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Resumo 

 

O interesse em moedas digitais tem aumentado por parte de indivíduos e investidores. A bitcoin é a 

moeda digital com maior capitalização de mercado, no entanto, a sua alta volatilidade alinhada à 

incerteza política, torna muito difícil prever seu valor. Portanto, existe a necessidade de criar modelos 

avançados que utilizem métodos matemáticos e estatísticos para reduzir o risco de investimento. Este 

estudo tem como objetivo verificar se as redes neurais artificiais de memória longo curto prazo (LSTM) 

e redes bidirecionais de memória longo curto prazo (BiLSTM) podem ser usadas juntamente com o 

filtro Savitzky-Golay para prever os preços de fecho do dia seguinte da bitcoin. Os resultados mostraram 

que existe evidência que ambas as redes podem ser usadas de forma efetiva. LSTM obteve um erro 

percentual absoluto médio (MAPE) de 4.49 e BiLSTM um MAPE de 4,44. Também o uso do filtro 

Savitzky-Golay e regularização, melhora significativamente o desempenho de previsão dos modelos.  

 

Palavras-chave: previsão; cripto moeda; Savitzky–Golay; LSTM; BiLSTM; redes neurais 
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Abstract 

 

The interest in cryptocurrencies is increasing among individuals and investors. Bitcoin is the leading 

existing cryptocurrency with the highest market capitalization. However, its high volatility aligns with 

political uncertainty making it very difficult to predict its value. Therefore, there is a need to create 

advanced models that use mathematical and statistical methods to reduce investment risk.  This research 

aims to verify if long short-term memory (LSTM), and bidirectional long short-term memory (BiLSTM) 

neural networks, can be used with Savitzky–Golay filter to predict next-day bitcoin closing prices. We 

found evidence both networks can be used effectively to predict bitcoin prices. LSTM performed 4.49 

mean absolute percentage error (MAPE) and BiLSTM 4.44 MAPE. We also found that using Savitzky–

Golay filter and dropout regularization significantly improved the model’s prediction performance.  

 

Keywords: forecasting; cryptocurrency; Savitzky–Golay; LSTM; BiLSTM; neural networks 
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CHAPTER 1 

Introduction 

 

Thousands of digital currencies and hundreds of exchangers have been created since the introduction 

of bitcoin in 2008 (Chiu & Keister, 2022). Digital currencies have attracted great attention from 

investors, regulators, and the public (Giudici et al., 2020). The number of markets and activities 

developed around digital currencies has increased exponentially, including online trading platforms, 

crypto-based derivatives trading, and crypto lending platforms. In addition, central banks are now 

investigating the possibility of creating a central bank digital currency (CBDC), with some, already in 

the process of its creation. Although, digital currencies also bring concerns to the market. 

 The high volatility of digital currencies and the lack of intrinsic value have generated public, 

scientific and political discussions (Giudici et al., 2020). Concerns that this type of currency is a bubble 

without any kind of fundamental value and the possibility of allowing tax evasion, could lead 

governments to increase laws to regularize them. All this speculation makes cryptocurrency price 

prediction very difficult, therefore, cryptocurrency price prediction has been an important research topic 

addressed by many researchers worldwide. 

Bitcoin is the leading existing cryptocurrency with a market capitalization of over 

$440,091,646,995.21. Its value allows leveraging all blockchain technology for a wide digital 

circulation (Coinmarketcap, 2022). Over the last few years, many researchers have used classical, 

statistical, and financial methods such as - autoregressive integrated moving average (ARIMA) or 

generalized autoregressive conditional heteroscedasticity (GARCH) - to predict bitcoin prices 

(Gradojevic et al., 2021).  

The increase in computing power and the development of deep and machine learning algorithms, 

allowed the creation of new models to predict bitcoin prices. Artificial neural network (ANN), 

convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory 

(LSTM) are some of the algorithms that have been used to create deep learning systems to predict the 

price of bitcoin.  

For the improvement of bitcoin price prediction, many external variables have been proposed; for 

example, Panagiotidis et al. (2018), performed a Least Absolute Shrinkage and Selection Operator 

(LASSO) approach to find the best determinates of bitcoin returns. They concluded that gold returns 

and policy uncertainty were the most important predictors. However, interest rates, NASDAQ (National 

Association of Securities Dealers Automated Quotations), oil prices, and exchange rates were also 

considered important determinates.    
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Although many methods and models have already been studied, no paper using Savitzky–Golay 

filter to predict bitcoin prices were found. The only study to use the filter was Klein et al. (2018); 

however, they used the filter to smooth the correlation plots between gold and bitcoin. They performed 

a comparison of correlation, volatility, and portfolio performance between bitcoin, gold, and S&P500. 

This study aims to verify if LSTM neural networks can be efficiently used to predict bitcoin prices. 

We propose to use the Savitzky–Golay filter to smooth the high volatility of bitcoin, and LSTM and 

BiLSTM models to predict the next day's bitcoin closing price. To the best of our knowledge, this is the 

first time that these two methods are used together to predict bitcoin prices. We experienced Savitzky–

Golay filter to eliminate the random noise of bitcoin prices while preserving the accurate spectral signal. 

To avoid using less significant or irrelevant features that would lead to the creation of noise, higher 

prediction errors and an increase in complexity and execution times, we performed a wrapper forward 

features selection method. We also run several robust experiments analyses to observe the impact of 

the number of hidden layers, the number of units per layer, batch size, optimizer, learning rate and 

dropout regularization on the model’s prediction performance. Lastly, we also compare both models 

regarding training times and prediction errors.    

In the next Chapter, we present a systematic literature review on cryptocurrency forecasting. 

Chapter 3 presents the adopted methodologies to forecast bitcoin closing prices and performance 

measures. Chapter 4 presents the descriptive statistics of data, findings, and results of several 

experiments and analyses. Lastly, in Chapter 5, the analyses and experimental results are discussed. 
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CHAPTER 2 

Literature Review  

 

This section presents a summary of the performed literature review. We aimed to understand the 

evidence on some current research topics developed to obtain financial forecasts,  particularly those 

directed to cryptocurrencies. We cover tools and algorithms from statistics and time series, deep 

learning, recurrent neural networks, and ensemble machine learning. 

We used the Prisma tool methodology to perform a systematic literature review. The search 

strategy, inclusion and exclusion criteria, and information extraction are presented in Appendix A.  

 

2.1. Traditional time series Methods 

This section describes the methods and algorithms in the selected research papers based on traditional 

time series forecasting. 

Septiarini et al. (2020) presented a study that aimed to build a model based on traditional statistical 

and artificial intelligence methods to predict the price of the bitcoin cryptocurrency. The authors used 

time series models, such as Autoregressive Integrated Moving Average (ARIMA) and Exponential 

Smoothing (ES). They also used artificial intelligence methods like fuzzy time series and Adaptive 

Neuro-Fuzzy Inference System (ANFIS). Their results showed that the statistical methods performed 

better than the artificial intelligence methods. The forecasting results show that the exponential 

smoothing classical method had the best performance with the smallest root mean squared error 

(RMSE) and mean squared error (MSE). 

Tan and Kashef (2019) made a comparative study between machine learning, deep learning and 

ARIMA statistical methods to predict the price of the bitcoin cryptocurrency. In the study, they used 

five features to describe each transaction defined as the open, high, low, and closed price and transaction 

volume of cryptocurrency. The models used in the comparison were Bayesian Regression (BR), Auto 

Regression (AR), Long Short-Term Memory (LSTM) and Support Vector Machines (SVM). The results 

showed that the LSTM algorithm had better performance than the others, followed by SVM and 

ARIMA, respectively.  

Munim et al. (2019) presented a study to predict next-day bitcoin price using two univariate models, 

ARIMA and NNAR (neural network autoregression), performed with and without model forecast re-

estimation for each step. The paper used two training-samples and a two-test samples to perform cross-

validation. The results showed that ARIMA models perform better than NNAR models in both test-

samples forecasts. They suggest that the reason that may have influenced the best performance of the 
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ARIMA models may be related to the fact that they apply a feed-forward NNAR model, however, the 

result could have been improved using a back-propagation algorithm. They also found that forecasts 

with ARIMA models are similar with or without model re-estimation.  

This review of research using traditional time series models indicates that forecasts based on 

techniques like ARIMA have low prediction errors and can outperform deep learning models. Although, 

this could be related to the data characteristics since the correct collection and preparation of data is a 

fundamental process in the excellent performance of algorithms. Sometimes algorithms that use more 

traditional techniques outperform complex deep learning algorithms that use more sophisticated 

techniques. Septiarini et al. (2020) consider that modern models cannot guarantee better forecasting 

results because each case study's data characteristic is unique. 

 

2.2. Neural Networks Methods  

This section describes the methods and algorithms in the selected research papers based on neural 

network forecasting. 

Radityo et al. (2018) conducted a comparative study with various artificial neural network (ANN) 

methods to predict the next day's Bitcoin closing price. They used backpropagation neural network 

(BPNN), genetic algorithm neural network (GANN), genetic algorithm backpropagation neural 

network (GABPNN), and neuroevolution of augmenting topologies (NEAT) for this task. According to 

the study results, GABPNN obtained the best mean absolute percentage error (MAPE), only 1.88%. 

However, the training time of the algorithm is not realistic for applications where the volume of the 

data is much higher. BPNN was three times faster, obtaining a 1.98% MAPE. This study was a 

significant contribution to the scientific community and people working with machine learning since it 

compared a set of ANN methods and, at the same time, raised awareness of the importance of training 

times. Obtaining a slightly higher prediction error can be a better solution if it allows an algorithm with 

substantially lower complexity and execution time. 

The correct parameterization of models is essential for their good performance, mainly when we 

use networks with a simpler architecture. Jay et al. (2020) proposed a stochastic neural network model 

based on the random walk theory to predict cryptocurrency prices. They simulated market volatility 

with a multi-layer perceptron model that induces layer-wise randomness into the observed activation 

neural network features. The results found that the proposed model was effective in decoding market 

volatility. Almost all models that used stochastic versions - performed better than those - that used 

deterministic versions. They draw attention to the importance of optimization techniques to tune the 

hyperparameters, and they consider that it was essential for the results of their study, but it could be 

improved further with perfect solution adjustment of hyperparameters. 

 



5 

 

2.3. Single deep learning methods 

This section describes the methods and algorithms in the selected research papers based on single deep 

learning forecasting. 

Recurrent neural networks (RNNs), Convolutional neural networks (CNN) and LSTM are artificial 

deep neural networks; they can analyse past time sequences of arbitrary lengths to make predictions.  

Deep learning is one of the main methods used for cryptocurrency forecasting. Ferdiansyah et al. 

(2019) presented a study to create a model to predict Bitcoin prices using LSTM neural networks. The 

proposed model used four years of historical bitcoin data to train the model and one year to test its 

performance. They conclude that the proposed model was successful in predicting next-day Bitcoin 

prices; however, given the obtained RMSE value, they consider that the model was not good enough to 

make Bitcoin investment decisions. 

