of computation and time. Therefore, controllers need to 

be evolved in realistic simulations and then transferred to reality. 

One of the main issues related to offline evolution is the reality gap. Because they use 

elements from simulated worlds that are different from the real world, controllers developed 

in simulations may become ineffective when transferred to the robotic hardware (Silva et al., 

2015). One of the approaches proposed to solve this issue is the usage of minimalist 

simulations and large levels of noise, in order to avoid reaching simulation parameters that are 

not close to reality. Although this approach has been used in the last decades, it still has not 

proven to be a good general solution. However, one other approach aims to do the opposite, 

which is to perform accurate simulations, being as close to reality as possible to minimize the 

gap that occurs when the controller is transferred to reality. This latter approach still needs to 

be further analyzed and investigated. Other issues related to ER are the bootstrap problem and 

deception, where candidate solutions may stagnate, leading to limited controllers and 

unsuccessful tasks. 
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Work has been done to solve these issues, such as the decomposition of complex tasks 

into simple ones, to perform better evolutions (Duarte, 2015). Also, cooperation between each 

robot of the swarm has been used to achieve good collective results (Romano, 2018). 

However, both studies need further research, such as the need to increase task and controller 

complexity to have a better approximation to reality. Most of these works are done following 

a minimal simulations approach, where many of the simulation features are treated as noise, 

to prevent the reality gap.  This work aims to perform the opposite, which is to conduct 

accurate simulations and find the balance between large simulation time and the number of 

generations necessary to achieve good results. By using base behaviors and evolving only its 

composition, this study aims to understand the sensibility of this approach regarding the 

reality gap. 

 

1.2. Research Questions 

The focus of this thesis is to approach the issues regarding ER and realistic simulation 

environments, specifically, to evolve controllers and perform accurate simulations, analyzing 

its impact on the reality gap, where the proposed solution should be easily scaled for multi 

robot systems or SR. Therefore, this work aims to answer the following research questions: 

 RQ1: Is it possible to evolve robotic controllers using close to reality simulators and 

evolutionary algorithms? 

 RQ2: Is it possible to do so using the same real software that will be used in reality, to 

make the transition to reality smoother, minimizing the reality gap? 

RQ3: Can this solution be used or easily scaled for multi-robot or swarm robot 

systems? 

 

1.3. Objectives 

The main objective of this thesis is to study the evolution of controllers for robotic systems in 

accurate simulation models, operating on complex tasks and using ER strategies. Also, 

analysis should be conducted on whether it is possible to use the same software that is used in 

real drones, and also, if it is scalable to solve different tasks with multi robot systems. This 

thesis aims to continue the work produced by Miguel Duarte and Pedro Romano[10] [11]. 

The novelty of the proposed approach is the conduction of these strategies in an accurate 

simulation model, with the same software and control that is used in reality. Results must be 

analyzed in order to understand the advantages and disadvantages of this solution. Research 
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should be conducted by following a research methodology that guides researchers to develop 

effective work. 

 

1.4. Research Methodology 

In order to develop relevant and effective research, it is important to follow a methodological 

approach. The objective of Design Science Research (DSR) is to provide a conceptual process 

and mental model to create and evaluate artifacts (Peffers et al., 2006)(Peffers et al., 2007). It 

allows researchers to solve problems, make research contributions, and communicate results 

appropriately. Figure 1.1 describes the model presented by Peffers et al., which is divided into 

six activities. 

 

 
Figure 1.1 - DSR methodology process model (Peffers et al., 2007) 

The first activity consists of problem identification and motivation. The  objectives are 

defined based on the conclusions of this step. Both these activities are conducted throughout 

chapter 1, where the problem is stated, research questions are presented so as the objectives. 

The third activity is design and development, where the artifact is created. This activity 

should start by determining the artifact’s functionality and architecture, and then its creation. 

After that, activity four is the demonstration, where experiments should be performed in order 

to prove that the artifact can solve the problem. 

Evaluation is the fifth activity, where observations should be performed to analyze if the 

artifact can solve the problem. It can use items from the proposed objectives in activity 2. 

Also, this is an iterative process, as researchers can decide to go back to activity 3 to develop 

new artifacts or other versions. The final activity is communication, which is accomplished by     

thesis and paper publications. 
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Although the methodology is presented in sequential order, it is not necessary nor it is 

expected that researchers should follow it strictly. As represented in Figure 1.1, a DSR 

process can start with any one of the first four activities. In this thesis, the DSR starts with 

activity one, being a problem-centered initiation. 

 

1.5. Thesis structure 

This section provides an overview of the thesis structure. In Chapter 2, a literature review is 

conducted based on the method presented in the last section. Chapter 3 presents the 

methodology adopted for the experiments, where the simulation environments are defined. 

Chapter 4 demonstrates the experiments done, starting with the simple tests with no evolution, 

and finishing with a parallel simulation engine. Chapter 5 presents the results and analysis of 

the evolutionary tests. Finally, conclusions are presented, such as suggestions for further 

work. 
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CHAPTER 2 

State of the Art 

 

This chapter presents the state of the art regarding swarm robotics, evolutionary robotics and 

cooperation, and its recent research and challenges. The research method used in this process 

is the Systematic Literature Review (SLR), complementing it with different sources and also a 

snowball approach. The SLR has proven to be an extremely useful method for researchers, 

being an organized and evidence-based method. Specifically, SLR usage is growing in 

software engineering, and studies show that this method is improving the quality of research 

(Kitchenham et al., 2009). This method can be complemented by building knowledge from 

combining different sources and findings.  

The snowball approach demonstrated to be a good complement to an SLR, having good 

results in finding relevant literature (Wohlin, 2014). The term snowball refers to the practice 

of identifying additional articles using an article’s reference list or citations. Other sources are 

also included in the research, such as articles provided by thesis supervisors. Figure 2.1 

presents the method applied for this research. 

 
Figure 2.1 - Research method for state of the art, SLR and snowball 
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As it is presented in Figure 2.1, the SLR strategy focuses on answering research questions 

by having a review protocol applied on several highly regarded databases among the scientific 

community. Research questions for this thesis were already provided in the previous chapter. 

In order to answer the research questions, the following search string was chosen: “(("swarm" 

OR "multi") AND ("robot*" OR "UAV*" OR "drone*")) AND ("evolution*" AND 

("cooperati*" OR "control*"))”. The choice of the search string was completed after several 

trials in numerous scientific databases, resulting in several articles related to the theme. The 

filters applied to the research are presented in Table 2.1.  

 

Table 2.1 - Filters applied during SLR method 

Filter 1 Query All Metadata, all documents 

Filter 2 Query Abstracts, all documents 

Filter 3 Query Title, all documents 

Filter 4 Relevant (inclusion/exclusion criteria) 

Filter 5 Remove Duplicate 

Filter 6 Irrelevant topics (manual filter) 

 

Inclusion and exclusion criteria are presented in Table 2.2. These criteria allow to have a 

good amount of papers for the research and simultaneously to keep the latest articles 

documented in the scientific databases. 

Table 2.2 - Inclusion and exclusion criteria for SLR method 

Inclusion criteria Exclusion criteria 

Papers written in English Papers not written in English 

Papers since 2012 Papers before 2012 

Identified authors Unidentified authors 

 

Table 2.3 presents the final research table for the SLR, resulting in 37 references after the 

automatic filters, and 17 after filter 6 which was a manual filter. These were then 

complemented with 28 references from the snowball approach and other sources. This method 

resulted in a total of 45 relevant references for the thesis. 
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Table 2.3 - References for SLR and snowball approach 

Database Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6 

IEEEXplore 1,559 526 34 16 16 5 

EBSCOHost 20,639 102 3 1 0 0 

webofscience 1,726 597 40 23 14 7 

ACM Digital 
Library 

1,806 9 0 0 0 0 

Scopus 115,723 1,768 70 34 7 5 

SLR Total 141453 3002 147 74 37 17 

          Complement from snowball and other sources 28 

          Total        45 

 

2.1. Swarm robotics 

SR can have a huge impact on worldwide economies, due to its numerous advantages, such as 

its scalability, flexibility, cost reduction, among others. Nowadays, these systems are subject 

to study by several research groups across the world, and the number of applications is 

growing. Traditionally robot behaviors have been programmed manually, with methods where 

the majority of the information a robot need to complete a task is known. However, with the 

increase of task complexity, it is essential to have controllers that understand and adapt 

according to the surrounding environment. Thus, it is important to study ways for controlling 

the systems, and evolutionary algorithms have proven to have good results in this field. 

SR usage aims to solve problems collectively, with teams composed of multiple UVs. 

These systems can operate in several applications, such as search and rescue, military 

applications, agriculture, environmental monitoring, communications, and others (Grocholsky 

et al., 2006)(Zhao & Lu, 2012)(Sabino & Grilo, 2018)(Albani et al., 2017).  
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In military operations, SR is being intensively studied due to its numerous advantages. 

