

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-01-14

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Gasiba, T. E., Hodzic, S., Lechner, U. & Pinto-Albuquerque, M. (2021). Raising security awareness
using cybersecurity challenges in embedded programming courses. In 2021 International Conference
on Code Quality (ICCQ). (pp. 79-92). Moscow: IEEE.

Further information on publisher's website:
10.1109/ICCQ51190.2021.9392965

Publisher's copyright statement:
This is the peer reviewed version of the following article: Gasiba, T. E., Hodzic, S., Lechner, U. &
Pinto-Albuquerque, M. (2021). Raising security awareness using cybersecurity challenges in
embedded programming courses. In 2021 International Conference on Code Quality (ICCQ). (pp. 79-
92). Moscow: IEEE., which has been published in final form at
https://dx.doi.org/10.1109/ICCQ51190.2021.9392965. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICCQ51190.2021.9392965

Raising Security Awareness using
Cybersecurity Challenges in Embedded

Programming Courses
Tiago Espinha Gasiba

Samra Hodzic
tiago.gasiba@siemens.com
samra.hodzic@siemens.com

Siemens AG
Munich, Bavaria, Germany

Ulrike Lechner
Universität der Bundeswehr

München
Neubiberg, Germany

ulrike.lechner@unibw.de

Maria Pinto-Albuquerque
Instituto Universitário de Lisboa

(ISCTE-IUL), ISTAR
Lisboa, Portugal

maria.albuquerque@iscte-iul.pt

Abstract
Security bugs are errors in code that, when exploited,
can lead to serious software vulnerabilities. These bugs
could allow an attacker to take over an application and
steal information. One of the ways to address this issue
is by means of awareness training. The Sifu platform
was developed in the industry, for the industry, with
the aim to raise software developers’ awareness of se-
cure coding. This paper extends the Sifu platform with
three challenges that specifically address embedded
programming courses, and describes how to implement
these challenges, while also evaluating the usefulness
of these challenges to raise security awareness in an
academic setting. Our work presents technical details
on the detection mechanisms for software vulnerabil-
ities and gives practical advice on how to implement
them. The evaluation of the challenges is performed
through two trial runs with a total of 16 participants.
Our preliminary results show that the challenges are
suitable for academia, and can even potentially be in-
cluded in official teaching curricula. One major finding
is an indicator of the lack of awareness of secure cod-
ing by undergraduates. Finally, we compare our results
with previous work done in the industry and extract
advice for practitioners.

Keywords: secure coding, software quality, embedded
programming, training, cybersecurity challenge, edu-
cation, security bug

1 Introduction
Security vulnerabilities originate in programming er-
rors, that, when left in code, can be exploited by ma-
licious parties and lead to severe security incidents.

Examples of vulnerabilities are, e.g., Shellshock, Heart-
Bleed, POODLE, and DirtyCOW. The presence of these
errors in software code is an indicator of poor code
quality [34]. Consequences of security breaches include,
among others, leakage of confidential information, de-
nial of service, and privilege escalation [21]. Over the
last years, the number of vulnerabilities in software
has been steadily increasing and the corresponding fi-
nancial consequences, e.g. for affected companies, is
exceeding several billion dollars [2]. One reason that
might justify this increase in vulnerabilities is the ever
increasing complexity of code and systems.
In an industrial context, several methods exist to ad-

dress code quality, e.g. using Static Application Secu-
rity Testing (SAST) Tools [24], IDE plugins, performing
threat and risk analysis, and code reviews. In [18], McIn-
tosh et al. discovered that code review coverage and
expertise participation have a significant link with soft-
ware quality. While these methods are typically used in
the industry, another important aspect should also be
considered, namely students from academia, as these
will be the next generation workforce. Furthermore,
students might not have access to all of these methods,
or might even lack training in cybersecurity.
In this work we look at raising cybersecurity aware-

ness on secure programming for students in an aca-
demic setting. Our work is based on exploring and us-
ing CyberSecurity Challenges (CSC) in the academia.
CyberSecurity Challenges is a novel serious game [8]
which aims to raise awareness on secure coding of soft-
ware developers in the industry [11]. These games are
well investigated, and are showing very promising re-
sults in an industrial setting. However, these games
have, until now, not been explored in an academic set-
ting.

Gasiba, et al.

The current research extends previous work [10]
by developing C++ challenges in an industrial secure
coding awareness platform (Sifu platform). Although
other providers exist that offer programming courses,
the Sifu platform targets especially industrial environ-
ments. The design of the new challenges hereby pre-
sented differ from challenges previously implemented
in the Sifu platform since they target embedded pro-
gramming courses. Furthermore, evaluation is done in
an academic setting, which allows to compare indus-
try and academia. In particular, this work compares
the perceived benefits of using the awareness platform
in academia and industry. The results of this compar-
ison might differ due to the different background of
students and professional software developers. There-
fore we aim to evaluate the suitability of CSC games
in the academia, provide details on the implementation
of embedded programming challenges, and aid univer-
sities to adopt the platform to assist teaching secure
programming of embedded systems. The industry also
benefits from the latter, as these students will be better
prepared for the industry demands in terms of secure
software development.
In the following we introduce three C++ challenges

with different security vulnerabilities. In these chal-
lenges, the security vulnerabilities that will be intro-
duced are, according to the authors’ experiences in
the industry, likely to happen in embedded systems
programming. These are: side-channel vulnerability, in-
valid memory access, and race condition. Along with
the challenge description, we will address the learning
goal of the challenge to raise awareness on secure cod-
ing. We also give details on how the Sifu platform can
assess the vulnerability in the code by means of auto-
matically testing that a participant’s solution follows
secure coding guidelines. The main contributions of
this work are the following:

• design of three defensive C++ programming chal-
lenges in the industry which aim to raise secure
coding awareness

• base the challenges on security vulnerabilities
common in embedded systems

• details on how to test that solutions from a par-
ticipant follow secure coding

• preliminary results on the acceptance of the chal-
lenges by students in academia

• insight into implementation and improvements
for practitioners

The current work’s main target is to use the Sifu
platform, which was developed in the industry, extend
it, and analyze how it applies in academia. We aim to
answer the following research questions:
RQ1 How can the Sifu platform be used in academia?
RQ2 How to decide whether a challenge based on side-

channel, invalid memory access, and race condi-
tion was correctly solved?

RQ3 Howdo students perceive the challenges presented
through the Sifu platform?

In section 2, we present previous work related to our
research. section 3 discusses our approach to design
defensive C++ challenges. We first briefly describe the
Sifu platform, which is used to integrate these chal-
lenges to be used for training. The main part of this
section is to introduce the implemented challenges and
which security vulnerabilities they contain. We also
present our methodology for assessing the presence of
the security vulnerabilities in the code. Additionally, we
discuss the evaluation of the developed challenges and
platform in the academia. The results are presented and
discussed in section 5. Three groups of results are pro-
vided: evaluation of the challenge assessment methods,
analysis of two test runs including a survey and semi-
structured interview, and comparison with our results
to previous results for the industrial context. Finally,
section 6 summarizes our work and briefly discusses
possible next steps.