 Data preparation and quality are crucial when using Deep Learning algorithms. Rizwan et al. 

(2019) developed a multivariate Deep learning model using LSTM and Gated recurrent unit (GRU). 

They collected the Bitcoin exchange rate, the volume of trades, total transaction fees, the number of 

transactions, cost per transaction, and average hash rate. However, they also consider that external 

information can affect the price of cryptocurrencies, such as international economic indicators. The 

study results have revealed that the algorithms parameterization and the data quality used in the 

modelling process are essential to obtain good predictions.  

The correct selection of variables from a set of available data is also essential for the good 

performance of deep learning algorithms. Lamothe-Fernandez et al. (2020) conducted a comparative 

study between price prediction methods for bitcoin. The study verified that the choice of a new set of 

significant variables improved the algorithms' performance, offering good stability on models 

developed for one- and two-year timeframes. The algorithm with the best performance was Dynamic 

Convolutional Neural Network (DRCNN). 

LSTM deep learning neural nets are effective methods when leading with time series data.  Lahmiri 

and Bekiros (2019) carried out a study using LSTM to learn chaotic and self-similar patterns for the top 

three cryptocurrencies (Bitcoin, Digital Cash and Ripple). They consider that deep learning using 

LSTM is efficient for both short and long terms temporal information simultaneously, allowing them 

to extract hidden patterns from temporal sequences with non-linear and chaotic data. 

Real-time cryptocurrency price prediction is currently an important research topic. Zoumpekas et 

al. (2020) presented a prototype implementation of a web-based system appropriate for real-time 

prediction of Ethereum closing prices. The system uses a deep learning LSTM model to generate one 

prediction every half hour and the past 30 minutes to generate predictions for the future 5 minutes. They 

found that LSTM and GRU neural network models based on the performance of the study can be used 

for real-time prediction of the Ethereum price.  
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GRU is a simplified version of LSTM that requires less training time due to the improvement of 

network performance. Like LSTM networks, GRU are also very robust when dealing with time series 

data. Phaladisailoed and Numnonda (2018) developed a comparative study between deep learning 

models to predict the bitcoin price, where they tested Huber Regression, LSTM and GRU. They 

concluded that from all the models tested, GRU showed the best accuracy and convergence time 

performance. However, they consider that the results can be further improved by using a collection of 

variables with greater explanatory power in the variation of the cryptocurrency price. 

Public attention and the macroeconomic environment are foremost aspects of predicting 

cryptocurrency prices. Liu et al. (2021) built a Stacked Denoising Autoencoders (SDAE) model that 

uses a feature system with 40 bitcoin price determinants, taking into consideration variables of the 

public attention, cryptocurrency market, and macroeconomic environment. The results showed that 

SDAE better predicted the bitcoin prices when compared with support vector regression (SVR) and 

back propagation neural network (BPNN). They consider that the factor with a high contribution to the 

good performance of the algorithm was the inclusion of a variable system that uses not only 

cryptocurrency market factors, but also public attention and the macroeconomic environment. 

Almost all researchers propose the analysis of sentiment and public opinion as essential factors to 

improve the performance of cryptocurrency forecasting models. Wang and Chen (2020) conducted a 

study where they found that adding social media comments features can significantly improve the 

accuracy of cryptocurrency price forecasts. They presented a variety of machine and deep learning 

models and the result showed that LSTM had the best prediction result, but the main discovery was that 

adding social sentiment variables can significantly improve the accuracy of all models tested.   

Throughout the literature review of this section, we could verify that deep learning methods like 

LSTM and GRU are robust in predicting cryptocurrency prices. However, the main point to retain is 

that the good quality of data collected and the choice of variables that add explanatory power to the 

models are essential for a good performance. The use of economic variables and social sentiment are 

also important factors in the good performance of the algorithms. 

 

2.4. Ensemble and Machine learning methods  

This section describes the methods and algorithms in the selected research papers based on ensemble 

and machine learning forecasting. 

When we aggregate the predictions of a group of models, we get a better prediction than with the 

best individual prediction; we can use the prediction that gets the most votes; this is called Ensemble 

Machine learning. Derbentsev et al. (2021) developed a comparative performance study of machine 

learning ensemble algorithms to predict cryptocurrency prices. They performed Random Forests (RF) 

and Stochastic Gradient Boosting Machine (SGBM) to predict Bitcoin, Ethereum, and Ripple prices. 

The study revealed efficiency using ensemble learning methods; the out-of-sample prices forecast 
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obtained for SGBM and RF revealed a MAPE for the three crypto currencies within 0.92%-2.61%. 

SGBM had better prediction performance for Bitcoin and Ripple, and RF had better prediction 

performance for Ethereum. 

Mallqui and Fernandes (2019) analysed the behaviour of ANN and Support Vector Machines 

(SVM) in predicting bitcoin prices. The experiments revelated SVM algorithm obtained the best results 

for all predictions with 1.58% MAPE. 

Saad et al. (2020) conducted a study where analysed cryptocurrency prices through a variable 

correlation analysis. They performed the correlation between features such as transaction rate, hash rate, 

number of users, total bitcoins, and price. They have mapped the change in features and network 

activities to understand the dynamics of the cryptocurrencies and used their findings to perform machine 

learning models such as Linear Regression (LR), Random Forest (RF), and Gradient Boosting (GB). 

We mention that their approach had better performance than previous studies that predict bitcoin prices 

based on previous prices.  

Like the previous section, it was also possible to verify the importance of the quality of the variables 

used in the prediction models. It is starting to become evident that it is familiar to almost all researchers 

that the quality of information collected is one of the main points to be considered when forecasting 

cryptocurrency prices. 

 

2.5. Hybrid machine and deep learning Methods 

This section describes the methods and algorithms in the selected research papers based on hybrid 

machine and deep learning forecasting. 

Hybrid-based models can significantly improve cryptocurrencies prices forecasting. Patel et al. 

(2020) proposed an LSTM-GRU hybrid model to predict Litecoin and Monero in different scenarios: 

one, three, and seven-day price prediction. The results have shown that the hybrid proposed model is 

considerably better when compared with LSTM applied alone. The best model had a 2.06% MAPE and 

was performed for the Litecoin 3-days prediction window. 

Livieris et al. (2021) presented a CNN-LSTM model that used Bitcoin, Ethereum, and Ripple data 

as input features to process them independently to find helpful information from each cryptocurrency. 

The results showed the proposed model had efficiently analysed the data layers individually, reducing 

the overfitting of the model while ensuring relatively lower computational costs compared to single 

CNN neural networks.  

Kristjanpoller & Minutolo (2018) proposed a group of hybrid Artificial Neural Network-

Generalized Auto Regressive Conditional Heteroskedasticity (ANN-GARCH) models to forecast the 

Bitcoin price. They have tested twelve models, considering different combinations of models and 

inputs. The model with the best performance was an Exponential Generalized Autoregressive 

Conditional Heteroskedasticity (EGRACH) with 1.64% MAPE.  
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Altan et al. (2019) presented a hybrid model based on LSTM neural network and empirical wavelet 

transformer (EWT) decomposition along with cuckoo search (CS) algorithm. The proposed model was 

compared with LSTM and EWT-LSTM. The EWT-LSTM-CS had the best performance when tested in 

Bitcoin, Litecoin, Digital Cash, and Ripple. The results also showed that the proposed model could 

successfully capture non-linear characteristics for digital currencies forecast.  

This section presented several hybrid models that significantly improved cryptocurrency price 

forecasting. There is an enormous potential for research development in hybrid models since the 

combinations of models and variables are huge. 

 

2.6. Literature review summary 

Model performance can be affected by different factors to consider when developing models. Data 

quality is a critical factor for model performances; using only robust methods and techniques for 

predicting cryptocurrency does not guarantee good results. Collecting data and variables that influence 

the variation of cryptocurrency prices is essential. In the literature review analysis, it was evident that 

many researchers consider including macroeconomic and public sentiment variables as key factors to 

increase the performance of the models. Wang and Chen (2020) concluded that adding variables that 

measure public sentiment and opinion greatly improves the models' performance. However, it was 

visible that many researchers do not use public sentiment and opinion analysis techniques, showing that 

there is space for improvement in the research on this topic. 

Uncertainty regarding the legislation that regulates the cryptocurrency market is also a factor that 

may strongly interfere with its volatility. The analysis of sentiment and opinion regarding this factor 

can help to explain the variation in cryptocurrency prices. However, it is essential to emphasize that 

each country has different legislation. The legislation change in a country with strong international 

economic influence could affect its price. The United States has many investors, and a change in its 

legislation could significantly change cryptocurrency prices. Ferdiansyah et al. (2019) consider that the 

stock market, including cryptocurrencies, is influenced by many uncertainties and political issues.   

Among all, the hybrid models based on LSTM networks have proven a good performance in all 

the studies carried out on this systematic review, as shown in table 6.4 of appendix A. Due to the 

immense possibilities of hybrid model combinations, we consider this approach offers space for 

improvement. Patel et al. (2020) proposed an LSTM-GRU hybrid model, and the results have shown 

that the proposed model performed better in different scenarios when compared with LSTM applied 

alone. 

Studies can be improved using hybrid models that use macroeconomic variables, sentiment 

analysis, and public opinion — paying particular attention to the sentiment and public opinion of 

countries with international economic influences.   
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CHAPTER 3 

Methodology 

  

3.1. Software and hardware  

Data understanding, preparation, and modelling were conducted in Python 3.8, a high-level, interpreted, 

general-purpose programming language. Three Python libraries were used: Pandas for data 

manipulation and understanding, NumPy to create three-dimensional arrays to feed deep learning 

algorithms, and Keras, which acts as an interface for TensorFlow to develop deep learning LSTM neural 

networks. 

All experiments were implemented on a personal computer device with AMD Ryzen 7 5800x, 8 

cores, 4.7 GHz, and 32 GB RAM. 

 

3.2. Methodology strategy 

Our methodology follows the deep learning system architecture presented in figure 3.1. Deep learning 

is a subfield of machine learning and aims to mimic how humans gain a specific type of knowledge 

through experiences. The word ‘Deep’ represents using a neural network with more than three layers 

of depth (Chollet, 2021). The network depth creates a deep hierarchical representation learning, where 

layers are stacked on top of each other. It is a multistage information distillation process where the 

information is purified by passing through several filters. The network learns data representations 

through the multistage sequence process. 

As shown in figure 3.1, the methodology was structured following a sequence of processes. First, 

economic variables and bitcoin prices were collected. Second, feature selection was performed with the 

wrapper forward selection method. Third, the volatility and the noise of the bitcoin closing prices were 

removed using a Savitzky–Golay filter. Fourth, data pre-processing was performed to prepare the data 

for deep learning algorithms. The data set was divided into three chunks: 65% for training, 15% for 

validation, and 20% for testing. The normalization of the three sets was performed to have the data on 

the same scale. In order to have the data ready for the deep learning algorithms, a rank-3 tensor was 

used to create sequences of 16-time steps as input and 1-time step as the label. Savitzky–Golay filter 

was only applied to training labels. 
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Figure 3.1: Deep learning System architecture 

 Selecting the right architecture for deep learning systems is very important. In this research study, 

two types of networks were used, Long Short-term Memory neural networks (LSTM) and Bi-

Directional Long Short-term Memory neural networks (Bi-LSTM), variants of Recurrent Neural 

Networks (RNN), a type of neural network well-suited to process time series step-by-step. 