UV systems may be deployed into dangerous missions and have good performances, resulting 

in material risk and not human risk. Furthermore, these systems may reduce costs in 

comparison with traditional methods. One example of this is the usage of SR for large areas 

coverage, and also search and rescue operations. In this field, several studies show that SR 

systems are beneficial and deliver promising results (Grocholsky et al., 2006; Zhao & Lu, 

2012). Specifically, authors have proven that cooperative and evolutionary approaches may 

be the key to task success. However, most of these studies were done in basic simulations, 

and therefore, further research must be done to achieve effective results in more complex 

simulations and obviously, in the real world. 

The Swarm Robotics for Agricultural Applications (SAGA) experiment presented SR 

systems for agriculture applications, using cooperative approaches and artificial 

intelligence(Albani et al., 2017). The task was based on field monitoring and detection of 

weed presence and location, and the study demonstrates that SR operation has several 

benefits. Some of these benefits are efficiency, robustness, flexibility and scalability. 

Individuals of the SR had to follow patrolling strategies and analyze images. Usually, this 

patrol is planned a priori, however, this approach does not allow the system to adapt to 

different circumstances. This project also aimed to perform this patrol in a decentralized way, 

exploiting visual feedback to direct patrol strategies of each individual. Although the paper 

provided baseline results that prove that SR systems are beneficial and promising for 

agricultural applications, there is still a long way in order to bring these experiments to more 

accurate simulations and into the real world.  

Several studies have also been conducted in the communication field, forming network 

extensions or compensations. Specifically, the usage of multiple UAVs as flying access points 

in order to create a mesh network (Sabino & Grilo, 2018). The objective of SR application in 

this area is to optimize the positioning of UAVs to provide the best possible communication 

coverage. In order to achieve the goal, the authors proposed an evolutionary algorithm to get 

the best efficiency, deploying the minimum number of UAVs possible. Results have shown 

that the usage of evolutionary algorithms optimized the SR positioning. However, the results 

were once more a starting point for the study, and further research and more complex 

simulations need to be conducted. 
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2.2. Evolutionary robotics and cooperation 

The ER approach is based on the Darwinian principle of selective reproduction of the fittest, 

but, in this case, a robotic control system is evolved (Floreano & Nolfi, 2000). Usually, 

evolutionary algorithms are composed of a population with several candidates. Candidates are 

evaluated, and the best ones are chosen. After this, the best candidates typically suffer 

variations, which can be mutations or crossover. This process continues with several iterations 

until a certain condition is reached. 

Controllers’ evolution is usually done through genetic algorithms and Artificial Neural 

Networks (ANN). ANN can be generalized as a model that mimics the nervous system, since 

they have several layers, connected by neurons and synapses. In this case, ANN are evolved 

and parameters such as the number of neurons, weights, among others, are mutated to find 

optimal controller systems (Yao & Liu, 1998).  

There are relevant beneficial properties when using ANN in robotic systems. Floreano 

and Mondada presented some of these objectives, which are presented in Table 2.4 (Floreano 

& Mondada, 1999). 

Table 2.4 - ANN properties and their benefits for robotic controllers (Floreano & Mondada, 1999) 

ANN properties Benefits for robotic controllers 

Flexibility ANN flexibility allow the controller to adapt to environmental 

changes. 

Robustness Missing network links or hardware malfunction do not have a huge 

impact on the controller. 

Noise tolerance Noise tolerance is an essential property for SR controllers due to 

their sensors and actuators’ intrinsic noise in the real world. 

Scalability ANN can have several different architectures and connections, 

being extremely relevant for complex mappings and tasks.  

 

Although ER was initially used in individual robots, several studies have been conducted 

for its application on SR, and some of these are presented bellow. In SR it is also important to 

achieve cooperation between the elements of a group. Understanding and adapting according 

to the surrounding environment is the key to having robust and successful controllers.  
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Whether robotic controllers should be evolved online or offline is a question that has been 

studied in the last decades. One of the initial ER studies conducted an online evolution, which 

is the development and evaluation onboard the robot (Floreano & Mondada, 1999). This 

approach has the main advantage of altering the robots’ behavior according to environmental 

or task changes. However, in ER, the generations and candidates necessary for good solutions 

are typically large, requiring a fair amount of time and computing power. Furthermore, robots 

usually have limited computing power and evolution onboard may be challenging (Silva et 

al., 2015).  

Nonetheless, studies regarding onboard evolution have been presented in the last few 

years (Weel et al., 2012). Specifically, embodied evolution has been approached, where 

robots test and share several candidates with each other (O’Dowd et al., 2011). However, 

several evaluations are needed so as a large amount of computing power and time. Hence, 

online evolution has still remained unfeasible (Silva et al., 2015). 

On the other hand, offline evolution is an approach where controllers are synthesized 

offline, i.e. in simulation. After that, they are transferred to real robots, avoiding the 

computing and time limitations required during evolution. However, there are still issues with 

this approach (Silva et al., 2015).  

One of the main issues is the reality gap, as controllers evolved in simulation use 

elements that are different or may not even exist at all in the real world, resulting in several 

limitations (Jakobi, 1997). Figure 2.3 illustrates the reality gap problem, where a minimalist 

simulation founds an optimal solution in the simulated environment but had a performance 

loss when transferred to reality (Koos et al., 2013). Although the reality gap is a problem 

related to evolving in simulations, Francesca et al. stated that this issue can also be seen in 

manual design controllers (Francesca et al., 2014). Approaches to solving this problem have 

been presented in the scientific community, including the addition of noise in simulations, the 

concept of minimal simulations (Jakobi, 1997), and also the transferability approach (Koos et 

al., 2013). However, these approaches have limitations and there is no generalized solution to 

solve the reality gap. 
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As previously referred, the bootstrap problem and deception are also issues related to ER, 

but not directly related to offline evolution. The bootstrap problem may occur when the 

mission is too difficult for the fitness function to impose any meaningful selection pressure on 

a randomly generated population of initial candidate solutions. This can lead the evolution to 

undesired regions of the search space. As for deception, it may occur when the fitness 

function fails to establish a gradient that drives to a global optimum solution, but instead, it 

leads to local optimum solutions. This may stagnate the controller, leading to unsuccessful 

tasks (Silva et al., 2015). 

 

2.3. ER recent challenges 

As previously referred, even though there are studies that demonstrate good results with ER, 

there are still challenges that need to be addressed. The difficulty to transfer control from 

simulation environments to reality is still present. Also, ER prove to have good performances 

in simple tasks but fails in more complex ones. Finally, the bootstrap problem and deception 

are still issues that may lead to undesired solutions and stagnate controllers. Therefore, it is 

important to study the state of the art regarding these issues, in order to understand their 

limitations and present a possible generalized solution. 

Figure 2.3 - Reality gap problem in a minimalist simulation model (Koos et al., 2013) 
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Koos et al. presented the transferability approach as a method to cross the reality gap 

(Koos et al., 2013). By stating that in simulation, the most efficient solutions frequently make 

use of poorly parametrized phenomena in order to accomplish high fitness values with 

unrealistic behaviors, the authors aimed to optimize fitness and transferability. Unlike several 

approaches with minimalist simulations, this approach intends to add and make more complex 

simulations. The objective is to increase controller transfer quality, which can be defined as a 

measure that compares simulated and real behaviors. This is done by exploiting the best 

modeled parameters of the simulator and making use of them in the controller. The results 

demonstrated that this approach can be a promising and relevant method to cross the reality 

gap in ER. However, there are still work and tests that need to be conducted, such as having a 

simulation model that works for several tasks and is not task specific. Also, it is important to 

continue the study of evolving in more accurate simulators, to understand if it is possible to 

have a few experiments. 

Complex problems decomposition into smaller ones has been investigated as an approach 

to reducing controllers' complexity (Costa, 2018; Duarte, 2015; J. Yang et al., 2012). 

Regarding this matter, Cooperative Co-evolutionary Algorithms (CCAs) have been used, by 

dividing a problem into several subcomponents and creating different populations for each 

one, which is then evolved using ANNs. Results in both simulated and real environments 

demonstrated that synthesizing cooperative behaviors in addition to ER is a valid and 

promising approach (J. Yang et al., 2012). However, the scenarios created were minimalist, 

and it is necessary to validate this approach for more complex tasks. 

A hybrid control for large swarms of aquatic drones was presented by Duarte (Duarte, 

2015) and Duarte et al. (Duarte et al., 2014), where behaviors were synthesized and evolved. 

Once more, breaking down a complex task into simpler ones allowed a combination of 

evolved and traditional preprogrammed control. One of the advantages is the ability to 

perform better regarding the reality gap, because preprogrammed control can be used when 

certain actions are too difficult to perform. A hierarchical combination among individual 

controllers was done, and each controller was composed of both evolved and preprogrammed 

nodes. Also, the architecture allowed behaviors addition or removal based on the task 

characteristics, resulting in an adaptative approach. Using this approach resulted in promising 

results for both the reality gap and the bootstrap problem.  



