
1. Introduction
Over the past decade, artificial neural networks (ANNs) have transformed the field of machine learning and 
artificial intelligence, becoming the preferred approach for computer vision, speech recognition, and machine 
translation. They have consequently been applied across a number of disciplines, including geoscience, with the 
capability to automate tasks and improve performance. Neural networks have become particularly powerful at 
performing tasks on unstructured data such as images, video, audio, and text (Goodfellow et al., 2016; LeCun 
et al., 2015). Recently, advances in convolutional neural networks (CNNs) have led to the development of models 
that can classify images with superhuman performance (Russakovsky et al., 2015). These techniques have the 
potential to automate and thence improve the efficiency of a number of tasks in geoscience (Dramsch, 2020), 

Abstract The texture and morphology of igneous zircon indicates magmatic conditions during zircon 
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prismatic, euhedral, and strongly oscillatory zoned which may differentiate them from zircons associated with 
unmineralized igneous systems. Here, cathodoluminescence images of zircons from the Quellaveco porphyry 
copper district, Southern Peru, were collected to compare zircon textures between the premineralization 
Yarabamba Batholith and the Quellaveco porphyry copper deposit. Quellaveco porphyry zircons are prismatic, 
euhedral, and strongly oscillatory zoned, whereas the batholith zircons are subhedral-anhedral with weaker 
zoning. We adopt a deep convolutional neural network (CNN) approach to demonstrate that a CNN can classify 
Quellaveco porphyry zircons with high success. We trial several CNN architectures to classify zircon images: 
LeNet-5, AlexNet and VGG, including a transfer learning approach where we used the weights of a VGG model 
pretrained on the ImageNet data set. The VGG model with transfer learning is the most effective approach, with 
accuracy and receiver operating characteristic-area under curve (ROC-AUC) scores of 0.86 and 0.93, indicating 
that a Quellaveco porphyry zircon CL image can be ranked higher than a batholith zircon with 93% probability. 
Visualizing model layer outputs demonstrates that the CNN models can recognize crystal edges, zoning, and 
mineral inclusions. We trial implementing trained CNN models as unsupervised feature extractors, which can 
empirically quantify crystal textures and morphology. Therefore, deep learning provides a tool for the extraction 
of information from large, imaged-based petrographic data sets which can facilitate petrologic and provenance 
studies.

Plain Language Summary Zircon is a common mineral found in rocks associated with magmatism. 
Zircons can have a range of shapes, sizes, and internal structures which reflect the conditions in the magma 
chamber where the zircon crystallized. It has been suggested that zircons derived from magmas associated with 
porphyry copper deposits, economically valuable sources of copper, may possess specific morphologies and 
textures. Here, we performed textural imaging of zircons from the Quellaveco porphyry deposit in Southern 
Peru and neighboring granitic rocks not associated with porphyry Cu mineralization. We find the porphyry 
zircons have the expected characteristic shapes and textures previously proposed, whereas the other rocks do 
not. We trained a deep learning model to effectively classify images of zircons from porphyry Cu rocks, which 
is capable of recognizing the edges, zones, and inclusions within zircon crystals. Our approach can be used to 
identify zircons that are associated with porphyry Cu deposits, and similar methods can be used to constrain the 
provenance (host rock) of zircons in stream sediments.
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including mineral exploration routines. Several recent studies have demonstrated their value in automation of tasks 
in fields such as seismic interpretation (Waldeland et al., 2018), rock classification (Pires de Lima et al., 2019), 
ash classification (Shoji et al., 2018), landform detection (Palafox et al., 2017), petrography (Koeshidayatullah 
et al., 2020), and mineral exploration (Li et al., 2021; Maepa et al., 2021).