The network learning process was accomplished by observing and mapping a significant number 

of inputs and labels through a deep sequence of data transformations (layers) (Chollet, 2021). The 

transformation done on the inputs was performed by the layer weights, which are also called layer 

parameters (illustrated in figure 3.1). The learning process consisted of finding the layers weights values 

that allowed the network to map the inputs and their associated labels correctly. A network can contain 

many layers; therefore, finding the correct value for all the weights is a complex task.  

To control the output of the LSTM network – the algorithm first had to observe and measure how 

far the output (prediction) was from the actual value (Chollet, 2021). The measurement was performed 

using the MSE loss function, which compares the distance (loss score) between the forecasts and the 

true value. The loss score was used as a response signal to adjust the values of the weights in a direction 

that allowed the algorithm to minimize the loss score. The adjustment was made by the optimizer, using 

a gradient descendent algorithm. The gradient of the loss regarding the model’s parameters is computed 

to find the downhill direction, and the weights (parameters) are moved in small steps (equation 3.1) in 

the opposite direction from the gradient (equation 3.2), allowing to reduce the loss a little each iteration. 
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Figure 3.2 shows how the optimizer works. The weights (w) are randomly initiated and repetitively 

adjusted with small steps until the algorithm converges to a value close to the global minimum. This is 

achieved using the learning rate hyperparameter and the loss gradient. The learning rate controls the 

speed of the gradient descendent; therefore, it is crucial to choose a reasonable value for this 

hyperparameter. If the learning rate is too low, the algorithm will have to go through many iterations, 

and the loss value may get stuck in a local minimum. If the learning rate is too large, the loss value may 

exceed the global minimum and jump between completely random locations on the loss curve. 

 

 𝑠𝑡𝑒𝑝 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑙𝑜𝑠𝑠, 𝑊)  (3.1) 

 𝑊 = 𝑊 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑙𝑜𝑠𝑠, 𝑊)  (3.2) 

 

 

Figure 3.2: Weights optimizer 

The gradient descent algorithm measures the local gradient of the loss value concerning the weights 

(w), and follows the direction that allows obtaining a greater gradient descent (Géron, 2019). When the 

gradient is zero, the minimum has been reached. The gradient calculates how much the loss value 

changes when the weights are slightly tweaked. This process is performed iteratively until the minimum 

is found. Equation 3.3 shows how to calculate the gradient; the aim is to find the set of weights that 

minimizes the loss value. 

 

 ∆𝑊𝑀𝑆𝐸(𝑊) = 2𝑛 𝑋𝑇(𝑋. 𝑊 − 𝑌)   (3.3) 

 

Where W are the weights, n is the number of observations used in the batch where MSE is 

measured, X is the matrix containing all the features values of the batch (excluding labels), T 

corresponds to the transpose matrix, and Y is the matrix containing all the labels values of the batch. 

Once the gradient vector (∆𝑊𝑀𝑆𝐸(𝑊)) is obtained, it is subtracted from W, to go in the downhill 

direction. The gradient is multiplied by the learning rate to determine the size of the downhill step 

(equation 3.2).  
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The LSTM network contains several hyper-parameters that were adjusted to improve the 

performance of the algorithm’s predictions. The model validation error was used as a response signal 

to adjust the LSTM hyper-parameters in the direction that allowed the algorithm to minimize the 

validation error using manual fine-tuning strategy.  

 

3.3. Data Collection  

Data collection was performed based on the analysis of the most used variables by the articles included 

in the literature review. 

Yfinance was the python application program interface used to download the data from the web 

site https://finance.yahoo.com. For our study, we collected data from bitcoin, Nasdaq, SP500, gold, oil, 

volatility index, treasury yield 10 years, British Pound, and Euro prices expressed as US dollars from 

September 17th, 2014, to April 9th, 2022. Financial daily times stock exchange 100 Index prices in 

British pound sterling, and US Dollar prices in Japanese Yen were also collected for the same time 

interval.  

 

3.4. Features description 

Data quality is an important factor for the good performance of deep learning prediction algorithms. 

The choice of the features was motivated by the literature review, where it was possible to verify that 

using macroeconomic variables improves the performance of the prediction models. Table 3.1 presents 

the description of the features used in this research study.       

Table 3.1: Features description 

Features Description 

Close Bitcoin closing price in USD 

Open Bitcoin opening price in USD 

High Bitcoin highest price of the day in USD 

Low Bitcoin lowest price of the day in USD 

Volume Bitcoin total transactions volume of the day 

Nasdaq National Association of Securities Dealers Automated Quotations closing price in 

USD 

SP500 Standard and Poor's 500 closing price in USD. Index of 500 large listed limited 

liability companies traded in the United States 

Gold Gold closing price in USD 

Oil Oil closing price in USD 
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Vix Volatility Index closing price in USD. Measure of stock market expectations of 

volatility based on S&P 500 index 

Ftse100 Financial Times Stock Exchange 100 Index closing price in GBP. Share index of the 

100 companies listed on the London Stock Exchange with the highest market 

capitalisation.  

Tnx Treasury Yield 10 Years 

Gbp_usd British pound sterling closing price in USD 

Eur_usd Euro closing price in USD 

Usd_jpy US Dollar closing price in Japanese yen 

 

3.5. Feature selection 

In total, 15 features were collected to be used as input in the deep learning algorithms. Feature selection 

was performed with the wrapper forward method to avoid using less significant or irrelevant features 

that would create noise, higher prediction errors, and increase complexity and execution times. This 

method consists of selecting one feature and iteratively adding a new feature that improves the model's 

performance until the point that adding a new feature does not improve the model. 

After applying the wrapper forward selection method, it was observed that using only Bitcoin's 

closing price as an input feature allowed predictions with less noise, lower computational costs, and 

lower forecast errors. Therefore, for the final models, it was decided to use only the bitcoin closing 

price as an input feature.  

 

3.6. Train/validation/test data 

The dataset was split into training, validation, and test subsets with a ratio of 65%, 15%, and 20%, 

respectively. Data related to the period from September 17th, 2014, to August 16th, 2019, was used for 

training, data related to the period from August 17th, 2019, to October 10th, 2020, was used to validate 

the model, and data related to the period from October 4th, 2020, to April 9th, 2022, was used to test 

the models (see figure 3.3). This process allowed us to train, validate, test, and tune the parameters of 

the models, ensuring they can perform well on unseen data. The train and validation split strategy was 

found after several experiments carried out with different split percentages. We chose the split 

percentage that obtained the lowest prediction error in the test data. 
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Figure 3.3: Train and test bitcoin closing price (USD per bitcoin) 

 

3.7. Data Pre-processing 

This section presents all the steps performed in the data pre-processing phase. Savitzky–Golay filter, 

data normalization, and data representation for the neural network are explained in detail.  

 

3.7.1. Savitzky–Golay filter 

Bitcoin experiences considerable fluctuations in its valuation, making it difficult to predict the trend of 

its value, (Ferdiansyah et al., 2019). Bitcoin's price volatility is influenced by supply and demand, public 

sentiment, and government legislation, factors that work together to create price volatility.  

Filter operations are important data preparation techniques to be applied before data processing. 

Savitzky–Golay filter smoothing is a digital filter presented by Savitzky and Golay (1964) that can be 

applied to a time series to reduce the high-frequency noise in a signal and get a smoother sequence of 

points. Savitzky–Golay filter uses a windows filter with an equally spaced number of points and fits a 

polynomial of order N to them. The window is moved point by point along the signal, and the fitting 

polynomial process is carried out at each step.  

In order to choose the optimal parameters for the Savitzky–Golay filter, we tried all possible 

combinations between 0 and 50 for the rolling window size and the polynomial order. The combination 

of parameters with the lowest error on the validation set was used for the final models. We performed 

a Savitzky–Golay filter using 29 points (days) rolling window and fitted a 9th-order degree polynomial 

step by step along the signal. 

 

3.7.2. Feature Scaling 

One of the most critical transformations performed on data is feature scaling. Deep learning algorithms 

typically do not perform well when features are on different scales. Min-Max normalization was the 
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technique used to normalize the data. This practice subtracts the minimum value from the observed 

value and divides it by the difference between the maximum and minimum, and consequently, the data 

ranges between 0 and 1. 

 

3.7.3. Data representation for neural networks  

To prepare the data for the deep learning algorithms, we used a rank-3 tensor, which visually can be 

interpreted as a cube with compartments (see figure 3.4), where the first axis represents the samples, 

the second the number of time steps, and the third the features. Tensors are the data structure used by 

deep learning systems. They are a generalization of matrices (rank-2 tensors) that can be used with an 

arbitrary number of dimensions. They can be defined as a container where the data will be stored and 

used in our system.  

 

Figure 3.4: Rank-3 timeseries data tensor 

 

We considered 16-time steps, where every step corresponded to one-day bitcoin closing price. This 

data structuring allowed the creation of a rolling window to represent the dataset as a supervised 

learning problem, with inputs and labels, where bitcoin prices from the past 16 days were used as input 

to predict the next day's bitcoin closing price (label) (see figure 3.5).  

 

Figure 3.5: Supervised learning rolling window 

    



16 

 

3.8. A common-sense non-deep learning baseline 

Before developing complex deep learning models, we performed bitcoin closing prices prediction with 

a simple non-deep learning approach. This procedure allows to define a baseline model that must be 

beaten to demonstrate the usefulness of more advanced deep learning models. We used a 20-day moving 

average (MA) to predict bitcoin closing prices. Moving average is a widely used indicator in technical 

analysis; it helps to smooth time series prices and constantly updates the average price over the time 

series. 

 

3.9. Modelling 

This section presents the LSTM and BiLSTM algorithms and the architecture of the final model’s 

implementation. 

 

3.9.1. LSTM network 

Most deep learning neural networks do not have memory. The process of mapping inputs to labels uses 

the entire input time steps sequence at once, turning time steps into just one data point, and causing the 

inputs to be mapped to labels without memorizing the pattern of the sequences.  Recurrent Neural 

Networks (RNN) were created to solve the time dependency problem; however, despite having good 

performance learning short-term dependencies, they have difficulties learning Long-Term 

dependencies. Hochreiter & Schmidhuber (1997) created a type of recurrent neural network (RNN) 

called Long Short-Term Memory (LSTM) that aimed to solve this problem. LSTM is capable of 

learning short and long-term dependencies, and they are now regularly used because they work 

tremendously well in sequential data, including time series (Korstanje, 2021).  