 

15 

The research done by Tian Yu et al. presented solutions for the food foraging problem, 

based on ER controllers (Yu et al., 2014). In this case, three evolutionary algorithms were 

applied and compared. Incremental evolution was also implemented analyzed and compared, 

which consists in dividing a complex task into several manageable tasks. This latter approach 

was applied to solve the bootstrap problem in certain cases. Results have proven that 

neuroevolution based on Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with 

incremental evolution had the best results. Although this work has demonstrated good results, 

the reality gap was not addressed, and once more, the simulation was minimalist. 

Other approaches for cooperative object transportation and cooperative control using ER 

have been presented in the last decade (Alkilabi et al., 2015)(Juang et al., 2020)(Jhang et al., 

2019). In the work presented by Alkilabi et al., a group of robots had the task of moving an 

object that was too heavy to be pushed by a single one (Alkilabi et al., 2015). Being aware 

that one of ER’s main issues is the transfer to real hardware, this work was carefully 

developed in physics engine simulators, and initial tests demonstrated successful results when 

transported to real robots. Also, all sensors and motors were subjected to a high amount of 

random noise to ensure that the controllers translated to the real robot had minimal 

performance degradation. The strategies adopted in this work were successful, additionally, 

unexpected and intelligent behaviors emerged during evolution. Specifically, robots' 

tendencies for a recruitment behavior, where one robot approached the closest mate in order 

to get help to push the object. This suggests that ER not only offers successful expected 

behaviors, but also boosts systems adaptability. Even though the results were satisfactory, 

training the controller still took a long time, and work needs to be done to boost efficiency. 

Embodied evolution has been presented in the scientific community as an approach to 

accelerate online controllers’ evolution. In this method, each individual belonging to an SR 

can evaluate several candidates and then transmit the best ones to their mates. Although it was 

first presented as a possible answer for online evolution, recent studies demonstrated that this 

approach can be adapted for offline evolution (Trueba et al., 2017). Results proved that 

embodied evolution is a possible approach for SR optimization. However, once more, the 

study was limited in complexity. Other approaches regarding online evolution have been 

presented, such as particle swarm optimization, differential evolution, and multi-objective 

cooperative co-evolution algorithm have been presented for robot joint control (Roy et al., 

2016)(Zheng et al., 2014)(T. Yang & Jiang, 2015)(Xiang-Yin & Hai-Bin, 2012).  
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Vaughan presented an approach to improve cooperation in SR tasks (Vaughan, 2018). 

Specifically, the approach improves communication between the elements of a group and uses 

Finite State Machine to define different navigation behaviors. Comparisons were made with 

other non-communicating approaches, and the presented work outperformed the traditional 

one. Regarding limitations, this research was modeled in a simple 2D simulation. Also, the 

author found counter-productive communications, causing problems and repeating actions 

between the elements, resulting in diminished efficiency. 

Table 2.5 presents the summary of the most relevant articles presented in the recent 

challenges.  

 

Table 2.5 - Summary of the presented works 

References Research Limitations 

(Koos et al., 2013) Transferability approach, more 

accurate simulations in order to 

cross the reality gap. 

Needs further research, such as 

in a generalized simulator for 

several tasks. 

(Costa, 2018; Duarte, 

2015; Duarte et al., 

2014) 

Behaviors synthetization and 

hierarchical control with 

combination of evolved and 

preprogrammed nodes. 

Needs to be studied in more 

complex environments and 

robots. 

(Alkilabi et al., 2015) ER and cooperation strategies 

with noise addition in order to 

minimize the reality gap. 

Long computation time. 

(Trueba et al., 2017) Adapting embodied evolution 

for offline approaches. 

Limited, minimal simulation. 

(Roy et al., 2016)(Zheng 

et al., 2014)(T. Yang & 

Jiang, 2015)(Xiang-Yin 

& Hai-Bin, 2012) 

Online evolution strategies for 

path planning, formation 

control, among others. 

Computing and time 

limitations regarding online 

evolution in SR. 

(Vaughan, 2018) Swarm communication in 

virtual environment combined 

with FSM navigation control. 

Minimal simulation, 

communication limitations. 
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Even though these approaches have benefits, none of them prove to be a general solution, 

as there is still no widespread consensus on how to cross the reality gap in complex 

environments and tasks. There is still a long way to have ER strategies widespread in real 

world applications. Thus, this thesis aims to develop a generalized approach to evolve 

controllers, to operate in robotic tasks in more accurate simulation environments. It aims to 

continue research related to evolution in accurate simulations and also the behaviors 

synthetization and hierarchical control. 
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CHAPTER 3 

Methodology 

 

As stated in previous chapters, there are no widespread developments in the usage of accurate 

simulation models to test ER strategies. This chapter describes the methodology that will be 

used to test the approach, including the physics simulation software, drone simulation 

software and drone operating system. Comparisons between different software are done and 

the global architecture is defined. Finally, the ER strategy that will be tested is presented, 

including its advantages and disadvantages. 

This chapter is divided into different sections as follows: (i) physics simulation software; 

(ii) drone operating system and simulation software; (iii) drone controller model; (iv) 

summary. 

 

3.1   Physics Simulation Software 

Physics simulators allow users to test their architectures and proposals cheaply and safely, 

without breaking or degrading physical platforms. This is especially important when one is 

using ER strategies, as many hundred simulations must be performed to reach a final solution.  

Collins et. al. conducted an extensive review of the most used simulators (Collins et al., 

2021), comparing several features and also their citations in scientific papers. For the purpose 

of this thesis, physics simulators for robot applications are defined as an application that runs 

at least the following functionalities: (i) physics engine for accurate physical modeling; (ii) 

collision detection functionalities; (iii) Graphical User Interface (GUI); (iv) options to import 

different scenarios and models; (v) API for at least the most used robotic programming 

languages (C++/Python). Through the analysis of the extensive work produced by Collins et. 

al., it is possible to compare several simulators and choose the one that has the best pros and 

cons concerning the usage of ER and robotic learning strategies.  
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Table 3.1 presents a summary of the principal simulators and some of their features, 

especially the ones that are important for ER (Collins et al., 2021). Having open-source 

availability is important, as it allows users to know the base code, facilitating development 

and software innovation. It also provides code reuse and recycling, making collaboration 

easier, normally resulting in higher communities and support. Vision and LIDAR sensors are 

often an important requirement for almost any complex task, as these are important features 

for a simulator. To overcome the reality gap, an essential factor is the possibility to vary 

between each individual simulation, also called domain randomization. This can be done by 

applying small changes in each simulation, such as random forces to the robot or even random 

sensor failure.  

Some of the simulators, such as Gazebo and CoppeliaSim, support multiple physics 

engines, which is another randomization technique that may prevent over-fitting to the 

physics engine. Allowing the use of fluid mechanics is not an ER related feature, but one that 

can be explored in more complex tasks, allowing future scalability of the present architecture. 

Finally, Robotic Operating System (ROS) is a widespread open-source framework that allows 

developers to build and reuse robotic applications. PX4 and Ardupilot are open-source flight 

controllers used in most of the existing drones. Hence, the ability to have ROS, PX4 and 

Ardupilot support is also a great feature in a simulator, as it makes the transition from 

simulation models to real to robots much smoother, making it also an advantage to cross the 

reality gap. 

Table 3.1 - Summary of the most used simulators for ER strategies and its features(Collins et al., 2021) 

Simulator Open-

source 

Vision and 

LIDAR 

sensors  

Multiple 

Physics 

Engines 

Applying 

random 

forces/fail

ures 

Allow 

fluid 

mechani

cs 

ROS / 

Px4 / 

Ardupilot 

Support 

Raisim No Yes No Yes No No 

Gazebo Yes Yes Yes Yes Yes Yes 

Nvidia Isaac Yes Yes No Yes No Yes 

MuJoCo Yes Yes No Yes Limited No 

PyBullet Yes Yes No Yes No No 

CARLA Yes Yes No No No Yes 

Webots Yes Yes No Yes Limited Limited 

CoppeliaSim Yes Yes Yes Yes No Yes 
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Throughout the analysis of Table 3.1, Gazebo may be considered the physics simulator 

that is best fitted for ER strategies. Gazebo is an open-source robotics simulator used in a 

wide range of mobile ground, aerial, and water vehicles, designed to have 3D dynamic 

environments and realistic physics engines (Koenig & Howard, 2004). It has large support 

and an active community, and allows the usage and creation of several vehicles, sensors and 

other models. It fully supports ROS, Ardupilot and PX4, which can be integrated for Software 

In The Loop (SITL) and Hardware In The Loop (HITL) simulations, i.e. simulation modes 

where normal PX4 or Ardupilot run on real flight controller software or hardware, 

respectively (Ardupilot Dev Team, n.d.; PX4, 2022). Both SITL and HITL are of extreme 

importance when crossing the reality gap, as the software or hardware that runs in real drones 

is used in simulation. 

 Gazebo has multiple packages and it is also used in many research about online evolution 

and also in reinforcement learning techniques (Collins et al., 2021; Nordmoen et al., 2018). 

However, to the date of this research, there is still no generalized solution for the usage of 

Gazebo for offline ER controllers strategies, hence, to the best of our knowledge, this thesis 

proposes a novelty approach to this matter. This simulator also has in-built support, such as 

the ability to reset a simulation environment programmatically. All these features make 

Gazebo the appropriate choice for the architecture presented in this thesis. 