2 Related Work
Previous research shows that software developers lack
secure programming awareness and skills [12, 28]. Ga-
siba et al. [14] introduced CyberSecurity Challenges
(CSCs) to raise secure coding awareness of software
developers in the industry. CSCs are serious games that
refine the popular CTF format and adapt it to the in-
dustry. Gasiba et al. [9] researched the constraints and
requirements for delivering a cybersecurity challenge
which can cover secure coding from an industry per-
spective. One important outcome of this research is
that the challenges should focus on the defensive per-
spective, and not on the offensive. In their work, they
introduced a new platform [10], which the authors call
Sifu. The platform performs an automatic assessment
of challenges in terms of compliance to secure coding
standards and guidelines. It uses an artificial intelli-
gence coach, which guides the participant throughout
the challenge. Their work presents results that indicate
that the Sifu platform’s CSC events are adequate for

Raising Security Awareness using Cybersecurity Challenges in Embedded Programming Courses

raising secure coding awareness of software developers
in the industry. Parker et al. [25] designed a similar
training, however their platform is not focused on a
specific programming language, and includes offensive
challenges.
Tabassum et al. [27] and Whitney et al. [30], present

the importance of secure coding guidelines and stan-
dards in the software development life-cycle. Given the
lack of knowledge on secure coding, developers tend
to search online resources for answers and solutions.
However, Kurachi et al. [33] and Zhang et al [17] show
that these solutions are not always adequate and blind
usage of these solutions can lead to additional problems.
Static analysis is an evolving approach to evaluate

programs based exclusively on their source code with-
out running them. Clang is a C/C++/Objective-C open-
source compiler [7]. It is a continually developing ini-
tiative sponsored by large companies such as Apple,
Microsoft, and Google. Clang is currently a popular
method for designing new static analyzers. Its modular
architecture is one of Clang’s strength [5]. The Sifu plat-
form makes use of this technology provided by Clang
to implement security assessments of challenges.
In [1, 3, 4, 6], the researchers compare different open-

source static analysis tool available for C/C++. The au-
thors have developed their C/C++ applications and in-
troduced various vulnerabilities in the application. They
use these applications to check the tool’s capabilities to
detect the introduced vulnerabilities. The researchers
have also presented a study comparing commercial
static code analysis tools for detecting vulnerabilities
in a software source code.
In our work, we use the semi-structured interviews

methodology as given byWilson et al. [31]. We also use
the definition of awareness as given by Hänsch et al.
[15]. In their work, they specify awareness as having
three components: perception, protection and behavior.
Perception relates to knowledge of threats, protection
relates to knowing available mechanisms to protect
against these threats, and finally behavior relates to
actual individual behavior, e.g. as in actively writing
secure code.

3 Embedded Challenges
In this work, we address three different cybersecurity
challenges, targeting specific security vulnerabilities.
This work’s challenges are Sorting - Time Side Channel,
Complex Factory (invalid memory access), and TOC-
TOU Race Condition. All challenges were implemented

in the C++ programming language and integrated into
the Sifu platform. Table 1 presents these challenges
along with security vulnerabilities and guidelines con-
tained in them. In subsection 3.1, we briefly introduce
the Sifu Platform. Next, we describe implementation
details of the assessment of the cybersecurity vulner-
abilities of the three challenges. We also discuss the
evaluation of the implementation of the challenges. Fi-
nally we refer to the setup and results of the empirical
study performed with participants from academia. No-
tice that the proposed vulnerability detection methods
run additionally to several already existing vulnerabil-
ity detection mechanisms in the Sifu platform.

3.1 Sifu Platform
Sifu is a web-based CyberSecurity Awareness Platform
[11]. This platform was developed in the industry with
the aim to raise software developers’ awareness on se-
cure coding. In the industry, this platform is typically
embedded in a serious game called CyberSecurity Chal-
lenges. The platform contains several exercises (chal-
lenges) that are presented to participants in the form
of a project, e.g. in C/C++. These challenges contain
one or more vulnerabilities in the code. The task of the
player is rewrite the code such that it does not contain
the vulnerability, while still performing the intended
functionality. All interactions between the player and
the platform takes place through the web interface.
Once the player has made changes to the code, he

or she can submit the code to the backend, which will
analyse the submitted codeand provide feedback to
the player. The goal of the analysis performed in the
backend is to assess the presence of cybersecurity vul-
nerabilities in the code submitted by the player in terms
of secure coding guidelines. The goal of the feedback
is, depending on the results of the cybersecurity assess-
ment, to either indicate to the player that the challenge
has been solved, or to guide the player to the correct
solution by means of hints.
Figure 1 shows the main components of the Sifu

platform’s backend. The automatic assessment of chal-
lenges is performed using several components: pre-
processor, compilers, static and dynamic application
security tools, unit tests and run-time application secu-
rity tests. An artificial intelligence component collects
the results of these tools, performs the cybersecurity as-
sessment and generates hints. The Sifu platform can be
deployed in a local intranet server or in a cloud environ-
ment, enabling remote awareness workshops possible.

Gasiba, et al.

Table 1. Secure coding guidelines disregard list

Challenge Rule Severity Likelihood Description Line number

Complex
Factory

MEM31-C [19] Medium Probable Free dynamically allocated memory
when no longer needed No destructor

EXP35-CPP [19] High Probable Do not read uninitialized memory 25

EXP45-CPP [19] High Probable Do not access an object outside of its
lifetime 18

MEM51-CPP [19] High Likely Properly deallocate dynamically allocated
resources 33

CTR50-CPP [19] High Likely Guarantee that container indices and
iterators are within the valid range 18, 25

ARR31-C [19] High Probable Ensure size arguments for variable
length length arrays are in a valid range 6

CWE-315 [20] Medium Likely Double free 33
CWE-416[20] High Likely Use after free 18, 25

Sorting CWE-208 [20] High Likely Observable Timing Discrepancy 7-12

TOC-TOU CWE-367 [20] High Probable Time-of-check Time-of-use (TOCTOU)
Race Condition 7-12

For further information and details on the platform, we
refer the reader to [10].