The LSTM network is organized in repeated chain modules (figure 3.6), where each module 

represents a time step in the sequence. 

 

Figure 3.6: LSTM chain modules 

One of the main points in the LSTM network is the cell state (𝐶𝑡), the vector located at the top of 

the cell modules that crosses the entire chain (see figure 3.7). This cell state is responsible for storing 
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the long-term information dependencies and patterns with only a few linear interactions, as explained 

in detail below.  

 

Figure 3.7: LSTM cell state 

 

LSTM network module has three gates composed of a sigmoid neural network layer that act as 

filters and decide what information is removed or added to the cell state (𝐶𝑡) (see figure 3.8). 

 

Figure 3.8: LSTM three gates 

 

The first step performed by an LSTM cell is to decide which information will be forgotten from 

the last time step, cell state (𝐶𝑡−1). This process is performed by a Sigmoid layer called “forget gate” (𝑓𝑡), which is responsible for concatenating the input in the current time step (𝑥𝑡) with the hidden vector 

of the previous time step (ℎ𝑡−1), multiplied by the weight matrix (𝑊𝑓). To this operation is added the 

Bias term (𝑏𝑓), and afterward, the sigmoid function is applied to the entire expression (illustrated in 

figure 3.9) (equation 3.4). The result of the operation is a number between 0 and 1 for each element of 

the cell state (𝐶𝑡−1), where 1 represents “remember all information”, and 0 represents “forget all 

information”. 
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Figure 3.9: LSTM forget gate 

 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (3.4) 

 

The second step performed by an LSTM decides what new information is added to the cell 

state(𝐶𝑡). This process is carried out in two parts. The first consists of a sigmoid layer, called “input 

gate”, which will act as a filter and decide which values to update. This “input gate” (𝑖𝑡) is processed 

by applying the sigmoid function to the concatenation between the input data of the current time step (𝑥𝑡) with the hidden vector of the previous time step (ℎ𝑡−1), multiplied by the matrix of weights (𝑊𝑖) 

and added to the term bias  (𝑏𝑖) (equation 3.5). In the second part, a hyperbolic tangent layer (tanh) 

creates a vector of candidate values (𝐶′𝑡) to the cell state (𝐶𝑡). This process is performed again by 

concatenating the input data from the current time step (𝑥𝑡) with the hidden vector from the previous 

time step (ℎ𝑡−1), multiplied by the weight matrix (𝑊𝑐) and added to the bias term  (𝑏𝑐), but instead of 

the sigmoid function, the hyperbolic tangent function (tanh) is applied to the expression (illustrated in 

figure 3.10) (equation 3.6).   

 

 

Figure 3.10: LSTM Input gate 

 

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3.5) 

 𝐶′𝑡 = tanh (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (3.6) 
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The third step combines the two parts from the previous step to decide which information should 

be passed to the current state (𝐶𝑡). Multiplication is performed between the vector of candidate values (𝐶′𝑡) to the cell state (𝐶𝑡) and the input gate (𝑖𝑡), which acts as a filter of information and decides which 

input data from the current time step (𝑥𝑡) and the hidden vector from the previous time step (ℎ𝑡−1) is 

important to keep and should be passed to the new cell state (𝐶𝑡) (illustrated in figure 3.11). 

 

Figure 3.11: LSTM Input gate 

 

The fourth step uses the forget gate (𝑓𝑡) and the input gate (𝑖𝑡) to make an update in the cell state (𝐶𝑡). A sum is made between what should be forgotten about the previous time step (𝐶𝑡𝑓)  and what is 

important to add as new information (𝐶𝑡𝑖), the result is the update of the old cell state (𝐶𝑡−1) into the 

new cell state (𝐶𝑡) (illustrated in figure 3.12) (equation 3.7 and 3.8). 

 

Figure 3.12: Update LSTM cell state 

 

 𝐶𝑡 = 𝐶𝑡𝑓 + 𝐶𝑡𝑖 (3.7) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′𝑡  (3.8) 

 

In the fifth and last step, the output to be performed by the cell in the current time step is decided. 

This process is performed by a sigmoid layer called output gate (𝑜𝑡), that will act as a filter to obtain 

the output and the hidden state of the current time step (ℎ𝑡). Once again, this output gate (𝑜𝑡) is obtained 
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by applying the sigmoid function to the concatenation between the input data of the current time step (𝑥𝑡) with the hidden vector of the previous time step (ℎ𝑡−1), multiplied by the matrix of weights (𝑊𝑜) 

and added to the term bias  (𝑏𝑜)(equation 3.9). Then, the cell state at the current time step (𝐶𝑡) is passed 

through a hyperbolic tangent (tanh) and is multiplied by the output gate (𝑜𝑡). The result is the hidden 

vector in the current time step (ℎ𝑡) and the output to be passed to the dense layer, which will be used 

as a prediction of the LSTM network (illustrated in figure 3.13) (equation 3.10). 

 

 

Figure 3.13: LSTM output gate 

 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (3.9) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (3.10) 

 

3.9.2. BiLSTM network 

A bidirectional long-short-term memory network (BiLSTM) is a variant of the LSTM network and is 

known for its good performance in sequential data predictions. Graves & Schmidhuber (2005) were the 

first to propose this new network. They applied BiLSTM to phoneme classification, and since then, 

BiLSTM has been used regularly, demonstrating excellent performance in speech recognition and 

natural language processing tasks.  

LSTM models only consider the input data regarding the past; BiLSTM was created to solve this 

problem. They consider sequential dependencies regarding the past and the future. Its architecture 

consists of applying two LSTMs. The first is applied to the input data in a sequential chronological 

direction (forward layer), and the second is applied to the input data in an anti-chronological sequential 

direction (backward layer). Then the final outputs are the concatenation between the forward and 

backward layers.  Using LSTM network in both directions helps to improve the learning of long-term 

dependencies and, consecutively, the prediction errors. 
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In figure 3.14 it is possible to visualize the operation of the BiLSTM network; the cell architecture 

is the same as explained in the previous point; the only difference is its application in both chronological 

and anti-chronological directions of the sequential input data. 

 

Figure 3.14: BiLSTM neural network 

 

3.9.3. Final models Implementation 

This section presents the implementation of the final developed LSTM and BiLSTM models in detail.  

 

3.9.3.1. LSTM architecture 

We implemented an LSTM model using Python's Keras library (illustrated in figure 3.15). The first 

layer took as input the rank 3 tensor that was prepared in the data pre-processing phase. The tensor had 

the shape of: 

[batch size=32, time steps=16, number of features=1]. 

The 32 batches allowed us to calculate the prediction error at each iteration and adjust the weights of 

the LSTM architecture in the direction that allowed us to reduce the error. As seen before, 16-time steps 

(days) were used as input to predict the next day's Bitcoin closing price. 

The second layer used in the LSTM architecture consisted of 128 output units and a sigmoid 

activation function. The third layer was a dropout that was used to regularize the model. This practice 

was essential because it impeded the model's ability to fit the training data perfectly, allowing it to 

obtain a model with better performance during validation. Regularization allowed us to obtain a more 

regular, simple, generic model with a smoother prediction curve and better performance on the 

validation and test data. Dropout was set to randomly exclude 60% of the layers output features during 

training. To predict the next day's bitcoin closing price, a dense layer with 1 unit was used in the output 

layer, corresponding to a 1-day forecast. 
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Figure 3.15: Stacked LSTM architecture model in Keras 

 

The model was trained using 65% of the data, validated on 15%, and tested on the remaining 20%. 

The validation set was used to evaluate the loss at the end of each epoch, but the model was not trained 

on it. The validation was essential; it allowed us to validate the model's performance during the training 

process. Also, the information given through the validation error helped to tune the hyper parameters 

and settings and identify if the model learning process was moving in the right direction. 

It is important to note that the test data defined initially is only used to test the model after the 

training and tuning process is complete. This allows an unbiased evaluation of the final model 

performance. Adjusting the model weights and hyperparameters based on their performance on the test 

data would be a mistake and lead the model to overfit the test data. The model would perform artificially 

well on the test data because it was optimized for it; however, it would not have the same performance 

in data never seen before. 

The model was defined to be trained over 200 epochs; however, an early stopping was defined to 

interrupt the training process as soon as the validation loss has stopped improving for more than 30 

epochs, and of course, the best model obtained during the training phase was saved. This process 

allowed to stop the training process as soon as the model started to overfitting.   

The mean squared error (mse) loss function was used as the response signal to adjust the value of 

the weights in a direction that allows the algorithm to minimize the loss score. This adjustment was 

made by the adaptive moment estimation (Adam) optimizer, which modified the weights in the direction 

that minimises the prediction error. Adam algorithm was presented by Kingma & Ba (2014), and it is a 

stochastic gradient descendent method based. 

In order to monitor the train and validation loss during the training process, we used learning 

curves. In figure 3.16 it is possible to see that the loss in validation and training decreased to the point 
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of stability and maintained a minimum distance between the two until the end of the training process, 

which means a good fit of the model to the training and validation data. 

 

 

Figure 3.16: LSTM train and validation loss 

 

3.9.3.2. BiLSTM architecture 

We implemented a BiLSTM model also using Python's Keras library (illustrated in figure 3.17). The 

first layer of the model took as input a rank 3 tensor with the format of [batch size=32, time steps=16, 

number of features=1]. The second layer was a BiLSTM which consisted of 128 output units and a 

sigmoid activation function. Like the previous model, BiLSTM also was defined with a dropout layer 

set to randomly exclude 60% of the layers output features during training. The output layer was formed 

by a dense layer with 1 unit to predict next day bitcoin closing price.  

 

 

Figure 3.17: Stacked BiLSTM architecture model in Keras 
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The model was trained using 65% of the data, validated on 15%, and tested on the remaining 20%. 

The validation set was used to evaluate the loss at the end of each epoch. The model was defined to be 

trained over 200 epochs, however an early stopping was set to interrupt the training process as soon as 

the validation loss has stopped improving for more than 20 epochs. The best model obtained during the 

training process was saved. 

From the learning curves in figure 3.18, it is possible to see that the loss in validation and training 

decreased to the point of stability and maintained a minimum distance between the two until the end of 

the training process, which again means a good fit of the model to the training and validation data. 

 

 

Figure 3.18: BiLSTM train and validation loss 

 

3.9.3.3. Hyper-parameters tuning and regularization  

The configuration of the presented models results from hyper-parameters tuning, an important and 

sophisticated step to obtain a model with good prediction results. The aim was to find a model that 

maximized generalization performance; therefore, we repeatedly trained and evaluated different 

hyperparameters settings until good results were achieved on the validation data. Different 

configurations were tested with the following hyper-parameters: 

• Number of layers 

• Number of units per layer 

• Batch Size 

• Optimizer 

• Learning rate. 

To regularize and tune the hyper-parameters, we increased the number of layers, made them bigger, 

and trained the model for more epochs until statistical power was achieved, the point right at the border 
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between underfitting and overfitting. In order to maximize generalization performance, we used 

regularization dropout to randomly exclude 60% of the layers output features during the training 

process. To finalize and get the best possible model, we repeatedly train and evaluate the model in 

validation to adjust the number of units, learning rate, optimizer, and dropout percentage. 