 

3.2    Drone Operating System and Flight Controller 

Choosing the right drone operating system and flight controller is also an important decision 

in the architecture, as it directly impacts the transition from simulation environments to 

reality. The principal concern is to have a general operating system that allows vehicles for 

ground, aerial and water environments, and that has extensive support and compatibility with 

several robotic frameworks.  
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As previously stated, ROS is an open-source software development kit for robotic 

applications. It was designed based on the following principles: peer-to-peer, as it does not 

rely on a single central server, resulting in better scalability for large groups of robots; tools-

based, resulting in a simpler operating system design; multi-lingual, providing support for 

four different programming languages, including Python and C++;  thin, as it places the 

complexity in libraries, encouraging users to develop in small standalone libraries and 

resulting in easier code extraction and reuse;  free and open-source, with full source code 

being publicly available, facilitating debugging at several levels (Quigley et al., 2009). Due to 

all these characteristics, ROS has a large community all over the world, with support and 

compatibility with several external libraries, being the choice for the present architecture.  

The choice of the appropriate flight controller for this architecture is also a vital decision, 

as it should be compatible with the simulator and operating system. PX4 and Ardupilot are 

both compatible with Gazebo and ROS and are widespread in the robotic market. They also 

provide SITL and HITL tools, which are ideal to use in simulation environments and to 

attempt to minimize the reality gap in the transition to the real world. SITL is used to run a 

flight controller and simulate a drone, without hardware, being a cost-effective option to test 

software and catch bugs. It is usually employed when testing specific parts of the code, e.g. 

the controller code. On the other hand, HITL is a methodology that allows the connection of 

controller hardware, to the simulation environment. This hardware is called a companion 

computer and there are several examples such as a Raspberry Pi, or an UP companion 

computer, which is represented in Figure 3.1. It simulates the electrical behavior of sensor the 

and actuators' Input/Output to check the controllers’ results. Thus, SITL is normally used in 

the early stages of code development, while HITL is typically used in later stages (Syed 

Ahamed et al., 2018).  

As previously stated, this thesis aims to develop an architecture to develop ER strategies 

in SR robots. Because it aims to develop controller code, including evolutionary and decision 

making algorithms, SITL will be used. Due to its compatibility with Gazebo and ROS, 

Ardupilot’s SITL is the choice for the architecture. One of the main advantages of this 

software is that it can simulate many different types of vehicles, such as multi-rotor aircraft, 

fixed-wing aircraft, ground vehicles, and underwater vehicles, among others (Ardupilot Dev 

Team, n.d.). It also provides several sensors such as optical sensors, lidars, and allows the 

addition of new vehicles or sensor types. 
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Figure 3.1 - UP Companion computer, could be used in this architecture with HITL (UP Shop, 2022) 

The communication between the Ardupilot and ROS is done via MavLink, which is a 

drone lightweight communication system. ROS treats MavLink messages using the 

MAVROS package, which makes the interface for sending and receiving data between the 

Flight Control Unit (FCU) and ROS. MAVROS can be used in a companion computer in the 

drone, but also in the Ground Control Station (GCS) (Open Robotics, 2018).  

 

3.3    Drone controller model  

The drone controller is where the decisions will be made and evolved. As previously stated, 

hierarchical control brings several advantages, as it simplifies complex tasks reducing them 

into several simpler ones. Some examples of these decisions can be high-level decisions such 

as an order to return to base, or low-level decisions such as drone rotation or altitude change.  

Several models can be used to control drones. Some of the most used are Finite State 

Machines, Decision Trees, and Behavior Trees.  

Finite State Machines' advantages include a common structure and the fact that they are 

simple to understand and implement. On the other hand, they are hard to scale, and they lack 

in reactiveness to changes. Also, another disadvantage is its reusability, as it is difficult to 

reuse the same sub-Finite State Machine in multiple scripts. 

Decision trees represent a list of sequential if-then decisions used to reach a final action. 

Modularity, hierarchical structure and being intuitive are some of their benefits. However, tree 

nodes do not retrieve any information, making them not so reactive to changes or failures. 

Figure 3.2 presents an example of a decision tree for a robotic task (Colledanchise & Ögren, 

2017). 
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Behavior Trees can be seen as a derivation from Decision Trees and Finite State 

Machines, with significant improvements (Colledanchise & Ögren, 2017).  Some of its 

improvements are the reaction to failures and modularity. Reactivity is an important 

characteristic of robotic applications, as in the real world the environment is always changing 

and being affected by external agents. Behavior trees are naturally reactive, as their nodes can 

return different states and they are constantly connected with the world state through 

condition nodes. Behavior tree modularity allows them to be separated and recombined 

simply, making them a good choice for hierarchical structure models. On the other hand, 

behavior trees can be complex to implement, because of their ability to have information 

flowing from nodes. However, the engine only has to be built once, and there are several 

open-source libraries with its implementation that can be used (Colledanchise & Ögren, 

2017). Hence, due to its modularity, reactive and hierarchical structure, behavior trees will be 

used to implement our controllers.  

Figure 3.2 - Example of a Decision Tree for task or recharge actions (Colledanchise & Ögren, 2017) 
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Behavior Trees are initialized with a root node that generates signals called ticks with a 

specific frequency. Each child node is executed only when it receives ticks. Then, the child 

node returns to its parent node the action status Running if the action is being executed, 

Success if the action was successfully executed, or Failure if the action failed. In traditional 

behavior tree implementation, there are four flow control nodes: Sequence, Fallback, 

Parallel, and Decorator. Additionally, there are also two execution nodes: Actions and 

Conditions (Colledanchise & Ögren, 2017). 

Sequence control node is where child nodes are executed from left to right until one of 

them returns Failure or Running. When this happens, the next child node is not executed and 

the Sequence flow control node also returns Failure or Running, respectively, to its parent. 

This flow control node only returns Success when all its children have also returned Success. 

Typically, the Sequence flow control node is represented by a “->” character. 

The Fallback node ticks the child nodes from left to right, until one of them returns 

Success or Running, returning this information to its parent node. This flow control node 

returns Failure only if all its children have also returned Failure. The Fallback node only 

ticks the next child when the present one returns Failure. Usually, its symbol is the character 

“?”. 

When the Parallel node runs, it ticks all its children. If a certain number of children nodes 

return Success, the Parallel node also returns Success. Otherwise, if another number of 

children nodes return Failure, this flow control node also returns Failure. Both of these 

numbers are specified by the developer. If none of these conditions happen, the node returns 

Running. 

Action nodes perform a certain command, such has landing or turning left. They return 

Success, Failure, or Running, and are usually represented by a box. Condition nodes check a 

certain expression or state, and only return Success or Failure. A Decorator node is used to 

manipulate the return of a certain child, e.g. a Decorator node that inverts the return of a 

certain child. 

Table 3.2 presents a summary of behavior tree structure and symbology. 
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Table 3.2 - Summary of behavior tree nodes and symbology (Colledanchise & Ögren, 2017) 

Node Symbology Success Failure Running 

Sequence  When all children 

succeed 

When one child 

fails 

When one child 

returns running 

Fallback ? When one child 

succeeds 

When all children 

fail 

When one child 

returns running 

Parallel  When X child 

succeeds (defined by 

the developer) 

When Y children 

fail (defined by the 

developer) 

If it didn’t return 

Success or Failure 

Decorator  Developer option Developer option Developer option 

Action  When completed If failed to complete When running 

Condition  If True If False Does not run 

 

 

Figure 3.3 demonstrates the same mission executed in the decision tree represented in 

Figure 3.2, but in this case, with a behavior tree (Colledanchise & Ögren, 2017). It is 

important to refer that in this structure the robot does not simply execute tasks, but it 

continually monitors the tree, at tick frequency defined by the developer, checking all 

conditions and executing other actions if necessary. One of the advantages is that the behavior 

tree structure allows the robot to turn back in certain actions if a more important condition 

happens. For instance, in the structure shown in Figure 3.3, the robot may be performing an 

urgent task, as its battery is above 10%. However, if during the task execution the robots’ 

battery reaches 10% or below, the robot will stop the task and start to recharge. The same 

would not happen in the decision tree structure. 
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Figure 3.3 - Example of a Behavior Tree for task or recharge actions (Colledanchise & Ögren, 2017) 

 

3.3.1 Behavior tree evolution 

Knowing the behavior tree architecture, it is important to understand how can they be evolved 

using evolutionary algorithms. There are different methods to use evolutionary algorithms to 

train behavior trees, and the difference is the following: (i) keeping the tree structure and 

evolving tree parameters; (ii) turning the tree dynamic and applying crossover between tree 

nodes. 

In the first method, the behavior tree structure is static, i.e. the nodes don’t change their 

place in the structure. The tree structure is initially defined by the user, and the evolution will 

occur in the node parameters. For instance, in a node that will change the altitude, the 

parameter to be evolved can be the altitude value, in meters. This type of evolution is 

smoother and simpler to analyze, as it is possible to directly compare parameter values 

between individuals during all the generations and to obtain conclusions about these values. 