Web

Backend

Web

Frontend

Sandbox

Tools

SAST

Unit
Tests

A.I. Collector

Feedback

Backend Project

Pre-

Processing

AI Engine

DAST

Compiler

?/.6

Figure 1. Architecture of the Sifu Platform

3.2 Sorting - Time Side Channel
The goal of this challenge is to raise awareness on the
player on a well-known security vulnerability called
the time side channel (TSC) [26]. A time side-channel
occurs when the execution time of an algorithm is dif-
ferent for different inputs of the same size. In general,
side-channels, such as time, can leak data and cause
security problems [23]. This type of security vulnerabil-
ity is critical in embedded systems and programming,
since execution time is closely related with power con-
sumption. Note that time side-channels can be easily
observed and measured directly on hardware, such as
in an embedded system through an oscilloscope, and

measuring power-consumption profiles. This type of
vulnerability can originate in both a poor implemen-
tation of hardware components, or non-constant time
algorithms implemented in software. A typical example
of a software algorithm that is vulnerable to time side-
channels, is a string comparison function which returns,
i.e. stops comparing the two strings, whenever the first
difference is found. The run time of the algorithm thus
depends on the initial number equal characters. How-
ever, any algorithm that does not run in constant time
can leak information.

Listing 1. sort.cpp
1 #include <vector >

2 using namespace std;

3
4 // This function sorts a vector of int

5 // Goal: implement the function

6 void sort(vector <int > &list) {

7 size_t i, j;

8 for (i = 0; i < list.size(); i++){

9 for (j = 0; j < list.size() -1; j++){

10 // ...

11 }

12 }

13 }

In this work, we focus on a different algorithm - a
array sorting algorithm. The secure coding guideline
which addresses this vulnerability is given by CWE-208:
"Observable Timing Discrepancy" [20].

Raising Security Awareness using Cybersecurity Challenges in Embedded Programming Courses

The source code of the challenge that is presented
to the participant is shown in Listing 1. To solve the
challenge, the player needs to implement a constant-
time sorting algorithm, i.e. a sorting algorithm where
the execution time only depends on the number of
elements to be sorted and not on their individual values
or positions.
To address the assessment of the existence of a tim-

ing side-channel vulnerability, in code submitted by a
player in the Sifu platform, we have searched for exist-
ing tools and libraries that could assist in this task. Two
requirements that this tool or library must follow is that
1) it should be independent of an embedded system, and
2) it should be easily run in any environment, such as
in the cloud. A possible solution to this problem is to
perform the evaluation by means of an embedded sys-
tem simulator. This, however, is not practical since the
assessment could incur a considerable delay, making a
practical usage in the Sifu platform difficult. Further-
more, we could not find any library that could easily be
used in practice to detect this vulnerability. Therefore,
we propose to use the GNU Debugger, by means of a
dedicated python program, as shown in Figure 2. In this
solution, GDB is used to count the number of steps that
the entire sorting function needs to execute, i.e. from
start to end. We assume that number of steps required
to run the code is highly correlated with the time it
takes to execute it, and ignore any possible issues rel-
ative to cache misses. One of the main advantages of
this solution is that the measurement is no longer de-
pendent on actual CPU run time, and can be deployed
in any environment. While this method possibly takes
more time to perform the assessment than running the
code in bare-metal, it will take considerable less time
than running an entire embedded hardware simulator.
However, the true result might be dependent on the
number of clock-cycles of each assembly instruction.

C++ Wrapper

Player's solution
get line address

Line number

break at
address

GDB method
do_count

Number of
instructions

GDB commands based
script

define do_count
set $count=0
while ($pc != $arg0)
 step
 set $count = $count+1
end
print $count

Figure 2. Count instructions diagram

Figure 2 shows an overview on how to perform the
cybersecurity assessment of the participant’s code. The
code submitted by the participant is embedded in a
C/C++ project which contains a wrapper that calls the
sorting function. This small project is then compiled.
A python script starts a GDB session which is used to
debug the compiled project. This script interacts with
GDB in the following three steps: 1) create a break-
point at function call, 2) execute the function step-wise,
and 3) step the code until it returns from the function.
During the function’s step-wise execution, the total
number of steps (iterations) is recorded in an internal
GDB variable. To assess the TSC, the C++ wrapper calls
the sorting function with at least two different input
vectors of the same size, e.g., using a sorted array and an
unsorted array. The python script measures the number
of steps that each function call takes to sort the vector.
Comparing the number of steps in both cases is used to
assess the presence of a time side-channel vulnerability.
In our experiments, we have performed the step-wise
measurements using the GDB step and stepi commands.
The step command executes each line of code, while
the stepi executes each assembly instruction.

3.3 Complex Factory
The main goal of this challenge is to raise the aware-
ness on invalid memory access. However, this challenge
contains several additional vulnerabilities, as shown in
table Table 1. The secure coding guidelines and vulner-
abilities were chosen base on their likelihood [19] and
adaptability to the challenge.
Listing 2 shows the code that is presented to the

player. The code implements a C++ class that stores
complex numbers in an internal buffer of a given max-
imum size. The maximum size of the buffer it set at
construction time, when an instance of the class is cre-
ated. Table 1 also details the line numbers where the
code’s vulnerabilities are present, together with the cor-
responding SEI-CERT secure coding guidelines [19] and
vulnerabilities as defined by the Common Weakness
Enumeration (CWE) [20].

Listing 2. ComplexFactory.cpp
1 #include "FCplx.h"

2 using namespace std;

3
4 /* Constructor allocates a

5 container with MAX elements */

6 FCplx::FCplx(int _max): max(_max)

7 {

Gasiba, et al.

8 pos = 0;

9 container = new complex <int >[max];

10 }

11
12 /* Stores a complex number in the

13 container and returns a reference

14 to it */

15 complex <int >& FCplx:: create(int x, int y)

16 {

17 complex <int > a = complex <int >(x,y);

18 container[pos++] = a;

19 return a;

20 }

21 /* Returns a reference to an element

22 stored in the container

23 index 1 returns first element */

24 complex <int >& FCplx::get(int index){

25 return container[index - 1];

26 }

27
28 /* Frees the allocated array. After

29 calling this method no further method

30 calls are be allowed */

31 void FCplx::empty()

32 {

33 delete container;

34 }

To detect code that disregards the secure coding
guidelines presented in Table 1, two distinct methods
are used: GCC sanitize flags and security tests. Sanitize
flags are part of dynamic application security testing,
and are provided to the compiler at compile time. They
instruct the compiler to generate extra checks that are
performed during code execution. The following are
the sanitize flags which we use: address, leak, and unde-
fined behavior. Address flag adds extra run-time checks
on memory addressing, leak flag adds extra run-time
checks related to memory allocation, and undefined
behavior flag adds extra run-time checks on undefined
behavior, as defined by the C++ standard.
The second method used to detect code vulnerabili-

ties is through security testing. Security tests are used
to test specific corner cases, and they try to expose a
vulnerability during run-time. One example of a secu-
rity test, e.g. to test CWE-315 (double free), is to delete
the class variable twice. A secure solution should catch
this problem and react accordingly; however, a poorly
implemented solution will cause a double free error,
which in turn will trigger the leak sanitizer. For each
secure coding guideline, one or more security test is

implemented which tries to trigger the corresponding
vulnerability.