 

3.10. Evaluating deep learning models 

To obtain a model with good performance on the validation and test data, it was necessary to measure 

and compare its performance with the 20-day moving average baseline model and the other studies 

included in the review. To accomplish this task, predictions were made using the validation and test 

data predictors (time steps). Then, predictions were converted back to the real scale in dollars. Once the 

conversion was done, it was necessary to compare the predictions with the observed values; for this 

purpose, four performance measures were selected, which are presented in the following points. 

 

3.10.1. Root Mean Squared Error  

Root mean squared error (RMSE) is a standard performance measure used in regression problems; it 

gives an idea of the error made by the prediction system and penalizes larger errors. The mathematical 

formula for its calculation is presented in equation 3.11:   

 𝑅𝑀𝑆𝐸 = √1𝑛 ∑ (𝑦𝑡 − ŷ𝑡)2𝑛𝑡=1   (3.11) 

Where n is the number of observations used for testing, y is the observed value, ŷ is the predicted 

value and t is the time step.   

 

3.10.2. Mean Absolute Error  

Mean absolute error (MAE) is also a widely used measure in regression problems, however, unlike 

RMSE it is more resistant to anomalies, to large errors. Calculating the mean of absolute errors is a way 

to ensure that summing the errors won't make cancel each other out. The interpretation of RMSE and 

MAE are similar; a lower measurement value indicates a better model. MAE mathematical formula is 

presented in equation 3.12: 

 𝑀𝐴𝐸 = 1𝑛 ∑ |𝑦𝑡 − ŷ𝑡|𝑛𝑡=1   (3.12) 

Where n is the number of observations used for testing, y is the observed value, ŷ is the predicted 

value, and t is the time step.   
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3.10.3. Mean Absolute Percentage Error 

Mean absolute percentage error (MAPE) is calculated by taking the error of each prediction divided by 

the observed value; it is a standardized percentage value on a scale between 0 and 1, with 0 meaning 

bad and 1 good performance. Compared to the previous errors, MAPE allows us to communicate and 

compare the performance of the model in a more understood way since it is a standardized error on the 

same scale. The mathematical formula is presented in equation 3.13: 

 𝑀𝐴𝑃𝐸 = 100𝑛 ∑ |𝑦𝑡−ŷ𝑡𝑦𝑡 |𝑛𝑡=1   (3.13) 

Where n is the number of observations used for testing, y is the observed value, ŷ is the predicted 

value and t is the time step.   

 

3.10.4. R Squared 

R squared (R²) is a performance measure that calculates the ratio between the sum of squared errors and 

the total sum of squares; it normally ranges from 0 to 1, with 0 meaning bad and 1 good performance. 

However, there are cases where R² can have negative values, in situations where predictions are worse 

than the average. R² can easily be used as a percentage, just being multiplied by 100. The mathematical 

formula is presented in equation 3.14: 

 𝑅2 = 1 − ∑ (𝑦𝑡−ŷ𝑡)2𝑛𝑡=1∑ (𝑦𝑡−Ӯ)2𝑛𝑡=1   (3.14) 

Where n is the number of observations used for testing, y is the observed value, ŷ is the predicted 

value, Ӯ is the mean and t is the time step.  
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CHAPTER 4 

Data and Results 

 

This chapter presents the data analysis, basic descriptive statistics, and all findings and results of the 

several experiments carried out for feature selection, Savitzky–Golay filter, hyper-parameters tuning, 

and dropout regularization. All experiments were trained on the training dataset and validated on the 

validation dataset, except the final models tested on the test dataset. LSTM and BiLSTM architecture 

configurations were used as described in the methodology. 

 

4.1. Descriptive statistics  

For the range of collected data, the median bitcoin closing price was 6401.27 USD per bitcoin. This 

value is considerably below the mean because the bitcoin price was relatively low in the first years of 

analysis compared to the last two years.  

The collected data showed a large dispersion of the bitcoin closing prices. As shown in table 4.1, 

the difference between the minimum and maximum is high, and the standard deviation is greater than 

the mean. 

Table 4.1: Descriptive statistics 

 

In figure 4.1 it is possible to visualize the evolution of the bitcoin closing price over the years. We 

can see that the price in September 2014 was approximately 400 USD per bitcoin and remained 

relatively low for two years. The first considerable increase in bitcoin price was verified between May 

and December 2017, when it reached 19497 USD per bitcoin. The price went down slowly until 



28 

 

December 2018, when it reached the value of 3236 USD per bitcoin. Then it started an upward trend 

until March 2021, when it reached the value of 61243 USD per bitcoin. In March 2021, it started a 

downward trend until July of the same year, when it reached the value of 31533 USD. In July 2021, it 

was followed by an upward trend until November 2021, reaching the maximum value of 67566 USD 

per bitcoin. From that day until today, it has registered a downward trend.   

 

Figure 4.1: Evolution of bitcoin closing price (USD per bitcoin) 

 

4.2. Savitzky–Golay filter 

Using Savitzky–Golay filter to smooth the volatility of bitcoin closing prices improved LSTM and 

BiLSTM bitcoin prediction performance. Experiments performed without and with Savitzky–Golay 

filter - for all possible combinations between 1 and 50 for the rolling window size (W) and order of the 

polynomial (N) - were tested in validation data. Table 4.2 shows the best prediction combinations. It 

has been verified that all best-performing experiments that used Savitzky–Golay filter had better 

performance predicting the bitcoin closing prices compared to the experiment that didn't use the filter. 

The filter reduced the noise to obtain a more precise signal in the data; it was essential for deep learning 

algorithms to achieve better results.  

Table 4.2: LSTM and BiLSTM models performance with different Savitzky–Golay filter parameters 

W N 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

No filter 3342.73 2210.08 6.97 0.917  3497.36 2329.09 7.24 0.909 

9 5 3144.79 2091.09 6.64 0.926  3116.62 2070.36 6.49 0.926 

19 7 3172.63 2067.08 6.61 0.925  3074.59 2051.42 6.50 0.930 

21 6 3152.69 2090.26 6.64 0.926  3115.17 2029.70 6.50 0.928 

25 6 3143.92 2108.06 6.60 0.926  3084.61 2049.10 6.44 0.929 

29 9 3130.30 2058.47 6.53 0.927  3061.37 2035.04 6.33 0.930 
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4.3. Feature Selection 

Using only bitcoin closing price as input feature allowed us to obtain forecasting models with less noise, 

lower forecast errors, and less complexity and execution times. Table 4.3 and 4.4 show experiments 

performed with the wrapper forward selection method, where different sets of input features, feeding 

the deep learning models, were tested.  

Experiments carried out with the LSTM networks revealed that the use of closing, opening and 

highest bitcoin price of the day as input features allowed us to obtain models with lower forecast errors 

(see table 4.3). However, using only the closing price allowed us to obtain a model with less noise, less 

complexity, and less execution times (see figure 4.2).  

 

Table 4.3: LSTM models performance with different set of features 

Features 

LSTM 

RMSE MAE MAPE R² 

Close 3283.11 2218.79 6.95 0.920 

Close / Open 3235.18 2168.42 6.82 0.920 

Close / Open / High 3107.13 2011.65 6.45 0.928 

Close / Open / High / Low 3315.34 2283.80 7.08 0.918 

Close / Open / High / Volume 3129.46 2048.94 6.48 0.927 

Close / Open / High / Nasdaq 3191.31 2160.88 6.72 0.924 

Close / Open / High / Sp500 3183.46 2142.23 6.72 0.920 

Close / Open / High / Gold 3174.89 2136.21 6.62 0.925 

Close / Open / High / Oil 3129.20 2032.78 6.48 0.927 

Close / Open / High / Vix 3183.41 2139.98 6.67 0.925 

Close / Open / High / Ftse100 3165.45 2078.15 6.57 0.925 

Close / Open / High / Tnx 3182.57 2059.44 6.53 0.925 

Close / Open / High / Gdp_usd 3127.72 2061.94 6.47 0.927 

Close / Open / High / Eur_usd 3185.95 2142.59 6.72 0.924 

Close / Open / High / Usd_jpy 3171.71 2157.17 6.65 0.925 
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Figure 4.2: Actual and LSTM predicted bitcoin closing Price with different set of input features 

Regarding the BiLSTM network, it was verified that using only bitcoin closing price as input 

feature allowed us to obtain models with lower forecast errors, less noise, less complexity, and less 

execution times (see table 4.4 and figure 4.3). 

Table 4.4: BiLSTM models performance with different set of features 

Features 

BiLSTM 

RMSE MAE MAPE R² 

Close 3238.28 2150.95 6.69 0.922 

Close / Open 3585.27 2383.20 7.46 0.904 

Close / Open / High 3316.55 2179.54 6.93 0.918 

Close / Open / High / Low 3505.78 2317.42 7.25 0.909 

Close / Open / High / Volume 3359.71 2165.48 6.94 0.916 

Close / Open / High / Nasdaq 3434.88 2355.29 7.26 0.912 

Close / Open / High / Sp500 3590.82 2396.17 7.57 0.904 

Close / Open / High / Gold 3396.71 2274.77 7.03 0.914 

Close / Open / High / Oil 3271.60 2152.19 6.70 0.920 

Close / Open / High / Vix 3298.65 2288.37 6.95 0.919 

Close / Open / High / Ftse100 3318.92 3318.92 7.00 0.918 

Close / Open / High / Tnx 3470.02 2262.89 7.13 0.910 

Close / Open / High / Gdp_usd 3368.71 2241.26 7.05 0.916 

Close / Open / High / Eur_usd 3289.14 2203.24 6.92 0.919 

Close / Open / High / Usd_jpy 3559.16 2410.04 7.44 0.906 
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Figure 4.3: Actual and BiLSTM predicted bitcoin closing Price with different set of input features 

 

4.4. Hyper-parameters tuning   

This section presents all the findings regarding the LSTM and BiLSTM hyper-parameters tuning 

process. The results presented can help other researchers to select the best set of hyper-parameters to 

predict bitcoin closing prices. The prediction errors are the outcome of the hyperparameter experiments 

and analysis performed in LSTM and BiLSTM models as described in the methodology. 

 

4.4.1. Number of hidden layers 

Using only one LSTM and BiLSTM layer showed the best performance in predicting the bitcoin closing 

price. As shown in table 4.5, experiments performed with different numbers of hidden layers 

demonstrated that - the use of 3 layers - had the lowest prediction error in LSTM and BiLSTM models. 

However, using just 1 layer showed a greater ability of the model to generalize to new data, as it has 

greater performance predicting bitcoin closing prices, with a smoother, more generic, and less noisy 

forecast line, as shown in figure 4.4 and 4.5.  