Because of this fact, this method will be used in the experiments described in the following 

chapters.  
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In the second method, the behavior tree is dynamic, as the nodes may change their place 

in the tree or subtrees. The most basic evolution can occur when doing crossover between 

subtrees, where an individual’s subtree is switched with another individual’s subtree. This can 

be seen in Figures 3.4 and 3.5. It is also possible to evolve behavior trees by randomly 

deleting one or more nodes. This is especially important when trees start to increase in size 

significantly, becoming complex to read and slower to run. Additionally, behavior trees can 

also be evolved by checking for empty operation regions, which are regions that will not be 

executed because the condition is already met in previous nodes.  

 

 
Figure 3.4 - Behavior trees before crossover (Colledanchise & Ögren, 2017) 

 

 
Figure 3.5 - Behavior trees after crossover (Colledanchise & Ögren, 2017) 

 

3.4    Summary 

To summarize, Figure 3.6 presents the general architecture defined for this thesis. This 

architecture allows the creation of robotic applications, such as evolutionary algorithms 

scripts or drone controllers, using ROS and MAVROS interface, and testing it in simulation 

using Gazebo and Ardupilot SITL. The behavior tree model and an evolutionary algorithm 

will be implemented in the ROS environment, and the evolution will occur in the node 

parameters, keeping the same behavior trees’ structure in all individuals. 
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Figure 3.6 - Architecture for the experimental setup 
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CHAPTER 4 

Experimental Setup 

 

The previous chapter presented the architecture that will guide the experiments. Thus, this 

chapter presents the controller setup and design, and also the specific experiments conducted, 

from the initial to the final setup.  

It is divided into different sections as follows: controller setup and design, where the 

behavior tree controllers are explained; experimental setups, where the performed 

experiments are explained. 

 

4.1  Controller setup and design 

As stated before, behavior trees will be used to control each drone. In this case, one individual 

will represent one robotic controller, which is one behavior tree. Each one will have certain 

actions that can be parameterized. For instance, one behavior tree with the objective of 

returning to the base can have a move forward action, turn left, turn right, among others. All 

these actions can have specific values to move forward (in meters), to turn left or right (in 

degrees), respectively. These will be the values that will differentiate each individual, and the 

ones that will be evolved and evaluated. 

 

4.1.1 Behavior tree design 

There are several methods to design behavior trees. One of the most known is backchaining, 

where the robot is deliberative and completes certain actions until the goal is reached. This 

method proposes to work the trees backward from the goal, with a Postcondition-

Precondition-Action (PPA) approach, represented in Figure 4.1 (Colledanchise & Ögren, 

2017). 

 
Figure 4.1 - Behavior tree design with Postcondition (C), Precondition (Cij), and Action (Ax) (Colledanchise & Ögren, 

2017) 
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 In this approach, postcondition C can be achieved by one of the actions presented by Ax. 

These actions are defined in a sequence node, having its preconditions Cij. To increase 

efficiency, actions with higher success probabilities should be placed first, avoiding 

unnecessary failures (Colledanchise & Ögren, 2017).  

Figure 4.2 presents an adaptation of the previous method. This behavior tree will be used 

in the first evolution experiments, and its objective is to return to the base. As previously 

stated, the use of a behavior tree will provide modularity to the controller, and therefore, this 

tree can be used as a smaller subtree for a more complex mission. It also provides a clearer 

and simpler representation of the structure. 

As previously referred, although the behavior tree engine may be complex to implement, 

there are several open-source engines that can be used to fit user needs. In this case, it was 

used the task_behavior_engine, developed by the Toyota Research Institute (Toyota Research 

Institute, n.d.). Regarding the high-level robotic and navigation tasks, it was used the iq_gnc 

and iq_sim packages (Johnson, n.d.). 

 

 
Figure 4.2 - Behavior tree structure to return to the base mission 

Because it must be evolved, it is necessary to represent each individual in a simple way, 

that can be manipulated by the evolutionary algorithm. In this thesis, the evolution will occur 

only in the actions’ parameters, specifically in their values, and hence, each individual will 

have the same behavior tree structure. For instance, in the example shown in Figure 4.2, the 

only difference between individuals will be the evolvable parameters, which are the degrees 

to turn left, degrees to turn right, and degrees to move forward.  
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Therefore, since the behavior tree presents the same structure in each individual, it can be 

represented by a list, where each column is the value of the parameter. It is also important to 

normalize the evolvable parameters, so the evolutionary algorithm can perform calculus 

equally for each parameter. Then, the parameters are passed to the behavior tree and 

transformed, based on the minimum and maximum values defined on the behavior tree nodes. 

The normalization equation is based on the min-max equation, and it is represented in 

equation (4.1). Hence, each tree is defined in a list, such as the one exemplified in Table 4.1. 

                                             𝑋𝑛𝑜𝑟𝑚 = 𝑋− 𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛                                           (4.1)

    

Table 4.1 - Representation of the behavior tree in the first return to the base task. In this case, there are three evolvable 
parameters. 

 

 

4.1.2 Evolutionary algorithm design 

To fit the simulation setup, an evolutionary algorithm was designed. The script was created in 

Python, and it performs the following actions:  

1. Create a population with a certain number of individuals, specified by the user. Each 

individual begins with random evolvable parameters; 

2. Runs and evaluates each individual, based on a fitness function; 

3. Orders each individual based on fitness values; 

4. Selects a certain percentage of the best individuals, in these experiments, it will be 

10%. Adds these individuals in the next generation; 

5. The rest 90% of individuals are created through mutations on the best 10% of 

individuals.  These mutations are done with small changes based on their parent. In 

this case, one random parameter is chosen, and its value is randomly increased or 

decreased by a random value between zero and 10%, i.e. 0-0.1 in normalized values; 

 Individual 

Nr. 

Turn left 

(Degrees) 

Turn right 

(Degrees) 

Move forward 

(meters) 

Fitness (evaluated 

after an individual 

run) 

Normalized 0-Nr. of 

individuals 

0-1 0-1 0-1 0-1 

Real values 0-Nr. of 

individuals 

1-40 

degrees 

1-40 

degrees 

1-40 meters 0-1 
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6. Iterates the previous steps 2 to 6 until the evolution reaches the number of generations 

indicated by the developer. 

 

 

4.2  Experimental simulation setup 

As previously stated, the Gazebo simulator allows developers to have closed to reality 

simulations, including the simulation of the physics forces applied to the robot. The first 

action developed in the experimental setup was the creation of a ROS workspace. A ROS 

workspace is a set of directories where packages are installed, created, modified and built. 

The official ROS workspace is called Catkin Workspace (D. Thomas, 2017).  

The catkin workspace is where all the robotic applications are built, so as the drone 

models and world files. Because gazebo and ROS are completely compatible, it is possible to 

launch gazebo world models and drone models through the catkin workspace.  

Gazebo world models can be created from an empty world, or one could also modify the 

existing ones. In the world files, it is possible to add shapes such as boxes or spheres, but it is 

also possible to import several models that exist in the gazebo database, such as houses, 

persons, house objects, and much more buildings or objects that may exist in a real 

environment. These objects may be added to the world file and parameterized in their 

position, static or dynamic behavior, and collision with other models, among others.  

The vehicle model is also defined in the world file. In this case, the vehicle model should 

be using ardupilot flight control, so as the gazebo-ardupilot SITL plugin. Using gazebo, it is 

possible to insert and control several autonomous vehicles in only one world, which is an 

extremely important factor for multi-robot systems and SR, making the solution scalable for 

these systems. Figures 4.3 and 4.4 present the gazebo world scenario, where the first 

evolution tests, presented in Subsection 4.2.2, will run. 

It is important to mention that it is possible to create any drone model in gazebo. This 

feature is of extreme importance when crossing the reality gap, as it is possible to replicate the 

real world drone in simulation, making the simulation closer to reality.  
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Hence, in this thesis, the drone model that will be used is the Iris Quadcopter model, 

which is a computational model from the real copter, available in on the market (ArduCopter 

UK, n.d.). The real Iris Quadcopter model is presented in Figure 4.5, and, on the other hand, 

the simulation drone model is presented in Figure 4.6. This model runs the ardupilot software 

in simulation, but also in the real world. As previously mentioned, this fact is extremely 

significant, as the drone in simulation is using the same exact software that would run in 

realty, making the transition to the real world smoother. Naturally, this is also an essential 

advantage when crossing the reality gap. 

 

 
Figure 4.3 - Gazebo simulated world, with visible Iris drone model 

 
Figure 4.4 - Gazebo world model with another view 
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Figure 4.5 - Real Iris Quadcopter Model, which runs ardupilot (A. Thomas, 2016) 

 

 
Figure 4.6 - Iris drone model in Gazebo world simulation 

 

4.2.1 Initial experiments with no evolution 

The main objective of the initial tests that will be conducted in the proposed architecture is to 

test its functionalities and possible missions to be evolved. The first missions performed 

simple actions with one drone without evolutionary algorithms, such as taking off, doing a 

certain movement pattern, and then landing.  
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Then, task complexity increased and more drones and sensors were added, such as 

cameras and lidars. More complex missions were conducted, including search and rescue, 

where a drone would takeoff, do a search and rescue pattern, look for a person and then land. 