3.4 Race Condition
The goal of this challenge is to raise the awareness
on race condition vulnerabilities. A race condition can
occur when two or more concurrent processes try to
access a shared resource, whereby at least one pro-
cess tries to modify the shared resource. The time be-
tween the resource is read and the resource is modified
is known as race window or critical section. Conse-
quences of exploiting this types of vulnerability include
denial-of-service, and privelege escalation.
While race conditions typically occur in shared mem-

ory, we propose a challenge based on files. In this case
the shared resource is a file and the vulnerability is
called a time-of-check, time-of-use (TOCTOUC). The
security vulnerability is listed in the CWE database un-
der CWE-367 [20]. Listing 3 shows the challenge that
is presented to the player. To solve the challenge, the
player needs to perform two steps: check if a file ex-
ists and, if it exists, modify its permissions. The race
window occurs between the time that the existence of
the file is checked until the attributes are modified. The
problem is that a malicious user can change the file
between the two operations and, therefore the code
changes the permissions of the wrong file. Previous
research that addresses this vulnerability on real-time
embedded systems is [29, 32]. Note: one possible solu-
tion to this challenge is by using the fchmod, instead
of the chmod function.

Listing 3. set_permissions.cpp
1 /* Check if the file exists , and change

2 the mode of the file. Return true if

3 everything was successful */

4 bool setPerm(char *fName , mode_t mode){

5 // Check if the file exists

6 FILE *f_ptr;

7 // Change the mode

8 if (chmod(fName , mode) == -1) {

9 // Handle error ...

10 return false;

11 }

12 return true;

13 }

This type of vulnerability can potentially be detected
by means of static application security testing tools.
However, to the best of our knowledge, except for com-
mercial solutions, there is no open-source tool that

Raising Security Awareness using Cybersecurity Challenges in Embedded Programming Courses

can detect this type of vulnerability [22]. Furthermore,
static application security testing tools are known to
be unreliable [22, 24]. In light of this, we propose a sim-
ple solution based on an attack script and a wrapper
function, as shown in Figure 3. The wrapper function
calls the participants’ solution multiple times while, in
parallel, an attacker script is running and swapping the
two files in an endeless loop. Both the wrapper and the
attacker script stop executing when one of the follow-
ing conditions is met: (1) the permissions are changed
in the wrong file, or (2) a maximum number of itera-
tions is achieved. Condition two will occur if there is
no vulnerability in the code of the player, or the race
condition could not be achieved, i.e. the vulnerability
was not detected after all the iterations.

Attack's file Target file

Partcipant's solution

Attack script

Possible link due to
attack

Figure 3. Top-level challenge structure

Note that, since the race condition is not reliably
triggered, several tries need to be performed. We expect
that the more iterations are performed, the higher the
probability to detect the the vulnerability. In section 4
we present the results of evaluation on the trade-off
between the detection probability and the total number
of iterations.
Another possible solution to the detection problem is

by artificially modifying the player’s code and injecting
a delay in the code’s critical section. Although this solu-
tion can potentially increase the reliability to detect the
vulnerability, it requires, however, a modification of the
source code submitted by the participant. Furthermore,
the method and implementation details to achieve this
reliably is currently an open topic.

4 Evaluation
Validation of the presented cybersecurity assessment
methods was performed through computer experimen-
tation. Additionally, the challenges were deployed in

an academic environment, followed by semi-structured
interviews and a survey. In this section we give details
on the evaluation process.

4.1 Evaluation of Design
For the Time Side-Channel challenge, an evaluation
took place by means of two possible implementations
of the sorting algorithm: with and without a time side
channel. The algorithm containing the vulnerability
was a standard bubble-sort algorithm, while the imple-
mented solution was a bubble sort algorithm modified
to swap elements with the same index, thus increasing
run-time and avoiding the time side-channel vulnera-
bility. The input to the sorting algorithm consisted of
three random permutations of an integer vector size of 5
elements. The process was repeated 1000 times for both
algorithms and for the step and stepi GDB commands
respectively. Furthermore, the total execution required
to get an answer from the backend was measured.
For the Race Condition challenge, we focus on the

evaluation of the detection probability of the vulnera-
bility. To compute this probability, we ran the python
script 1000 times, and recorded the number of iterations
required to detect the vulnerability. Based on these re-
sults, we can compute the cumulative density function
of the detection probability 𝑐 (𝑛) by normalizing the
number of times that the vulnerability was detected in
less than n cycles.
Since the Complex Factory challenge uses standard

detection mechanisms, we have not performed an eval-
uation step for the security assessment.
All the tests were conducted on a PC with the fol-

lowing specifications: Ubuntu 18.04.4 LTS on an Intel
i5-3427U CPU running at 1.80GHz with four cores and
8 GB of RAM.

4.2 Challenge Deployment in Academia
We have deployed the challenges in the Sifu Platform
and asked several students, without previous industry
experience, to evaluate them during two runs. Table 2
shows details on the demographics of these runs.
The participants were first given a short introduction

to the platform, and were given instructions on how to
use it. Next, the participants were given time to check
and familiarize with the platform, and to solve the chal-
lenges. After solving the challenges, a semi-structure in-
terview took place. Participation in the semi-structured
interview was not mandatory, and the collected an-
swers were anonymized.

Gasiba, et al.

The participants were also asked to answer a small
survey consisting of eleven questions. The questions
that were asked in the survey are shown in Table 3.
Survey feedback answers were gathered using Google
Forms. The answers to the questions were based a 5
point Likert scale [16] for agreement, i.e. strongly dis-
agree, disagree, neutral, agree, and strongly agree. The
questions are adopted from [11] and extended to tar-
get the academia. The adoption of the same questions
allows, in the results section, to compare the answers
from academia to answers from the industry.

Table 3. Survey questionnaire

Survey Question

Q1 Paying attention to secure coding increases my code
quality

Q2 University teaching includes awareness in secure coding

Q3 I learned new techniques and principles of secure
software development

Q4 I know how to use the information about secure coding
guidelines

Q5 I understand the importance of secure coding guidelines

Q6 Focusing on the challenges improves my practical secure
coding skills

Q7 I have learned about new issues that I would like to
check in my own code

Q8 I know where I can find more information about secure
coding guidelines

Q9 The learning goals of the challenges were clearly
explained

Q10 The help from the virtual coach was adequate

In total, six participants responded to the planned
semi-structured interview. The semi-structured inter-
view questions were based on the following questions:
what is the most significant advantage in participating in
these challenges, what did not go well and you would like
to change, and do you think that secure coding awareness
increases the code quality overall.

5 Results
This section show the results on the evaluation of the
proposed vulnerability assessment schemes for differ-
ent the challenges. This section also shows the analy-
sis of the survey questions, and result from the semi-
structured interviews. We also present a comparison of
our survey results with two similar surveys by Gasiba
et al. which were held in an industrial context.