Table 4.5: LSTM and BilSTM models performance with different number of layers 

Number 

of layers 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

1 3246.93 2188.49 6.84 0.922  3247.16 2134.94 6.70 0.922 

2 1762.59 2699.54 5.49 0.946  1867.56 2804.09 5.75 0.941 

3 1712.57 2611.85 5.25 0.949  1613.32 2608.14 5.21 0.949 
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Figure 4.4: Actual and LSTM Predicted bitcoin closing price with 1 and 3 layers 

 

Figure 4.5: Actual and BiLSTM Predicted bitcoin closing price with 1 and 3 layers 

 

4.4.2. Number of units in the LSTM and BiLSTM hidden layer 

The number of units was essential in obtaining a good bitcoin closing price model. Table 4.6 shows 

experiments performed with different numbers of units in LSTM and BiLSTM hidden layers. The 

analysis of the results allowed us to conclude that models with less than 128 units performed worse than 

models with more than 128 units.  



33 

 

Table 4.6: LSTM and BilSTM  models performance with different number of units 

Number 

of units 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

8 6867.34 5550.13 13.06 0.651  4928.082 3660.91 10.32 0.820 

16 4328.68 3302.36 8.83 0.861  4371.28 3108.03 9.38 0.858 

32 3669.35 2527.12 7.92 0.900  3632.78 2430.64 7.68 0.902 

64 3304.33 2222.36 7.01 0.919  3286.50 2169.41 6.84 0.920 

128 3246.93 2188.49 6.84 0.922  3247.16 2134.94 6.70 0.922 

256 3104.74 2078.35 6.53 0.928  3078.94 2097.30 6.52 0.929 

512 3095.31 2056.67 6.46 0.929  3174.27 2154.87 6.60 0.925 

 

4.4.3. Batch size 

The batch size also significantly impacted the performance of bitcoin closing price prediction models. 

As presented in table 4.7, experiments performed with different batch sizes revealed that using a smaller 

batch size - from 1 to 32 - improved LSTM and BiLSTM performance, while using a larger batch size 

- from 64 to 128 - revealed to show worse results.  Batch sizes bigger than 32 led to instabilities at the 

beginning of the training process; the models did not generalize as well as those trained with smaller 

batch sizes. 

Table 4.7: LSTM and BilSTM models performance with different batches sizes 

Batch 

size 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

1 3274.96 2207.95 6.82 0.921  2939.96 1950.40 6.01 0.936 

2 3125.02 2080.04 6.49 0.927  3229.85 2116.24 6.55 0.922 

4 2971.66 1966.20 6.01 0.934  3200.26 2092.39 6.54 0.924 

8 2905.80 1936.88 5.96 0.937  3182.01 2099.67 6.65 0.925 

16 2954.15 1956.51 6.01 0.935  3332.42 2205.90 6.90 0.917 

32 3246.93 2188.49 6.84 0.922  3247.16 2134.94 6.70 0.922 

64 3505.20 2312.82 7.40 0.909  3399.81 2297.60 7.21 0.914 

128 5282.08 3884.17 10.85 0.793  5402.10 3979.06 11.54 0.784 

 

4.4.4. Optimizer 

Adam was the best performing optimizer predicting bitcoin closing prices. Table 4.8 shows the 

performance of the LSTM and BiLSTM models using different optimizers with a learning rate of 0.01. 

The results show that Adam had the lowest prediction error, followed by the Root Mean Squared 

Propagation (RMSprop) and Nesterov-accelerated Adaptive Moment Estimation (Nadam), which also 
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obtained considerably good results. It was also possible to verify that the use of stochastic gradient 

descent (SGD), adaptive delta (Adadelta), adaptive gradient algorithm (Adagrad), and follow the 

regularized leader (FTRL), has led LSTM and BiLSTM to obtain a negative R2, which means the 

prediction tends to be less accurate than the average value of bitcoin price over the time.  

Table 4.8: LSTM and BilSTM models performance with different optimizers 

Optimizer 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

Adam 3104.74 2078.35 6.53 0.928  3078.94 2097.30 6.52 0.929 

SGD 20094.66 17231.65 37.98 -1.982  18957.69 16025.88 35.42 -1.658 

RMSprop 3115.26 2078.85 6.57 0.928  3304.65 2137.46 6.80 0.919 

Adadelta 24488.96 21926.32 48.84 -3.430  23948.09 21298.05 47.32 -3.240 

Adagrad 22772.79 20068.77 44.44 -2.830  23368.41 20687.62 45.88 -3.030 

Adamax 4302.81 3084.40 9.23 0.863  5497.24 4141.19 11.32 0.776 

Nadam 3235.27 2147.86 6.78 0.922  3128.99 2098.33 6.53 0.927 

Ftrl 24052.05 21390.73 47.51 -3.275  21189.74 21189.74 47.04 -3.210 

 

4.4.5. Learning Rate 

The learning rate was an important parameter in obtaining good forecasting performance. Table 4.9 

shows the LSTM and BiLSTM performance on validation data using different learning rates with Adam 

optimizer. It was found that the use of a 0.01 learning rate had the best prediction performance. It was 

also verified that 0.0001 and 0.1 learning rates had considerably poor results in the LSTM model. The 

0.0001 leaning rate was too low; the loss value got stuck in a local minimum and could not reach the 

global minimum. The 0.1 learning rate was too large, and the loss value exceeded and jumped between 

random locations near the global minimum. 

Table 4.9: LSTM and BilSTM models performance with different learning rates 

Learning 

Rate 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

0.1 5184.61 3908.55 10.56 0.801  3117.77 2069.02 6.44 0.928 

0.01 2724.27 1782.43 5.36 0.945  2976.49 2000.62 6.25 0.934 

0.001 3209.38 2167.31 6.71 0.923  3165.10 2112.80 6.61 0.925 

0.0001 4322.67 3093.52 9.29 0.861  3645.32 2839.01 6.69 0.919 
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4.5. Dropout regularization 

Dropout regularization allowed us to obtain a more regular, simple, and generic model with a smoother 

prediction curve, and with better performance on validation data. Table 4.10, figures 4.6 and 4.7 show 

experiments performed without (0% dropout) and with dropout defined to exclude between 10% and 

60% of the layers output features during training. It is possible to visualize that not using dropout allows 

a lower prediction error; however, setting dropout to 60% allows a more regular, simple, smoother, and 

generic prediction of the bitcoin closing price.  

Table 4.10: LSTM and BilSTM models performance with different dropout percentage 

Dropout 

Percentage 

LSTM  BiLSTM 

RMSE MAE MAPE R²  RMSE MAE MAPE R² 

0% 2448.71 1521.08 4.48 0.955  2408.90 1486.53 4.36 0.957 

10% 3093.80 2164.90 6.63 0.929  2799.43 1850.94 5.71 0.942 

60% 3206.12 3206.12 6.82 0.923  3202.53 2169.83 6.66 0.924 

 

 

 

Figure 4.6: Actual and LSTM Predicted bitcoin closing price with 0% and 60% dropout 
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Figure 4.7: Actual and BiLSTM Predicted bitcoin closing price with 0% and 60% dropout 

 

4.6. Final LSTM and BiLSTM models evaluation 

This section presents the final LSTM and BiLSTM evaluation results - on the test dataset. Each model 

was trained and tested 100 times to obtain statistically significant values for each performance metric. 

It is important to note that this evaluation was only performed after the models were evaluated and 

tuned in the validation data. The prediction errors presented in this section are the outcome of the final 

LSTM and BiLSTM model configuration described in the methodology.   

LSTM and BiLSTM networks had almost the same performance predicting the Bitcoin closing 

price. LSTM obtained 4.49% MAPE and BiLSTM 4.44% MAPE (see table 4.11); however, LSTM was 

32,28% faster in the model training process (see table 4.12). Both deep learning models performed 

considerably better than the 20-day moving average baseline.  

 

Table 4.11: Final LSTM and BiLSTM models performance 

Model RMSE MAE MAPE R² 

20-Day MA 4291.67 3327.81 8.14 0.887 

LSTM 2223.60 1762.16 4.49 0.970 

BiLSTM 2220.88 1744.49 4.44 0.970 
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Table 4.12: Training times for LSTM and BiLSTM in seconds 

Model Time (sec) 

LSTM 57.81 

BiLSTM 76.47 

 

In figure 4.8 it is plotted the actual and predicted bitcoin closing prices for LSTM and BiLSTM. 

The red and green lines are the result of the bitcoin closing price predictions, and the blue line is the 

actual bitcoin closing prices from the test data. 

 

Figure 4.8: Actual, BiLSTM and LSTM predicted bitcoin closing Price 
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CHAPTER 5 

Discussion  

 

5.1. Key findings 

With the work developed in this dissertation, we found evidence that LSTM and BiLSTM models could 

be used effectively in predicting the bitcoin closing prices. In addition, it was also confirmed that using 

Savitzky–Golay filter and dropout regularization significantly improved the performance of the models. 

Lastly, we did not find evidence that using micro and macroeconomic variables improves the 

performance of the models.  

 

5.2. Study limitations  

As with all research studies, this work also has some limitations. First, the economic variables collected 

for the study showed to be little significant or almost irrelevant, leading to the creation of noise, higher 

prediction errors and an increase in complexity and execution times. Therefore, the proposed final 

models were built only using bitcoin closing prices. Second, due to the time and scope limitations of 

this master dissertation, we did not take into consideration the analysis of the public sentiment toward 

cryptocurrency investing.   

 

5.3. Limitations from studies 

Several limitations also arose from the existing studies included in the review. One is that most studies 

focus on achieving better performance by exploring only more sophisticated models and techniques, 

ignoring gathering information that can lead the models to obtain better results. It was also verified that 

most studies did not consider the complexity and non-stationarity of the cryptocurrency time series. 

Most studies did not use any differentiation or filter to smooth the high volatility of cryptocurrency 

prices. Statistical and deep learning methods could benefit from the clearer signal in the data. Lastly, 

public sentiment, policies, and laws toward digital currencies were not taken into consideration by the 

majority of the studies.  

 

5.4. Strengths 

Notwithstanding the limitations, this study has key strengths. First, this is the earliest study to use 

Savitzky–Golay filter with LSTM models to predict bitcoin prices. The filter was used to eliminate the 
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random noise of bitcoin prices while preserving the true spectral signal. The clearer signal was essential 

to help deep learning algorithms to achieve better predicting results. Second, models presented in this 

study had relatively low prediction errors on test data compared to the studies included in the review. 

The models effectively predict the price and the trend of bitcoin, with a smooth forecast line and low 

noise. Third, this study describes in detail the methodology strategy and deep learning algorithms 

architectures used.  

 

5.5. Incidental observation 

Although not the focus of this research, we noticed some incidental observations. First, we found 

evidence that the good parameterization of the models is essential to obtain a model with good 

performance. The number of hidden layers, number of units per layer, batch size, optimizer, and 

learning rate were factors that strongly interfered with the performance of the prediction models. 

Second, scaling up the models to the point right at the border between underfitting and overfitting and 

then using dropout to regularize - proved to be the most effective way to develop a model that predicts 

bitcoin closing prices. The time spent in the hyper-parameter tuning process was high; however, it was 

the key point to obtaining models with good results. 