Tests have also been done using lidar sensors, specifically, using two drones and testing 

collision avoidance algorithms (Ribeiro, 2005). 

For image detection on camera and object identification, it was used the darknet_ros 

package (Bjelonic, 2018). This is an open-source ANN framework that can be run on CPU 

and GPU. It has a light version package for the case that is used in a drone companion 

computer. Additionally, the ANN can also be trained to detect the objects the developer 

wants. 

These initial tests were positive as they allowed the execution of several libraries and 

tasks. They also allowed to test several Python scripts that will be essential to define the 

experiments that will be evolved with the evolutionary algorithms.  

 

4.2.2 Experiments with evolution  

After the initial experiments, it is important to test the evolutionary experimental setup. As 

previously stated, gazebo provides tools to reset the world and its models programmatically. It 

also permits the developer to speed up the simulation, according to the simulation speed 

allowed by the drone models and by the ardupilot SITL plugin. This is especially important in 

evolutionary algorithms, as it is necessary to run several simulations to have evolution. 

Regarding ardupilot SITL, there is no built-in method to reset the simulator, making 

evolution more difficult. Hence, a python script was made in order to handle this action, by 

killing the specific Linux processes associated with ardupilot SITL. Then, several 

experiments were conducted to verify the script result. 

Having the gazebo and ardupilot reset working, it was necessary to test the setup in order 

to verify the simulation speed and how many generations would be completed in a specific 

time. It was verified that one single simulation environment takes too much time to evolve. 

Specifically, a return to the base mission was tested, where the robot had to perform certain 

actions to complete it. This mission's average execution time was 5 minutes, depending on the 

generation, as initial generations would take longer. For instance, if one would decide to 

evolve this mission in 10 generations, with 500 individuals in each one, the execution time 

would be approximately 17 days and 8 hours. This execution time is not viable for evolution, 

as several experiments need to be done to minimize it. 
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There are two options to reduce the execution time: making the single simulation faster 

enough to reduce the time significantly; creating an engine with several parallel simulations. 

The first studies focused on making one simulation faster.  

Gazebo provides a method to increase the simulation speed at more than real time speed. 

It also provides a parameter called Real Time Factor (RTF), which relates the simulation and 

real time. If RTF equals one, the simulation time is running at real time speed. On the 

opposite, if RTF is higher than one, the simulation time is faster than real time. Gazebos’ 

parameters were defined to have the higher RTF possible, specifically time update rate and 

max step size. Regarding ardupilot SITL, it is also possible to define the SIM_SPEEDUP. 

This parameter increases the backend velocity of the SITL vehicle simulator.  

However, when changing both these parameters, results showed that the simulation RTF 

was still limited. After several analyses, it was found that ardupilot SITL – gazebo plugin, 

which makes the connection between SITL and gazebo, was slowing down the simulation, 

creating a bottleneck in RTF. This was related to gazebo version and its ardupilot SITL 

plugin, as it is expected to be treated in the next versions1. As it was not possible to speed up 

the simulation at a significant value, the next try focuses on creating a parallel simulations 

engine. 

 

4.2.3 Experiments with multiple parallel simulations 

Running several parallel simulations requires an engine that will receive data and coordinate 

the evolution. Thus, a script was created, named evol_engine, with the following purposes:   

1. Creates the first random individuals, for example, 600 individuals per generation. As 

mentioned before, one individual is one behavior tree controller that will be 

experimented and evaluated in simulation; 

2. Separates the individuals according to the number of parallel simulations, for example, 

6 parallel simulations, 100 individuals per parallel simulation; 

3. Launches each simulation script, where the individuals will run. The fitness of each 

individual will be calculated in each parallel simulation, after the respective individual 

run. For example, the first parallel simulation will run its first individual, evaluate its 

fitness, and continue to the next individual; 

 
1 A new gazebo version was released in the final period of this master thesis, Gazebo garden, released in 
September 2022 (Open Robotics, 2022). Tests were done by the support community with gazebo and ardupilot 
SITL plugin, resulting in higher RTF when comparing with classic gazebo version (more than 2x higher). 
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4. Waits for the conclusion of every parallel simulation, read results, and writes them in a 

.csv file. In the previous example, it waits for the conclusion of 600 individuals and 

reads their fitness; 

5. Joins all 600 individuals and orders them by their fitness, choosing a certain 

percentage of the best ones. For instance, it chooses the best 10%, which is 60 

individuals; 

6. Adds the best ones to the next generation and also generates 90% of mutated 

individuals, based on the best ones. For example, it adds the 60 best individuals to the 

next generation. It also takes these 60 and mutates them, making small changes, 

resulting in 540 mutated individuals. The result is 600 new individuals for generation 

number two; 

7. Iterates the previous steps 2 to 6 until the evolution reaches the number of generations 

indicated by the developer. 

 

4.3  Summary 

To summarize, this chapter focused on the controller design and experimental setup. Firstly, it 

was explained the controller design, which in this case is a behavior tree. It also mentioned 

the representation and normalization method that would be conducted to apply a machine 

learning algorithm to these trees. Then, the developed machine learning algorithm, which in 

this thesis is an evolutionary algorithm, was explained. Finally, the simulation experiments 

were presented, starting with the simpler ones and finishing with the more complex ones. The 

obstacles found along this development and simulations were also presented, so as the 

methods to mitigate them. The next chapter will present the results and analysis obtained. 
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CHAPTER 5 

Results and Analysis 

 

Chapter 5 presents the results and analysis of the experiments where the controller was 

evolved. The significant experiments were done in three different cases: the first one with 

only one simulation environment, in a return to the base task; the second one with the same 

previous task, but with six parallel simulations; the third with a more complex task, search 

and rescue, where the robot looks for missing persons. 

 

5.1  Return to the base task – one single simulation 

As previously mentioned, the first evolutionary tests were conducted with one single 

simulation. The objective of these tests was to evolve the task of returning to base, where the 

base is represented by a point in the gazebo world, with specific coordinates. This scenario 

was shown in Figure 4.4.  

The behavior tree designed for this objective had four principal nodes: 

1. CheckBase, which verifies if the drone is near the base. If so, it lands, otherwise, 

it returns failure. There are no parameters to be evolved in this node; 

2. TurnLeft, where the drone will check if it is aligned with the base or if it needs to 

turn left. This calculus is done based on the drone's current position and base 

coordinates; The parameter to be evolved is the number of degrees to turn left. 

This parameter is also used in the verification if whether the drone is aligned with 

the base or not. The pseudocode for this node is shown in Figure 5.1. For this 

initial test, the minimum and maximum value is defined as 0.5 degrees and 8 

degrees, respectively; 

3. TurnRight, same as the previous node, but in this case, it will check if it needs to 

turn right. Additionally, in this case, the parameter to be evolved is the 

turn_right_normalized; 

4. MoveForward, which is the last action, and will move forward if all the other 

nodes fail, meaning the drone should be aligned with the base according to 

previous conditions, but it is not near the base yet. In this node, the parameter to 

be evolved is the number of meters to move forward, where the minimum 

distance is 1 meter and the maximum distance is 20 meters. 
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The controller and evolutionary algorithm parametrization are presented in Table 5.1.  

 

 
Figure 5.1 - Pseudocode for Turn_left node, in the initial evolution experiments 

 

Table 5.1 – Controller / ER parametrization for the first return to base evolutionary experiments 

 

Controller / ER 

algorithm setup 
Values / Other commentaries 

Parameters to be 

evolved 

Turn Left (min. 0.5, max. 8), Turn Right (min. 0.5, max. 8), 

Move Forward (min. 1, max. 20) 

Starting individuals 

Randomly chosen 1 parameter in each individual, and 

attributed  a random normal value between 0 and 1. The rest 

of the attributes received a value of 0.5. 

Nr. of 

individuals/generations 
20 individuals and 12 generations, a total of 240 individuals 

Fitness 

Fitness was calculated based on the time drone would take to 

return to base. High fitness means lower time to reach base. 

Fitness is 0 when the individual could not return to base after 

10 minutes. 

Best individuals’ 

percentage 
10% of individuals are chosen for the next generation 

Mutation 

Generates 90% of mutated individuals for the next 

generation. Mutation occurs by choosing one random 

parameter and randomly adding/subtracting a value between 

0 and 0.1. 
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The results presented in Figure 5.2 and Table 5.2 show the average fitness and maximum 

value for every generation, where each one has 20 individuals. The execution time of these 

240 individuals was 36 hours.  

It is important to mention that the cases where the drone can’t arm or takeoff because of 

any bug on the reset, are declared with 0 fitness. These cases are rare (happens in 2% to 3% of 

individuals) but have an impact when the number of individuals is low, such as in this case, 

where there are 20 individuals per generation. Because there are few individuals in each 

generation, the graphic shows fitness fluctuations in some of the generations. This is 

especially significant in the transition from generation 5 to 6.  