5.1 Sorting - Time Side Channel
Figure 4 presents the results when using step (right plot)
and stepi (left plot) GDB commands respectively. Both
instructions, step and stepi, show only a line (i.e. single
value) when there is no time side-channel vulnerability
present in the code. This result comes as a consequence
of having the same number of instructions for every
input. Furthermore, the vertical lines show the worst
and best case for no TSC. The observable difference in
instruction count comes as a consequence that the stepi
instruction needs to execute every assembly instruction
of the source code.
The stepi GDB command takes more iterations than

the step GDB command to perform the assessment of
the vulnerability. This result is expected, since the stepi
command executes the code one assembly instruction
at a time, while the step command executes the code
one source code line at a time. Due to their nature, the
stepi command is more precise than the step command;
however this represents a trade-off between precision
and speed, since the stepi command ismore than twenty
two times slower than the step command.
Figure 4 also shows that, for the stepi GDB command,

an increase in the number iterations between 31.8% and
95.3% between code without TSC and code with TSC
is observed. The same figure shows that for the step
command, the increase in the number of iterations is
between 44.4% and 157% for code without TSC and code
with TSC.
The second aspect to check the design is the reason-

able delay after the participant has submitted a solution.

Table 2. Participants’ information

No. Start Date End Date Participants Where Age Range Field of Study Educational Level

1 5 Nov 2020 10 Nov 2020 12: Germany Online 20-28
Electrical engineering,
Computer engineering,
Informatics

Bachelor’s degree
Master’s degree

2 16 Nov 2020 23 Nov 2020 4: Germany Online 22-25 Computer engineering,
Communications engineering Master’s degree

Raising Security Awareness using Cybersecurity Challenges in Embedded Programming Courses

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

stepi with TSC stepi without TSC

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

step with TSC step without TSC

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Figure 4. Step instruction comparison

We have measured the execution time of this imple-
mentation when running it in the Sifu platform. Table 4
shows the captured measurements together with 1st
and 3rd quartile. Same cases were covered as in the
Figure 4.

Table 4. Execution time measurement

Test case Mean exec time [s] Q1 Q3
Step with TSC 1.81 1.76 1.86
Step without TSC 2.19 2.18 2.20
Stepi with TSC 3.74 3.44 3.91
Stepi without TSC 5.43 5.39 5.48

5.2 Race Conditions
In the TOC-TOU Race Condition Challenge, we eval-
uated the detection probability of the attacking script.
The results are shown in Figure 5. The x-axis of this fig-
ure shows the number of tried, i.e. iterations, performed
to detect the vulnerability, while the y-axis shows the
probability of detection.
This graph shows that, to achieve a detection rate of

99%, more than 3000 iterations are required. Since the
execution time for a single round of this assessment
method is very small (in the order of microseconds), we
recommend to implement more than 10,000 iterations
in a practical scenario. Our results show that, this value
is reasonable and does not lead to considerable delay
in the backend.
Figure 5 can be used as a guideline by practitioners

who wish to implement this detection mechanism in
their own deployments. Since the actual running time
depends on the speed and on the CPU where the test
is run, we recommend that practitioners start with the
value 10,000 and run their own evaluation of the num-
ber of iterations that are required to achieve a detection
probability of 99% or higher.

Saved from:
https://live.amcharts.com/4NmNm/edit/

Figure 5. Success probability related to number of tries

5.3 Survey Results
Figure 6 shows the results of the survey which was
based on the questions introduced in Table 3. Our pre-
liminary results show, except for Q1 and Q2, an overall
agreement with the survey question. The questions
that include the highest agreement are Q6, Q7, Q9, and
Q10. This means that the participants agree that the
assistance provided by the virtual coach is adequate,
thus providing a good indicator of the suitability of the
proposed vulnerability detection methods. Participants
also agree that focusing on secure coding challenges im-
proves their security coding skills, therefore also their
awareness on the secure coding guidelines. Finally, the
participants have learned new vulnerabilities that they
would like to check in their own code. This gives a
good indicator that these types of games can motivate
a positive behaviour towards secure coding.
The aspects there received the lowest amount of

agreement, though still overall positive, are related with
Q4 and Q8. This is not surprising since the Sifu plat-
form is developed for the industry, and motivates the
participants to find additional information on secure
coding using internal resources; the same cannot be
said for the academia, where further information should
be searched in online forums or scientific publications.
It is however surprising that the participants claim that
playing the challenges allows them to know where to
find more information about secure coding, and how
to use this information.
We also observe that, in general, there is still a high

level of neutral answers. The reason for this is not well
understood and further research is necessary to under-
stand this issue. Also, for Q1, it is surprising that the
participants are not entirely sure if paying attention to
secure coding increases their code quality. Although
one possible reason for this might be the lack of specific
training in secure coding and code quality, this aspect
needs more search. Finally, another surprising result is

Gasiba, et al.

Figure 6. Survey Results

the one obtained in Q2, where the participants claim
that university teaching does not include awareness
on secure coding. This result is an indicator that this
awareness campaigns are necessary to be held in the
industry, and a specialized course that covers secure
coding and secure coding guidelines might be benefi-
cial. Attending this course would better prepare the
students for a future career in the industry.

5.4 Comparison to Previous Work
Table 5 shows a comparison of the current work, and
the work by Gasiba et al. (see [13], and [10]). The main
difference is that, in the current work, we evaluate the
CyberSecurity Challenges in the academia, while previ-
ous work evaluates these in an industrial context. Both
the current work as the previous work show a gen-
eral agreement in relation to all the survey questions.
However, one important difference is the fact that Q5
has a higher agreement level for the industry as in the
academia. We think that the main reason for this dif-
ference might be related with the fact that the usage
of secure coding guidelines are typically mandated by
security policies in the industry, e.g. as a result of re-
quirements from cybersecurity standards, while this
is not the case in academia. We also observe that Q4
and Q8 exhibit a large amount of neutral answers for
both academia and also for the industry. The reason be-
hind this is not entirely understood and requires further
investigation.

In terms of disagreement, we observe that Q3, Q7,
and Q8 have a similar amount of disagreement in both
the academic setting and also in the industrial setting.
One common positive point in all the surveys, industry
and academia, is the fact that the support by the coach
is seen as an important factor. The factor that has the
largest amount of difference between the academia and
industry is Q8 - knowing where to find more informa-
tion; Based on our experience, we think that this might
be related with the fact that in an industrial environ-
ment, there are internal procedures related with secure
software development life-cycle which establish where
further information can be obtained. This might justify
the higher value for academia and lower value for the
industry.
Surprisingly there is about 8% of negative answers

in relation to Q9 - the goals of the challenge are clearly
stated - for the industry, while 0% for academia. This
effect might be related with the diversity of software de-
velopers in the industry; however, further investigation
is needed to understand this discrepancy.
In summary, although there are some differences ob-

served in the results of academia vs industry, overall
there is a large agreement for all the survey questions.
This fact gives a good indication that the Sifu platform
and its challenges are well suited for both academia and
industry.