 

5.6. Comparison with deep learning models included in the review   

Table 5.1 compares the models developed in this study and the next day's bitcoin deep learning models 

included in the review.    

Among all the studies included in the review, the models developed in this study obtained the 

second-best MAPE for LSTM single models and the fifth-best MAPE among all deep learning studies. 

Rather than knowing the exact future price, bitcoin investors are more interested in the future price 

trend. Most studies in the review predicted the bitcoin price very close to the last day, obtaining a 

prediction line with noise. This research study took this problem into consideration and employed 

dropout regularization and a suitable parameterization to prevent overfitting and obtain a smooth 

prediction line with little noise and low prediction error. Savitzky–Golay filter was also essential to 

obtain good predictions. 

Radityo et al. (2018) developed the two deep learning models included in the review with the lowest 

MAPE. The success factor in obtaining these results was determined by using the genetic algorithm 

backpropagation neural network (GABPNN), and backpropagation neural network (BPNN), leading to 

a 1.88% and a 1.998% MAPE, respectively. Feature generation was also an essential factor. They used 

exponential moving average (EMA), 12-day rolling window along volume, high, low, and close prices 

as variables to predict bitcoin prices.  
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The ANN and RNN models developed by Mallqui and Fernandes, (2019) had a 3.06% and 3.36% 

MAPE, respectively, considerably good results compared to other deep learning models in the review. 

They used a technique called Correlation-based Feature Subset selection (CFS) to evaluate the value of 

a subset of variables, considering each attribute's predictive capacity and the level of redundancy 

between them.   

Table 5.1 shows that the algorithm used can make the difference; however, as verified in this study 

and the literature review, factors such as data processing, feature selection, feature generation, and 

hyper-parameters tuning have tremendous importance in the algorithm’s prediction performance 

 

Table 5.1: Errors of the deep learning models included in the review 

Nº Author (year) Cryptoc

urrency 

Interval 

data 

Method Results 

RMSE MAPE R² 

This 

study 

 Bitcoin 1-day LSTM 2223.60 4.47 0.971 

BiLSTM 2220.88 4.44 0.970 

4 Ferdiansyah et al. 

(2019) 

Bitcoin  1-day LSTM 288.60 - - 

5 Livieris et al. (2021) Bitcoin 1-day LSTM 256.68 - 0.953 

6 Rizwan et al. (2019) Bitcoin 1-day GRU - - 0.992 

LSTM - - 0.992 

8 Lahmiri and Bekiros 

(2019) 

Bitcoin 1-daty DLNN 2750.00 - - 

   GRNN 8800.00 - - 

11 Altan et al. (2019) Bitcoin 1-day LSTM 1474.20 9.59 - 

EWT-LSTM 776.74 6.14 - 

EWT-LSTM-CS 623.41 3.55 - 

15 Liu et al. (2021) Bitcoin 1-day BPNN 390.07 37.36 - 

SDAE 160.63 10.19 - 

16 Tan and Kashef 

(2019) 

Bitcoin 1-day LSTM 33.70 - - 

17 Mallqui and 

Fernandes (2019) 

Bitcoin 1-day ANN 41.62 3.06 - 

   RNN 42.34 3.36 - 

18 Radityo et al. (2018) Bitcoin 1-day BPNN - 1.998 - 

    GANN - 4.461 - 

    GABPNN - 1.883 - 

19 Jay et al. (2020) Bitcoin 1-day MLP - 3.06 - 

    LSTM - 3.20 - 
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5.7. Future research 

This study points to several promising directions for future research. First, studies can be improved 

using data smoothing techniques like the Savitzky-Golay filter, combined with hybrid models that use 

cryptocurrency prices, sentiment analysis, and public opinion. Second, future studies should search for 

economic variables with high explanatory value over cryptocurrency prices. Third, transfer learning is 

a rising research problem in machine learning that should be considered to predict newer cryptocurrency 

prices with less temporal data available. Data from older cryptocurrencys should be used to predict the 

prices of the newer cryptocurrencys. Fourth, it may be worth exploring automated hyper-parameter 

tuning techniques to find the best set of hyper-parameters. Lastly, future studies should also focus on 

studying the volatility and returns of bitcoin prices. 
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CHAPTER 6 

Conclusion 

 

This study aimed to verify whether LSTM and BiLSTM neural networks can be used to predict bitcoin 

closing prices. Data was collected from daily bitcoin prices in USD and economic variables from 

September 17th, 2014, to April 9th, 2022. The dataset was split into 65% for training, 15% for validation 

and 20% to test the model. In order to reduce the high-frequency noise in the signal, Savitzky–Golay 

filter was used with 29 points (days) rolling window and a 9th-order degree polynomial fitted step by 

step along the signal. The transformation of the features in the same scale was employed by Min-Max 

normalization. Rank-3 tensor was used to prepare the data for the deep learning algorithms and to create 

a rolling window to represent the dataset as a supervised learning problem; the past 16 days' bitcoin 

prices were used as input to predict the next day's bitcoin closing price. 

We applied the BiLSTM and LSTM algorithms to make the predictions. The LSTM model had as 

input a rank 3 tensor with 32 batch sizes, 16-time steps, and 1 feature. The second layer of the model 

was a LSTM with 128 output units and a sigmoid activation function. The third layer was a dropout, set 

to randomly exclude 60% of the layers output features during training. The output model was set with 

1-unit dense layer, which was used to forecast 1 day bitcoin closing price. The model was trained over 

200 epochs, with an early stopping defined to interrupt the training process when the validation loss has 

stopped improving for more than 30 epochs. The BiLSTM model was defined with the same 

configuration as LSTM; the only difference was the early stopping that was defined to interrupt the 

training process when the validation loss had stopped improving for more than 20 epochs. To obtain a 

model with good performance on the validation and test dataset - RMSE, MAE, MAPE, and R² - were 

used to measure the model’s performance. 

The empirical results showed that both LSTM and BiLSTM could be used effectively in predicting 

the bitcoin closing prices, with almost the same prediction error, 4.49% and 4.44% MAPE, respectively. 

We also found evidence that the Savitzky-Golay filter and dropout regularization significantly improved 

the model’s performance. However, we did not find evidence that using economic variables improves 

the performance of the models. Experiments performed with the wrapper forward selection method, 

where different sets of input features to feed the deep learning models were tested showed that using 

only Bitcoin's closing price as input feature allowed forecasting models with less noise, lower forecast 

errors and less complexity and execution times. We also observed some incidental observations, the 

good parameterization of the models was essential to obtain a model with good performance. The 

number of hidden layers, number of units per layer, batch size, optimizer and learning rate revealed to 

be factors that strongly interfere in the performance of the prediction models.   
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This study has several contributions to science and society in general. First, bitcoin investors are 

more interested in the future price trend rather than knowing the exact future price; for that reason, the 

models developed in this study give information about both: the exact future price and price trend. This 

study provides valuable information that can be used by fund managers, investment portfolio managers, 

governments, and investors in general to support investment decision-making. Second, this was the first 

study to use Savitzky–Golay filter with LSTM models to predict bitcoin prices, the filter was used to 

eliminate the random noise of bitcoin prices while preserving the true spectral signal. Third, this study 

presents the results of several experiments performed in the manual hyperparameter tuning process, 

allowing future researchers to use this study as support to choose the set of optimal hyperparameters 

for the learning algorithms.  

This study also has some limitations. First, final models were built only using bitcoin closing prices, 

the economic variables collected for the study showed to be little significant or almost irrelevant, 

leading to the creation of noise and higher prediction errors. Second, due to the time and scope 

limitations of this master thesis, we did not take into consideration the analysis of the public sentiment 

toward cryptocurrency investing. Third, the discussion of the deep learning models included in the 

review were measured in different time periods, which could lead to limited analysis. Models based on 

minute and hourly data frequency were not included in the comparison, because they tended to obtain 

lower forecast errors due to the higher forecasting frequency. 

Bitcoin price prediction research can be further improved. First, studies should use digital filters to 

smooth data volatility, and technical analysis, combined with hybrid models that use cryptocurrency 

prices, sentiment analysis, and public opinion.  Second, future studies should search for economic 

variables with high explanatory value over cryptocurrency prices. Third, transfer learning is a rising 

research problem in machine learning that should be considered to predict newer cryptocurrency prices 

with less temporal data available. Fourth, automated hyper-parameter tuning should be considered to 

find the best set of hyper-parameters. Lastly, future studies should contemplate the volatility and returns 

of bitcoin prices. 
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Appendices 

 

Appendix A - Systematic literature review methodology  

Search strategy 

We used Prisma tool methodology to facilitate a systematic literature search. We searched the following 

databases: Scopus, EBSCO, Web of Science and ProQuest Central covering the period since January 

2015 until October 2021.  

The search terms were defined based on an iterative analysis of previous studies. And the search 

strategy used the following keywords: 

("Forecasting") AND ("Cryptocurrency") AND ("LSTM" OR "Long-short-term memory" OR 

"Neural networks" OR "Deep Learning" OR "Machine learning"). 

The search resulted in 246 published articles (scopus:140, EBSCO:41, web of science:42, 

proquest:23). Publications from all databases were combined and duplicates removed, resulting in 165 

articles. Figure 6.1 shows the PRISMA flow diagram of the literature search. 

 

Inclusion and exclusion criteria 

An initial inclusion and exclusion were applied. All articles written in a language other than English, 

Portuguese or Spanish were removed, resulting in 158 articles. In the next step, abstract conferences, 

and articles unrelated with the research topic were removed. In addition, 18 articles were removed due 

to unavailability resulting in a total of 116 publications. 

Due to the high number of articles, a further inclusion and exclusion criteria was applied based on 

De Oliveira Monteiro et al. (2019) publication described in detail in Table 6.1 and 6.2, respectively, 

leaving 72 publications. Finally, in a last step, We applied additional selection criteria due to the high 

volume of articles available. Only publications that specified the data source, data type, algorithms, 

validation criteria and results were selected. Publications that only use classification methods and focus 

on predicting the upward or downward trend in the price of cryptocurrencies were excluded. 

The literature search resulted in 20 publications, which are shown in table 6.3. 
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Table 6.1: Inclusion criteria 

Identifier Description 

CI-01 Publications mentioning cryptocurrencies price analysis and forecasting can be 

selected 

CI-02 Publications mentioning cryptocurrency price forecasting algorithms, techniques 

and methods can be selected. 

CI-03 Publications that mention any type of analysis or factor that might influence the 

price of cryptocurrencies can be selected. 