 

Table 5.2 - Average fitness results and max values for experiments with one simulation, return to the base mission 

Generation 0 1 2 3 4 5 6 7 8 9 10 11 

Av. Fitness 0.68 0.82 0.89 0.87 0.88 0.93 0.83 0.85 0.84 0.84 0.84 0.89 

Max. 

Value 
0.90 0.913 0.925 0.93 0.935 0.948 0.95 0.953 0.95 0.952 0.953 0.95 

 

 

 
Figure 5.2 - Average and max fitness for the first return to base ER experiment, one simulation, and return to the base 

objective 
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Additionally, because the task is relatively simple, high maximum fitness values were 

obtained right in the first generations. Regarding the maximum fitness value, it was found in 

generation 10, with 0.953 fitness. The individual is number 211, and the result of the 

parameters that were evolved was the following:  

1. Turn_left, with 0.59 normalized value, which equals 4.925 degrees in scaled 

value; 

2. Turn_right with 0.65 normalized value, which means 5.375 degrees in scaled 

value; 

3. Move_forward with 1.128 value, which means 22.432 meters in scaled value. 

 

These results demonstrated that the parameter with the most evolution was 

move_forward. Also, the evolutionary algorithm found the best value to be above the 

maximum value defined by the user, which was 20 meters. These results are consistent with 

the simulation scenario, as the base was far away from the drone, and the longer the drone 

would move forward, the faster he would return to the base. Also, the fact that the individuals 

started with most of the parameters with 0.5 normalized value helped the fitness and 

evolution, as they already had an advantage at the beginning of the simulation. Because of 

this, the individuals in the next tests will be started with all random parameters. 

 

5.2  Return to the base task - multiple parallel simulations 

As the tests with single simulations can not run several individuals in an efficient time, it is 

important to conduct experiments with parallel simulations. The engine used is the one 

specified in Chapter 4. The objective of this test is to perform a mission to return to base, but 

in this case, with six parallel simulations where each simulation will run 100 individuals. 

To add complexity to the mission, one other node was added to the task, which was 

altitude order. Also, as previously mentioned, each individual will start with all random 

parameters, avoiding an initial advantage on the controllers.  

The behavior tree design is shown in Figure 5.3, and it has four principal nodes: 

1. CheckBase, same as previous tests, no parameters to be evolved in this node; 

2. TurnLeft, same as previous, but this time, minimum and maximum values are 

defined as 0.1 degrees and 50 degrees, respectively; 
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3. TurnRight, same as previous, but this time, minimum and maximum values are 

defined as 0.1 degrees and 50 degrees, respectively; 

4. ChangeAltitude, which verifies if the drone is at the altitude value ordered by the 

user. The parameter to be evolved is the altitude, in meters, and minimum and 

maximum values are defined as 1 meter and 80 meters, respectively; 

5. MoveForward, same as previous, but in this case, minimum and maximum values 

are defined as 0.1 and 15 meters, respectively. 

 

 
Figure 5.3 - Behavior tree for return to the base mission, with four parameters to be evolved 

 

The controller and evolutionary algorithm parametrization are defined in Table 5.3. 

 

Table 5.3 - Controller and ER parametrization for return to base tests, with multiple simulations 

Controller / ER 

algorithm setup 
Values / Other commentaries 

Parameters to be 

evolved 

Turn Left (min. 0.1, max. 50), Turn Right (min. 0.1, max. 50),  

ChangeAltitude (min 1, max 80), Move Forward (min. 0.1, 

max. 15). 

Starting individuals 
All four individual parameters are started with random values 

between 0 and 1. 

Nr. of 

individuals/generations 

6 parallel simulations, 600 individuals, 100 individuals per 

generation, 11 generations, total of 6600 individuals. 

Fitness 
Fitness was calculated based on the time drone would take to 

return to base. High fitness means lower time to reach base.  
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The results of this controller evolution experiment are presented in Table 5.4 and Figure 

5.4. The execution time was approximately 72 hours, which means approximately 4 minutes 

per individual. If the same would have been done with only one single simulation, it would 

take about 18 days. Once again, this fact shows the vast advantage of having an engine 

running parallel simulations. 

 

Table 5.4 - Average fitness and maximum value for parallel simulation tests, return to the base mission 

Generation 0 1 2 3 4 5 6 7 8 9 10 

Av. Fitness 0.199 0.759 0.792 0.823 0.825 0.868 0.879 0.886 0.875 0.904 0.904 

Max. Value 0.944 0.939 0.939 0.942 0.944 0.944 0.925 0.942 0.939 0.944 0.944 

 

Fitness is 0 when the individual could not return to base after. 

10 minutes. 

Best individuals’ 

percentage 
10% of individuals are chosen for the next generation. 

Mutation 

Generates 90% of mutated individuals for the next generation. 

Mutation occurs by choosing one random parameter and 

randomly adding/subtracting a value between 0 and 0.1. 
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Figure 5.4 - Results of average fitness and max fitness values for parallel simulation tests, return to the base task 

The results demonstrated a typical fitness graphic of an evolutionary algorithm. Because 

in this test all the parameters started with random values, the average fitness in the first 

generation was 0.199. In this generation, several individuals could not return to base, resulting 

in 0 fitness.  

Results also demonstrated significant improvement during generations, and stagnation in 

the last two generations. This fact could indicate that the controller was already near the 

maximum fitness for this scenario. As it was expected, these results show better evolution 

when compared with the single simulation evolution, which can be explained by the higher 

number of individuals in this latter experiment. 

Regarding the maximum fitness value, it was achieved in several generations. Again, as 

the tree did not had many nodes and the task was not so complex, the first generation found a 

maximum fitness value of 0.944. This factor also turned the evolution to become faster, as the 

following generations would be created based on the best individuals from the previous one.  

By selecting the last best individual, which occurred in individual 529 from generation 

number 10, it is possible to observe the next parameters: 

1. Turn_left, with 0.208 normalized value, which equals 10.48 degrees in scaled 

value; 

2. Turn_right with 0.671 normalized value, which means 33.58 degrees in scaled 

value; 
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3. ChangeAltitude, with 0.384 normalized value, which means 31.34 meters in 

scaled value; 

4. Move_forward with 1.028 normalized value, which means 15.42 meters in scaled 

value. 

 

In this case, it is also important to verify the evolution of each parameter, to understand 

its meaning. Figure 5.5 demonstrates this evolution. Once again, the evolution and 

stabilization of each parameter are notorious. Also, this graphic can only be used in this 

analysis because all the individuals have the same tree structure. 

As mentioned before, as the base is far away from the initial drone position, the 

move_forward action must be high, so the drone can move longer distances at each behavior 

tree tick. Also, the turn_left action finalized with an average value of 0,145, which is 7,33 

degrees in scaled value. These results are consistent with the created scenario, as the drone's 

initial position is 15 degrees away on the left side from the base, resulting in the drone will 

perform two turn lefts before it starts to move forward.  

Regarding the altitude order, it should only have a significant impact on the results when 

it is below 5 meters, as the drone will collide with the scenario obstacles. If the altitude order 

is approximately above 5 meters, the drone will go up and pass the obstacles. 

The turn_right action has a significantly high normalized value, having an average of 

0.805 in generation number 10. This means the scaled value is 40.269 degrees, which is a 

very high turn. However, by reading the results from the parameters’ average results, it is 

possible to see that the drone aligns with the base by turning left 2 times, and does not need to 

turn right anymore. Instead, it changes the altitude for the specific order and moves forward 

as long as possible. 
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Figure 5.5 - Evolution of behavior tree parameters for the parallel simulation test, return to the base mission 

 

The results from the parallel simulations demonstrated good fitness growth. They also 

showed a high coherence with the gazebo world and the base position. Hence, it is possible to 

conclude that the behavior tree controller was significantly evolved by the designed 

evolutionary algorithm. 

 

5.3  Search and Rescue task – one single simulation 

After testing the return to the base mission, it is important to test a more complex task. As 

mentioned earlier, drones can have an important role in search and rescue missions. In this 

scenario, a world model will be designed to simulate a scenario with destroyed buildings and 

four missing persons, two females and two males.  

The drone’s objective is to go up, perform a search and rescue movement pattern and look 

for the missing persons. If they are found, the drone lands and calculates fitness. A second 

drone is in the world model, and a second objective could also be the takeoff of the second 

drone and landing near the persons, where the first drone would be the “search one”, with a 

high precision camera, and the second would be the “rescue one”, with tools to help the 

missing persons. Because this would take more time than the one available for this 

experiment, the second drone is in the world model but will not be used in evolution. 

Therefore, the task to evolve is the search and rescue with one drone model. 

Figures 5.6 and 5.7 represent the drones and the world model for this scenario. 
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Figure 5.6 - Iris drones in search and rescue world 

 
Figure 5.7 - Search and Rescue scenario with 4 missing persons 

Also, as mentioned before, the image detection package is the darknet_ros, which is a 

machine learning package that subscribes to a ROS camera node and publishes the image 

classification. A callback function will listen to the image classification node and will activate 

the FindMan node in the behavior tree.  