Raising Security Awareness using Cybersecurity Challenges in Embedded Programming Courses

Table 5. Comparison with previous work

Present work Gasiba et al. [13] Gasiba et al. [10]
Question Negative Neutral Positive Question Negative Neutral Positive Question Negative Neutral Positive

Q1 25.0% 43.7% 31.3%
Q2 87.6% 6.2% 6.2%
Q3 6.2% 12.5% 81.3% Q1.1 12.5% 7.1% 80.4% X1 0.0% 10.0% 90.0%
Q4 6.2% 18.8% 75.0% Q6.1 8.9% 28.6% 80.3%
Q5 18.7% 12.5% 68.8% Q10.9 0.0% 5.3% 94.7% X9 0.0% 0.0% 100.0%
Q6 0.0% 6.2% 93.8% Q7.1 3.6% 14.3% 82.1% F2 0.0% 4.0% 96.0%
Q7 0.0% 12.5% 87.5% Q8.1 10.7% 5.4% 83.9%
Q8 6.3% 18.7% 75.0% Q9.1 12.5% 31.2% 55.4% X8 0.0% 10.0% 90.0%
Q9 0.0% 12.5% 87.5% Q11.1 8.9% 8.9% 82.2% F8 8.0% 8.0% 84.0%
Q10 12.5% 0.0% 87.5% Q13.1 1.8% 12.5% 85.7% X6 0.0% 0.0% 100.0%

16 participants 56 participants 25 participants

5.5 Semi-Structured Interviews
After using the Sifu platform and solving each of the
proposed challenges, participants were interviewed.
Analysis of the participants’ answers resulted in their
classification into three groups: Benefits, Application in
Embedded systems, and Drawbacks. Table 6 shows the
top 10 quotes from participants, along with a mapping
to the individual groups. The group Benefits covers the
user experience and what the participants thought was
the most beneficial outcome of the challenges. Group
Application in Embedded systems was related to our pri-
mary goal, which was not explicitly mentioned, with
a reason to see if the participants see a possible appli-
cation of this platform for training secure coding in
embedded systems. Finally, the group Drawbacks, cov-
ers negative aspects experienced by the participants.
The feedback that we have collected allows to under-
stand the strong and weak points of the platform, and
also to improve the it further.
The grouping of certain answers and comments an-

swered how participants perceive the platform and see
a possible application in embedded programming. The
main outcome of the semi-structured interviews are
as follows. For the perceived benefits of the platform,
the fact that it is used as a game was positively per-
ceived. Furthermore, playing the games exposes the
participants to secure coding tasks, which is also per-
ceived as being beneficial. In therms of the embedded
programming group, some participants suggested that
the platform might be used in a standard course at the
university, which might be beneficial for those who
work on security critical systems, e.g. in critical infras-
tructures.
Although most of the feedback was positive, we col-

lected some drawbacks. The two main negative points

Table 6. Quotes from Participants

No Quote from Participant Group
1 I believe that accounting for security while

coding is beneficial in writing more effi-
cient code.

Benefits2 Learning really useful strategy to make sig-
nificantly more quality code

3 The best thing is that platform acts as a
game

4 I think it is good to be exposed to an impor-
tant aspect of coding which is handling or
accounting for security issues or potential
vulnerabilities

5 Suitable for training secure coding on em-
bedded systems

Embedded
Programming

6 This could be used as a training platform
for some courses at my university

7 This will be a real advantage for users who
are working on security critical systems.

8 The hints given by the chat bot were not
always accurate or precisely leading to the
nature of the problem in the code.

Drawbacks9 The user interface is minimalistic for nowa-
days standards.

10 Make a more sophisticated user interface
and experience

are related with the user interface, and with the preci-
sion of the feedback given by the virtual coach. Related
to quotes 9 and 10, interviewees gave a more detailed
answer in our discussion. One interviewee said that
having a standard debugging tool would ease the chal-
lenges and increase the learning factor. As well to com-
pete with other online learning platforms, more details
on the design have to be applied.
The collected positive and optimistic answers in-

dicate that participating in these challenges can po-
tentialy lead to raising secure coding awareness in
academia. The answers are also encouraging towards

Gasiba, et al.

validating the suitability of the proposed vulnerability
assessment methods.

5.6 Discussions
In this work we have presented the implementation
and evaluation of cybersecurity challenges for the Sifu
platform. The implementation of the challenges covered
technical aspects on how to evaluate the presence of a
given vulnerability in source code, while the evaluation
was performed in several ways: computer experiments,
survey, semi-structured interviews and comparison to
previous work.
In terms of technical implementation, we have dis-

cussed a mechanism to detect time side-channel, and
race conditions. The main idea for the detection of time
side-channel is to use a standard debugger, such as GDB,
together with a wrapper and a python script to control
the debugger. By stepping through the code, we can
evaluate the number of steps that the algorithm would
require to run from beginning to the end. In the results
section we present practical advice for practitioners
who want to implement this method, in particular we
discuss about the trade-off between precision and exe-
cution time. Notice that we propose a simplifiedmethod
to assess the presence of a time-side channel. In practice,
other effects will impact the running time of the algo-
rithm, such as number of cycles per instruction, hyper-
threading, cache misses, and CPU internal pipelines,
and therefore the presence of time-side channels. How-
ever, although the proposed method is simple, it allows
to raise awareness on time-side channels through a se-
rious game. Furthermore, the reason why we observe
highly correlated results between the "step" and "stepi"
method is related to the fact that the implemented al-
gorithm mostly uses mathematical operations and no
function calls.
For the race condition vulnerability, we propose to

write a script that attacks the function written by the
participant. We discuss the trade-off between probabil-
ity of detecting the vulnerability and execution time.
The reason why execution time is crucial, is that the
Sifu platform is an interactive platform. The higher
the delay in the backend, the less interactive the plat-
form becomes, which could lead to problems with user
experience.
One major finding in our survey results is the fact

that the students claimed a lack of awareness on se-
cure coding during courses at the university. While this
result cannot be generalized to every university and
every course, it does raise the need to address this topic

in general, as the students of today are the workforce
of the future. The survey results also indicate that the
Sifu platform might be suitable to address this aware-
ness in secure coding at the university. In particular,
we have received positive indications that the platform
could be integrated into the standard teaching curricula.
A comparison with two previous surveys performed
in an industrial setting was also discussed. Both the
studies performed in the academia as also in the indus-
try show encouraging results on the suitability of the
platform as a means to raise awareness on secure cod-
ing. However, there are small differences between the
surveys that indicate small discrepancies. We believe
that a practitioner who wishes to deploy or refine these
types of challenges in the academia, can find valuable
information in these studies, to guide in their decision
making.