A recent focus of mineral exploration has been the development of mineral chemistry approaches to distinguish 
between porphyry Cu fertile igneous rocks and unfertile granitoids (Cooke et al., 2020). For example, previous 
work has demonstrated that zircons from porphyry Cu-related intrusions have a distinct trace element compo-
sition (Ballard et al., 2002; Dilles et al., 2015; Loader et al., 2017; Lu et al., 2016). It has also been suggested 
that zircons from porphyry Cu deposits may have a characteristic texture under cathodoluminescence (CL; Lu 
et al., 2016), such as strongly oscillatory zoned, euhedral, prismatic-pyramidal crystals with abundant mineral 
inclusions (Leslie et al., 2021; Pizarro et al., 2020). The presence of these properties in detrital zircons during 
porphyry Cu exploration could be used as an initial method to identify catchment areas or magmatic systems 
which are predisposed to host porphyry Cu deposits.

This paper aims to develop a deep learning methodology to recognize and classify zircon textures, and assess 
whether such an approach is capable of discriminating between zircon CL images from porphyry Cu mineralized 
rocks and premineralization granitoids in Southern Peru. Useful theory for the development of CNN architectures 
that can discriminate different textural populations is outlined, including model regularization, transfer learning, 
and feature extraction, which can be implemented in a variety of tasks across mineralogy and petrology.

2. Methods
2.1. Sample Selection and CL Imaging

Intrusive rocks from the Quellaveco porphyry Cu-Mo system, Southern Peru, were collected from the Yara-
bamba Batholith and from the Quellaveco porphyry intrusions. This batholith corresponds to the host rock and 
is an intrusion which predates the Quellaveco porphyry deposit (Figure 1). Because the Yarabamba Batholith is 

Figure 1. Simplified geological map of the (a) Quellaveco district and (b) Quellaveco deposit after Nathwani et al. (2021). Inset map in (a) shows the location of the 
district (star) in Peru. District-scale sample localities are shown in (a) and drillholes from which porphyry samples were taken are shown in (b). For further information 
on these samples please refer to Nathwani et al. (2021).
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composed of several spatiotemporally distinct intrusive phases (Figure 1a), three predominant intrusive phases of 
the Yarabamba Batholith were sampled (Nathwani et al., 2021). The oldest two phases, the Yarabamba Monzonite 
and Toquepala Granodiorite, were sampled from field outcrops, whereas the latest phase (the Quellaveco Gran-
odiorite) was sampled from drill-core at the Quellaveco deposit (Figure 1b). Six samples of the batholith were 
selected (including two Quellaveco Granodiorite samples from drill-core) and nine drill-core samples from the 
Quellaveco porphyry Cu deposit. A full account of the geological context of these lithologies and the collected 
samples can be found in Nathwani et al. (2021).

Zircons were separated at ZirChron LLC in Arizona, USA. Samples were crushed by jaw crushing and disk 
pulverization, followed by heavy liquid and magnetic separation. Zircons were picked from the separates, 
mounted in epoxy and polished. As many zircons as possible were mounted to ensure that as wide a range of 
sizes, shapes, and textures were represented. To ensure no sampling bias occurred during mounting, zircon crys-
tals were carefully poured onto grain mounts, rather than being hand-picked.

Zircons were imaged using back-scattered electron imaging and CL using a TESCAN TIMA scanning electron 
microscope in the Imaging and Analysis Centre (IAC) at the Natural History Museum, London. The TIMA 
system comprises four EDAX Element silicon drift detectors and a TESCAN MIRA 3 Schottky field emission 
gun SEM. Data were collected using 2 μm pixel spacing. As well as CL image acquisition, energy dispersive 
spectra (EDS) were also acquired per pixel, in order to check for any non-zircon grains and to monitor the occur-
rence of zircon-hosted mineral inclusions. The instrument was operated at 25 kV and 14 nA. The BSE, CL, and 
EDS data were acquired simultaneously using the high resolution mapping mode (Hrstka et al., 2018). Generally, 
the blocks contained almost entirely zircon crystals; however, if this was not the case, a filter could readily be 
applied, based on EDS data, to produce maps that only contained zircon.