 

 

Studies included in the 

systematic literature review 

(n=20) In
cl

u
d

e
d

 

Records screened (n =165) 

Records excluded: 

-Another language different     

from English, Portuguese, 

and Spanish (n=7) 

-Abstract Congresses and 

Magazin(n=24) 

 

Records screened (n =134) 
Reports not available (n =18) 

Reports assessed for initial 

eligibility (n =116)  

Reports excluded: 

-Not related with the topic    

(n=2) 

-Inclusion and exclusion 

criteria applied to abstracts 

(n=42) 

Records identified (n=246): 

    Scopus(n=140) 

    EBSCO (n =41) 

    ProQuest (n=23) 

    Web of Science(n=42) 

Records removed before 

screening (n=81): 

-Duplicate records removed  

(n =81) 

 

Identification of studies via databases and registers 
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Figure 6.1:PRISMA Flow Diagram (2020): Diagram of the Search and screening Process 
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Table 6.2: Exclusion Criteria 

Identifier Description 

CE-01 Publications where keywords are not included in the title, abstract, keywords or 

body text cannot be selected. 

CE-02 Publications that only mention the terms used in the search cannot be selected. 

CE-03 Publications where cryptocurrencies are applied to areas other than price 

forecasts cannot be selected. 

CE-04 Publications that only present or describe cryptocurrencies, blockchain or 

derived technologies cannot be selected. 

 

Table 6.3: Articles included in the systematic literature review 

Nº Author (year) Title Criteria 

1 Septiarini et al. (2020) A comparative study for Bitcoin cryptocurrency 

forecasting in period 2017-2019 

CI1 

2 Patel et al. (2020) A Deep Learning-based Cryptocurrency Price 

Prediction Scheme for Financial Institutions 

CI2 

3 Kristjanpoller and 

Minutolo (2018) 

A hybrid volatility forecasting framework integrating 

GARCH, artificial neural network, technical analysis 

and principal components analysis. 

CI2 

4 Ferdiansyah et al. (2019) A LSTM-Method for Bitcoin Price Prediction: A Case 

Study Yahoo Finance Stock Market 

CI2 

5 Livieris et al. (2021) An Advanced CNN-LSTM Model for Cryptocurrency 

Forecasting 

CI2 

6 Rizwan et al. (2019) Bitcoin price prediction using Deep Learning 

Algorithm 

CI2 

7 Derbentsev et al. (2021) Comparative Performance of Machine Learning 

Ensemble Algorithms for Forecasting Cryptocurrency 

Prices 

CI2 

8 Lahmiri and Bekiros 

(2019) 

Cryptocurrency forecasting with deep learning chaotic 

neural networks. 

CI2 

9 Wang and Chen (2020) Cryptocurrency price prediction based on multiple 

market sentiment 

CI1 

10 Lamothe-Fernandez et al. 

(2020) 

Deep Learning Methods for Modelling Bitcoin Price CI2 

11 Altan et al. (2019) Digital currency forecasting with chaotic meta-

heuristic bio-inspired signal processing techniques 

CI2 

12 Zoumpekas et al. (2020) ETH analysis and predictions utilizing deep learning CI2 

13  Phaladisailoed and 

Numnonda (2018) 

Machine learning models comparison for bitcoin price 

prediction 

CI2 

14 Munim et al. (2019) Next-Day Bitcoin Price Forecast CI1 

15 Liu et al. (2021) Forecasting the price of Bitcoin using deep learning CI3 

16 Tan and Kashef (2019) Predicting the closing price of cryptocurrencies: A 

comparative study 

CI2 

17 Mallqui and Fernandes 

(2019) 

Predicting the direction, maximum, minimum, and 

closing prices of daily Bitcoin exchange rate using 

machine learning techniques 

CI2 

18 Radityo et al. (2018) Prediction of Bitcoin exchange rate to American dollar 

using artificial neural network methods 

CI2 



52 

 

19 Jay et al. (2020) Stochastic Neural Networks for Cryptocurrency Price 

Prediction 

CI2 

20 Saad et al. (2020) Toward characterizing blockchain-based 

cryptocurrencies for highly accurate predictions 

CI3 

 

Information extraction 

After the selection of final publications to be included in the literature review, a complete reading of 

each article was performed and the following information was extracted: title, publication year, authors, 

data source, data period, training and test split strategy, modelling methods, model quality metrics and 

results. Table 6.4 shows the summarised information of the publications selected for systematic 

literature review.   
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Table 6.4: Information summary of the studies included in the review 

 

Nº Author (year) Data Source Data Data Period Train test split strategy Modelling Methods Model quality metrics Results (Best model)

1 (Septiarini et al., 2020) coinmarketcap.com Bitcoin 5/1/2017-1/10/2019

Train-75%

Test-25% ANFIS, FTS, ES, ARIMA RMSE, MSE RMSE-98.74(ES)

2 (Patel et al., 2020) Investing.com Litecoin, Monero

Litecoi- 24/04/2016 - 23/02/2020

Monero- 30/01/2015 - 23/02/2020 Unknown LSTM, LSTM - GRU MSE, RMSE, MAE, MAPE

MAPE

Litcoin-2.0581%(LSTM-GRU)

Monero-4.0727%(LSTM-GRU)

3 (Kristjanpoller & Minutolo, 2018) coinmarketcap.com Bitcoin 13/09/2011 - 26/08/2017 Unknown GARCH, EGARCH, APGARCH MSE MAPE-1.64% (EGARCH)

4 (Ferdiansyah et al., 2019) finance.yahoo.com Bitcoin 27/06/2014 - 27/06/2019

Train-80%

Test-20% LSTM RMSE RMSE-288.59866(LSTM)

5 (Livieris et al., 2021) finance.yahoo.com

Bitcoin, 

Etherium, 

Ripple 01/01/2017 - 31/10/2020

Train-82%

Validation- 7%

Test- 11% CNN-LSTM MAE, RMSE, R2

R2

Bitcoin- 0.953(CNN-LSTM)

Ethereum- 0.964(CNN-LSTM)

Ripple-0.962(CNN-LSTM)

6 (Rizwan et al., 2019) Unknown Bitcoin

19/08/2013 - 19/07/2016 Train-70%

Test-30% LSTM, GRU R2, MSE R2-0.992(GRU)

7 (Derbentsev et al., 2021) finance.yahoo.com

Bitcoin,

Ethereum,

Ripple 01/01/2015 - 31/12/2019

Train-80%

Test-20% RF, SGBM RMSE, MAPE

MAPE - 

BTC -2.31% (SGBM)

ETH- 2.26%(RF)

XRP -0.92%(SGBM)

8 (Lahmiri & Bekiros, 2019) Unknown

Bitcoin, 

Digital Cash, 

Ripple

Bitcoin-16/07/2010 to 01/10/2018

Digital Cash-21/01/2015 to 01/10/2018

Ripple-08/02/2010 to 01/10/2018 

Train-90%

Test-10% GRNNs, DLNN RMSE

RMSE

Bitcoin-2750 (DLNN)

Digital Cash-19.2926 (DLNN) 

Ripple- 0.0499(DLNN)

9 (Wang & Chen, 2020)

binance.com

huobi.com

Forums

Bitcoin,

Ethereum, 

ether, 

Ripple,

litecoin

User reviews- 1/10/2018 - 31/12/218

Bitcoin/Ethereum/Tether/Ripple/Litec

oin-1/1/2019-31/3/2019

Train- Fiat

Validation- contract transaction

Test- contract transaction LSTM,CNN, SVM, BPNN, RBF MAPE, MAE, RMSE

MAE-

Bitcoin- (LSTM + sentiment)

Ethereum - (LSTM  + sentiment)

Tether - (LSTM + sentiment)

Ripple - (LSTM + sentiment)

litecoin - (LSTM + sentiment)

10 (Lamothe-Fernandez et al., 2020)

lockchain.info

International Financial 

Statistics, World Bank, 

FRED Sant Louis, Google 

Trends and Quandl Bitcoin 2011-2019

Train-70%

Validation- 10%

Test- 20% DRCNN, DNDT, DSVR RMSE MAPE - Bitcoin- 0.52%(DRCNN)

11 (Altan et al., 2019) Unknown

Bitcoin,

Ripple,

Dash,

Litcoin

Bitcoin- 18/07/2010-28/03/2019

Ripple-22/01/2015-28/03/2019

Dash-14/02/2014-28/03/2019

Litcoin-24/08/2016-28/03/2019

Train-85%

Test-15% LSTM, EWT-LSTM, EWT-LSTM-CS MAPE, MAE, RMSE

MAPE-

Bitcoin-3.55% (EWT-LSTM-CS)

Ripple-1.72% (EWT-LSTM-CS)

Dash-1.47% (EWT-LSTM-CS)

Litcoin-2.77% (EWT-LSTM-CS)

12 (Zoumpekas et al., 2020)

poloniex.com

coinmarketcap.com Ethereum 08/08/2015 - 28/05/2018

Train-53%

Validation-27%

Test-20% CNN, LSTM, sLSTM, BiLSTM, GRU RMSE, MAE RMSE-0.92(LSTM)

13 (Phaladisailoed & Numnonda, 2018) bitstamp.net Bitcoin 01/01/2012 - 01/01/2018

Train-70%

Test-30%

Theil-Sen Regression,  Huber Regression,

LSTM, GRU MSE, R2 R2-0.992(LSTM / GRU)

14 (Ziaul Haque Munim et al., 2019) data.nasdaq.com Bitcoin 01/01/2012 - 04/10/2018

Train-20%

Test-80% ARIMA, NNAR RMSE, MAPE, MASE MAPE- 3.65% (ARIMA)

15 (Liu et al., 2021) coindesk.com Bitcoin 01/07/2013 - 31/12/2019

Train-80%

Test-20% BPNN, PCA-SVR, SVR, SDAE MAPE, RMSE, DA MAPE-0.1019(SDAE)

16 (Tan & Kashef, 2019) coinmarketcap.com Bitcoin 28/04/2013 - 11/05/2018

Train-100%

Test- out of sample BR, AR, ARIMA, LSTM, SVM ME, RMSE, MAE, MPE, MAPE RMSE- 33.70 (LSTM)

17 (Mallqui & Fernandes, 2019)

bitcoincharts.com

quandl.com

investing.com Bitcoin 1/04/2013-01/04/2017

Train-75%

Test-25% ANN, SVM, RNN MAE, MAPE, RMSE MAPE-1.81%(SVM)

18 (Radityo et al., 2018) cryptocompare.com Bitcoin 01/01/2014-02/04/2017

Train-80%

Test-20% BPNN, GANN, GABPNN, NEAT MAPE MAPE-1.998 ± 0.038 %(BPNN)

19 (Jay et al., 2020) bitinfocharts.com

Bitcoin

Litecoin

Etherium 2017-2019

Train-75%

Test-25% MLP, LSTM MAPE, MAE, RMSE, MSE

MAPE-

Bitcoin - 2.5589%(MLP)

Litecoin -2.3886%(MLP)

Etherium -2.3405%(MLP)

20 (Saad et al., 2020)

blockchain.com/api

etherscan.io

Bitcoin

Etherium April 2016-May2018

Train-85%

Test-15% LR, GB, RF, LSTM RMSE, MAE

RMSE-

Bitcoin-0.0175(LSTM)

Etherium-0.0718(LSTM)