5.7 Threats to Validity
Possible threats to our conclusions include: number of
participants, study field and experience, and partici-
pant bias. Our preliminary results are mostly positive.
This might be related to the relatively low number of
participants to the survey, since it was not mandatory.
Therefore, some negative comments might not have
been been captured. Participants have different study
fields, backgrounds, and are at different levels in their
studies. Although the number of participants is limited,
it is in line with comparable empirical studies. There-
fore, some participants might find the challenges easy,
while other might have more difficulties to solve them.
This might lead to different answers to the survey and
also to the semi-structured interview and, therefore.
A more detailed analysis and research on the answers
given by the different groups would be required to un-
derstand possible bias effects.
Finally, since the participants are aware of the pur-

pose of the study, a positive bias cannot be discarded.
In particular, participants might respond to the survey
in a way that they think the authors expect them to
answer. Nevertheless, the results obtained in this work
are in alignment with previous work that was done in
an industrial environment. Therefore, we do not think
that considerable different conclusions from the ones
presented in this work would be obtained by increasing
the number of survey participants.

6 Conclusions
Security bugs, when exploited, often can lead to seri-
ous software vulnerabilities. Nowadays, secure coding

Raising Security Awareness using Cybersecurity Challenges in Embedded Programming Courses

guidelines exist to teach software developers and make
them aware of software vulnerabilities and how towrite
secure code that avoids these vulnerabilities. However,
not all software developers are knowledgeable about
these or secure coding standards in general. This is true
for the industry and, the present study also finds out
that this might also be true in academia.
To address this issue, this work extends previous

research conducted on the Sifu platform. We introduce
three challenges with security vulnerabilities common
in embedded programming that can be integrated into
university teaching curricula. This paper consists of two
main parts: 1) a brief description of how to implement
the challenges in terms of evaluation of the presence of
the vulnerability in the participant’s source code, and
2) an evaluation of the challenge design and evaluation
of the challenges in an academia setting.
In the first part, three different C++ challenges were

implemented on Sifu’s platform. The implementation
process and decision-making were briefly explained. A
critical part of our work is how to test particular secu-
rity vulnerabilities that are presented in the challenges.
We give a detailed explanation of the architecture and
the implementation of testing particular vulnerabilities.
In the second part, we evaluate the design from a tech-

nical view, and an empirical view. Our results indicate
that the proposed methods can be used to detect the
challenges’ vulnerabilities. Additionally we give prac-
tical advice on the implementation of the challenges.
Through two trial runs in academia, we collected an-
swers on a survey and performed a semi-structured
interview. Our preliminary results give a good indica-
tion that the challenges are adequate to raise secure
coding awareness for students. Additionally the results
for the semi-structured interview give a positive indi-
cation on the suitability of the challenges for academia,
and give good insight into future improvements, e.g.
on user experience. Finally, we have performed a com-
parison with previous studies, thus comparing results
from industry to results from academia. While the ma-
jority of the results indicate a good agreement between
industry and academia, the small differences between
both can serve as a guide to practitioners who wish to
deploy the Sifu platform in an academic setting.
As further steps, the authors would like to investigate

the usage of popular open-source static code analysis
tools, and tapping system calls to improve the plat-
form’s detection mechanisms. Furthermore, the authors
would like to address these tools’ usage to improve the
platform’s hint mechanism.

Acknowledgments
The authors would like to thank the survey participants
for their useful and insightful discussions and for their
participation in the test run. This work is partially fi-
nanced by national funds through FCT - Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT
UIDB/04466/2020 and UIDP/04466/2020. Furthermore,
the fourth author thanks the Instituto Universitário de
Lisboa and ISTAR, for their support.

References
[1] Richard Amankwah, Patrick Kudjo, and Samuel Yeboah. 2017.

Evaluation of Software Vulnerability Detection Methods and
Tools: A Review. International Journal of Computer Ap-
plications 169 (07 2017), 22–27. https://doi.org/10.5120/
ijca2017914750

[2] Apextechservices. 2017. NotPetya: World’s First $10 Billion
Malware. https://tinyurl.com/y6mkok57

[3] Andrei Arusoaie, Stefan Ciobâca, Vlad Craciun, Dragos Gavri-
lut, and Dorel Lucanu. 2017. A Comparison of Open-Source
Static Analysis Tools for Vulnerability Detection in C/C++
Code. In 2017 19th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC). IEEE,
Timisoara, Romania, 161–168.

[4] A. Arusoaie, S. Ciobaca, V. Craciun, D. Gavrilut, and D. Lucanu.
2018. A Comparison of Static Analysis Tools for Vulnerability
Detection in C/C++ Code. Romanian National Authority for
Scientific Research and Innovation.

[5] Bence Babati, Gábor Horváth, Viktor Májer, and Norbert
Pataki. 2017. Static Analysis Toolset with Clang. In Proceed-
ings of the 10th International Conference on Applied Informatics.
ACAI, Eger, Hungary, 23–29.

[6] Hanmeet Kaur Brar and Puneet Jai Kaur. 2015. Article: Com-
paring Detection Ratio of Three Static Analysis Tools. Interna-
tional Journal of Computer Applications 124, 13 (August 2015),
35–40. Published by Foundation of Computer Science (FCS),
NY, USA.

[7] The Clang Community. 2020. Clang: a C language family
frontend for LLVM. https://clang.llvm.org/index.html

[8] Ralf Dorner, Stefan Gobel, Wolfgang Effelsberg, and Josef
Wiemeyer. 2016. Serious Games: Foundations, Concepts and
Practice. Springer, Cham, Switzerland. https://doi.org/10.1007/
978-3-319-40612-1

[9] Tiago Gasiba, Kristian Beckers, Santiago Suppan, and Filip
Rezabek. 2019. On the Requirements for Serious Games geared
towards Software Developers in the Industry. In Conference
on Requirements Engineering Conference, Daniela E. Damian,
Anna Perini, and Seok-Won Lee (Eds.). IEEE, Jeju, South Korea,
286–296. https://doi.org/10.1109/re.2019.00038

[10] Tiago Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque.
2020. Sifu - A CyberSecurity Awareness Platform with Chal-
lenge Assessment and Intelligent Coach. Special Issue of Cyber-
Physical System Security of the Cybersecurity Journal 3, 1 (10
2020), 1–23.

[11] Tiago Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque.
2021. CyberSecurity Challenges for Software Developer

https://doi.org/10.5120/ijca2017914750
https://doi.org/10.5120/ijca2017914750
https://tinyurl.com/y6mkok57
https://clang.llvm.org/index.html
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.1109/re.2019.00038

Gasiba, et al.

Awareness Training in Industrial Environments. 16. Inter-
nationale Tagung Wirtschaftsinformatik (2021), 1–17.