The behavior tree is the one shown in Figure 5.8, and it has the following nodes: 

1. FindMan, if darknet_ros identifies a person, the drone will land and save the 

coordinates. No parameters to be evolved; 

2. ChangeAltitude, same as in previous scenarios, but this time, minimum and 

maximum values are defined as 1 and 15 meters, respectively. This parameter is 

evolved; 
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3. Forward_back_pattern, where the drone will move forward 10x the 

forward_order value. This means that if the value is 5 meters, the drone will 

move 5 meters in front, slow and move again, doing 10 iterations. It is done to let 

the drone perform a search and rescue pattern where one leg is bigger than the 

other, and also to perform image classification. Minimum and maximum values 

are defined as 1 and 10 meters, respectively; 

4. Lateral_Pattern, where the drone will do the lateral pattern in 5 times the 

lateral_order value. Minimum and maximum values are defined as 1 and 10 

meters, respectively. 

 

 
Figure 5.8 - Behavior tree for Search And Rescue scenario 

 

The controller and evolutionary algorithm parametrization are defined in Table 5.5. 

 

Table 5.5 - Controller and evolutionary algorithm parametrization for Search and Rescue  scenario 

Controller / ER 

algorithm setup 
Values / Other commentaries 

Parameters to be 

evolved 

ChangeAltitude (min. 1, max. 15), Forward_back_pattern 

(min. 1, max. 10, 10x),  Lateral_pattern (min 1, max 10, 5x) 

Starting individuals 
All four individual parameters are started with random values 

between 0 and 1 

Nr. of 

individuals/generations 

1 simulation, 50 individuals per generation, 10 generations, 

total of 500 individuals 
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As shown in Table 5.5, the fitness function is calculated based on the distance to the 

missing person, which is the distance between the position where the drone landed and the 

person's position. The time the robot takes to reach this position is also important in and 

addressed in the fitness function. If the drone lands in a distance higher than 50 meters, the 

evaluation is 0. The pseudocode is explained in Figure 5.9. 

 

 
Figure 5.9 - Pseudocode for fitness function in Search and Rescue Mission 

 

The results are presented in Table 5.6 and Figure 5.10. 

 

Fitness 

Fitness is calculated according to the distance to the missing 

person, and the time it took to reach her. The pseudocode is 

shown in Figure 5.9. 

Best individuals’ 

percentage 
10% of individuals are chosen for the next generation 

Mutation 

Generates 90% of mutated individuals for the next generation. 

Mutation occurs by choosing one random parameter and 

randomly adding/subtracting a value between 0 and 0.1. 
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Table 5.6 - Results of average fitness and max value per generation, on Search and Rescue mission 

Generation 0 1 2 3 4 5 6 7 8 9 

Av. Fitness 0.596 0.692 0.741 0.789 0.792 0.777 0.807 0.801 0.818 0.824 

Max. Value 0.782 0.794 0.804 0.811 0.827 0.834 0.844 0.844 0.844 0.845 

 

 

 
Figure 5.10 - Average fitness and max values per generation, on Search and Rescue evolution mission 

 

Both the average fitness and max fitness value increased in every single generation, 

which is extremely important and demonstrates evolution. It is also very interesting to see that 

the drone started with the normal search and rescue pattern but inverted it, adapting it to the 

scenario circumstances. This is demonstrated in Figures 5.11 and 5.12.  

By selecting one of the best individuals from the last generation, which occurred in 

individual 487 from generation number 9, it is possible to observe the next parameters: 

1. ChangeAltitude, with 0.312 normalized value, which equals 5.4 meters in scaled 

value. It is a high enough value to avoid collision and to allow enough camera 

range to detect the missing persons; 

2. Forward_back_pattern with 0.219 normalized value, which means 2,9 meters in 

the forward and back search and rescue pattern; 
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3. Lateral_pattern, with 0.816 normalized value, which means 8,344 meters in the 

lateral leg of the search and rescue pattern. 

 

 

 
Figure 5.11 - Evolution of average normalized behavior tree node parameters 

 

Figure 5.12 demonstrates the initial search and rescue pattern and the final pattern, which 

was evolved, resulting in an inversion of the pattern that is explained bellow. This type of 

pattern is a simple and typical search and rescue pattern, used in real missions. In this case, 

the drone started with longer distances in the Figure Y-axis, and shorter distances in the X-

axis. The reason for this was explained previously, in the behavior tree nodes. However, 

during the evolution, it was possible to observe that the drone adapted to the scenario, and 

inverted the pattern, started to do longer X-axis distances and shorter Y-axis. This leads the 

drone to find the persons in a much faster way and presents very relevant results for this 

architecture and setup. 
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Figure 5.12 - Pattern evolution, initial Search and Rescue pattern and final evolved pattern 

 

5.4  Summary 

In summary, three relevant scenarios were demonstraded, shuch as the results and analysis. 

By analyzing the results, it is clear that evolution occurred and was very relevant for the 

tasks’ success. Also, it was possible to observe the phenomena associated with the best 

individuals on each experiment and setup, and present relevant conclusions about each one. 

 

 

 

 

 

 





 

57 

 

CHAPTER 6 

Conclusion 

 

6.1  Conclusion 

The application of evolutionary strategies in robotic environments has still proven to be 

complex, and there are still many research gaps in this field. Online evolution has its benefits, 

such as the ability to modify behavior according to environmental or task changes, however, it 

requires great amounts of computational power and time. Hence, the evolution of a controller 

in simulation, and its transfer to reality, may be the key to solve this issue.  

This thesis proposed to study the use of realistic simulation environments in the evolution 

of robotic controllers. Specifically, it proposed to evolve controllers in simulation, where the 

simulated drone model conditions would be similar to the ones used in reality. Also, it 

proposed to use an approach that would be easily scaled for multi-robot systems or swarm 

robots. 

Firstly, extensive research regarding the state of the art was conducted, where the topics 

of interest were addressed. Then, the methodology was defined, which included the simulator 

environment, drone operating system, flight control unit, and also controller model. After that, 

the experiments were presented, starting with the simple tests with no evolution, and finishing 

with a designed parallel simulation engine. Finally, results were presented in different 

scenarios, and analysis was performed on the most relevant results, including an inversion of 

a search and rescue pattern in a mission. 

The proposed objectives of the thesis were accomplished, as it was possible to train 

robotic controllers, using evolutionary algorithms to train behavior trees, in realistic 

simulation environments. Although the work did not have multi-robot or SR evolution, this 

architecture and the chosen software make the scalability of these systems easy and simple.  

In regards to the first RQ, it was possible to evolve robotic controllers using close to 

reality simulators and evolutionary algorithms, as it was demonstrated in chapter 5. Regarding 

RQ number two, the chosen software to run in the architecture and experiments was the same 

that is used in most of the real drones, i.e. ROS and ardupilot. Finally, this solution is also 

scalable for multi-robot systems and swarm robots, because the software was chosen based on 

this premise. Tests with no evolution were conducted to conclude this point.  
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Additionally, the drone model utilized in this thesis, the Iris Quadcopter drone, is a real 

drone, available in the market. This drone also uses ardupilot in real applications. Moreover, 

the architecture and the developed controllers use high-level flight control primitives, which 

guarantees the drone flight stabilization, as the drone receives orders that were already 

extensively tested by the robotic community. Also, even though the experiments used a SITL 

drone simulator, the usage of HITL would be just a simple improvement in the transition to 

reality, where a real drone hardware controller, such as a Raspberry Py, UP controller, or 

other similar companion computers, could be used with this same simulation environment and 

architecture. 

To conclude, this thesis provides several advantages and significant gains to the 

evolutionary robotic field. By using realistic simulation environments, and the same software 

and drone models that are used in the real world, with high-level flight control primitives, it 

was possible to train controllers using evolutionary algorithms. 

 

6.2  Limitations 

Regarding limitations, and because this thesis marks a starting point in this architecture and in 

the evolutionary setup in highly realistic simulations, it was not possible to evolve multi-robot 

systems or swarm robots, as several engines and scripts had to be created and experimented 

with in the first place. The simulator was tested, as well as the evolutionary setup was built, 

and several problems were addressed and solved along the way. Also, a parallel simulation 

engine was developed, and the evolutionary algorithm, so as the integration of all these 

processes with a behavior tree controller. 

 

6.3  Future work 

The conducted work has the potential to be followed in several ways. 

1. The architecture and experiments may be continued to train multi-robot or SR 

systems. Integration of these systems would be simple, but the tasks would probably 

be more complex to perform and evolve. 

2. As previously mentioned, HITL usage in the simulation would be relevant work to 

cross the reality gap. This can also be done in future work, as a transition phase before 

experiments in the real world. 

3. The same architecture and experiments could be done, but using the latest Gazebo 

Garden version that was released in September 2022. Initial feedback from the 
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community mentioned that the gazebo-ardupilot SITL plugin is significantly faster, 

increasing the RTF by at least 2x. Also, in these tests, the gazebo random noise 

functions could be explored, to increase controllers’ robustness to failure, contributing 

to a minimization of the reality gap. 
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