[12] Tiago Gasiba, Ulrike Lechner, Maria Pinto-Albuquerque, and
Daniel Mendez Fernandez. 2020. Awareness of Secure Coding
Guidelines in the Industry - A first data analysis. In TrustCom
2020: International Conference on Trust, Security and Privacy
in Computing and Communications. IEEE, Guangzhou, China,
1–8.

[13] Tiago Gasiba, Ulrike Lechner, Maria Pinto-Albuquerque, and
Anmoal Porwal. 2020. Cybersecurity Awareness Platform
with Virtual Coach and Automated Challenge Assessment. In
6th Workshop On The Security Of Industrial Control Systems &
Of Cyber-Physical Systems (CyberICPS). Springer, Guildford,
UK, 1–16.

[14] Tiago Gasiba, Ulrike Lechner, Filip Rezabek, and Maria Pinto-
Albuquerque. 2020. Cybersecurity Games for Secure Pro-
gramming Education in the Industry: Gameplay Analysis. In
First International Computer Programming Education Confer-
ence (ICPEC 2020) (OpenAccess Series in Informatics (OASIcs),
Vol. 81), Ricardo Queirós, Filipe Portela, Mário Pinto, and Al-
berto Simões (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 10:1–10:11.

[15] Norman Hänsch and Zinaida Benenson. 2014. Specifying
IT security awareness. In 2014 25th International Workshop
on Database and Expert Systems Applications. IEEE, Munich,
Germay, 326–330.

[16] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal.
2015. Likert scale: Explored and explained. Current Journal of
Applied Science and Technology 7 (2015), 396–403.

[17] Ryo Kurachi, Hiroaki Takada, Masato Tanabe, Jun Anzai, Ken-
taro Takei, Takaaki Iinuma, Manabu Maeda, and Hideki Mat-
sushima. 2018. Improving secure coding rules for automotive
software by using a vulnerability database. In 2018 IEEE Inter-
national Conference on Vehicular Electronics and Safety (ICVES).
IEEE, Madrid, Spain, 1–8.

[18] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E
Hassan. 2016. An empirical study of the impact of modern
code review practices on software quality. Empirical Software
Engineering 21, 5 (2016), 2146–2189.

[19] Carnegie Mellon. 2020. SEI CERT Coding Standards. https:
//wiki.sei.cmu.edu/confluence/display/seccode Online. Ac-
cessed 19 November 2020.

[20] MITRE. 2020. Common Weakness Enumeration: CWE. https:
//cwe.mitre.org/ Online. Accessed 25 November 2020.

[21] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas,
Georgios Gousios, and Diomidis Spinellis. 2013. Dismal code:
Studying the evolution of security bugs. In {LASER} 2013
({LASER} 2013), Vol. 49. USENIX, New York, United States,
37–48.

[22] Jonathan Moerman, Sjaak Smetsers, and Marc Schoolderman.
2018. Evaluating the performance of open source static analy-
sis tools. Bachelor Thesis, Radboud University, The Netherlands
24 (2018), 1–66.

[23] Reza Montasari, Amin Hosseinian-Far, Richard Hill, Farshad
Montaseri, Mak Sharma, and Shahid Shabbir. 2018. Are Timing-
Based Side-Channel Attacks Feasible in Shared, Modern Com-
puting Hardware? International Journal of Organizational and
Collective Intelligence 8 (04 2018). https://doi.org/10.4018/

IJOCI.2018040103
[24] Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and

Daniela Soares Cruzes. 2018. Myths and facts about static
application security testing tools: an action research at Te-
lenor digital. In International Conference on Agile Software
Development. Springer, Cham, Switzerland, 86–103.

[25] Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Michelle L Mazurek, and Piotr Mardziel. 2016. Build it, break
it, fix it: Contesting secure development. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, New York, United States, 690–703.

[26] François-Xavier Standaert. 2010. Introduction to side-channel
attacks. In Secure integrated circuits and systems. Springer,
Boston, MA, 27–42.

[27] Madiha Tabassum, Stacey Watson, Bill Chu, and Heather
Richter Lipford. 2018. Evaluating Two Methods for Inte-
grating Secure Programming Education. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Ed-
ucation. ACM, New York, United States, 390–395. https:
//doi.org/10.1145/3159450.3159511

[28] Mohammad Tahaei and Kami Vaniea. 2019. A Survey on
Developer-Centred Security. In 2019 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW). IEEE,
Stockholm, Sweden, 129–138.

[29] Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and
Xuandong Li. 2017. Automatic Detection and Validation of
Race Conditions in Interrupt-Driven Embedded Software. In
Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis (Santa Barbara, CA, USA)
(ISSTA 2017). Association for ComputingMachinery, New York,
NY, USA, 113–124. https://doi.org/10.1145/3092703.3092724

[30] Michael Whitney, Heather Richter Lipford, Bill Chu, and Tyler
Thomas. 2017. Embedding Secure Coding Instruction Into the
IDE: Complementing Early and Intermediate CS Courses With
ESIDE. Journal of Educational Computing Research 56 (05 2017),
073563311770881. https://doi.org/10.1177/0735633117708816

[31] Chauncey Wilson. 2014. Semi-Structured Interviews. Elsevier,
Boston, 23–41. https://doi.org/10.1016/B978-0-12-410393-
1.00002-8

[32] Chen Yan, Xu Xiaofeng, Li Xiaochao, and Guo Donghui. 2010.
Race Condition and Its Analysis Approach of Real-time Embed-
ded Systems. Journal of Computer Research and Development
47, 7, Article 1201 (2010), 9 pages. http://crad.ict.ac.cn/EN/
abstract/article_1751.shtml

[33] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt,
Hridesh Rajan, and Miryung Kim. 2018. Are code examples on
an online Q&A forum reliable?: a study of API misuse on stack
overflow. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, New York, United States,
886–896.

[34] Z. Zhioua, Y. Roudier, S. Short, and R. B. Ameur. 2016. Secu-
rity Guidelines: Requirements Engineering for Verifying Code
Quality. In 2016 IEEE 24th International Requirements Engineer-
ing Conference Workshops (REW). IEEE, Beijing, China, 80–85.
https://doi.org/10.1109/REW.2016.028

https://wiki.sei.cmu.edu/confluence/display/seccode
https://wiki.sei.cmu.edu/confluence/display/seccode
https://cwe.mitre.org/
https://cwe.mitre.org/
https://doi.org/10.4018/IJOCI.2018040103
https://doi.org/10.4018/IJOCI.2018040103
https://doi.org/10.1145/3159450.3159511
https://doi.org/10.1145/3159450.3159511
https://doi.org/10.1145/3092703.3092724
https://doi.org/10.1177/0735633117708816
https://doi.org/10.1016/B978-0-12-410393-1.00002-8
https://doi.org/10.1016/B978-0-12-410393-1.00002-8
http://crad.ict.ac.cn/EN/abstract/article_1751.shtml
http://crad.ict.ac.cn/EN/abstract/article_1751.shtml
https://doi.org/10.1109/REW.2016.028