The CL maps of each grain mount were split to produce one image per sample. The montaged CL images for 
zircons from each sample are provided in Data Set S1. These images were then segmented using a Canny edge 
detection operator (Canny, 1986) in the OpenCV library for Python (Bradski, 2000) to produce individual images 
for each zircon grain. This successfully isolated over 85% of the zircon crystals (750 images in total). However, 
infrequently, individual grains could not be separated due to overlaps between them. Such images were manually 
discarded. The models presented herein also required that every input image was equal in xy dimensions, which 
was not initially the case because of the large size distribution of zircon crystals. Some crystals were surrounded 
by empty resin, whereas others filled the entire image square. Each image was therefore automatically cropped 
(outer pixels removed) or padded (pixels added to outside of image) to produce uniformly sized images of 90 × 90 
pixels. Every image was then resized to a 32 × 32 image appropriate for the CNN model outlined below (with 
1 or 3 channels depending on the model used). The intensities of pixels were normalized to between 0 and 1 to 
decrease training time.

Two additional sets of zircon images (one from the premineralization batholith, and one from the porphyry) 
were kept aside as an independent test set for the trained models. The two samples are QVC075 (Yarabamba 
Monzonite) and QVC055 (Late Porphyry), which were never seen by the model during the training process. 
These images were preprocessed identically to the training examples.

2.2. Convolutional Neural Networks

ANNs are used to map a fixed-size input (e.g., an image) to a fixed-sized output (e.g., a class probability) using 
a series of interconnected neurones (Hornik et al., 1989). Each neurone consists of a weighted sum of i input 
features, which are passed through a nonlinear activation function, f, to produce an output, y. Each input feature, 
xi, is multiplied by a weight, wi, and a bias (offset), b, term is added

𝑦𝑦(𝑥𝑥) = 𝑓𝑓

(

𝑏𝑏 +

𝑛𝑛
∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

)

 (1)

Applying a nonlinear activation function introduces nonlinearity to the output of a neurone, allowing multi-
ple neurones to be stacked together and thus the network can model complex nonlinear functions. The most 
widely used activation function is the rectified linear unit function (ReLU) which is the half-wave rectifier 
(f(x)  =  max(z,0)). The ReLU activation function typically leads to faster convergence of the neural network 
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compared to other activation functions due to the nonsaturation of its gradi-
ents (i.e., the gradient never becomes exceedingly small or large (Glorot 
et al., 2011; Nair & Hinton, 2010)).

Neurones are aggregated into layers, and several layers can be arranged in 
sequence (known as “hidden layers”) through which data passes from the 
input to be mapped to the output. Before training of an ANN, the weight 
terms in the network are initialized and as each training example is passed 
through the network, the error rate is evaluated using a cost function. The 
weight terms in the network are sequentially adjusted through the network to 
minimize the cost function, by backpropagation and gradient descent. Adjust-
ment of the weight in the descent direction occurs in iterations, where the 
step size, known as the learning rate, is determined by the user. A large learn-
ing rate will cause large changes in the weights in the direction of the descent 
direction (and may lead to the weight overshooting the optimum), while a 
small learning rate causes small changes (and may lead to slow convergence).

The application of traditional feed-forward ANNs to image and pattern 
recognition is limited for several reasons (LeCun & Bengio, 1998). First, an 
example 256 × 256 pixel image, which contains 65,536 pixels, would require 
training 65,536 weights in a single neurone in the first layer of the network. 
This would be extremely computationally expensive and prone to overfit-
ting. Second, traditional ANNs are limited because they are not invariant to 
translation or distortion of the input. For example, classifying whether a cat 
is present in an image requires the model to work regardless of the position 
or size of the cat in the image. Furthermore, image classification must take 
advantage of the spatial dependency of features in an image, such as the pres-
ence of multiple whiskers above a mouth.

A subset of ANNs called CNNs are instead the most popular method for image classification. CNNs are algo-
rithms which can assign variable importance to different features of images and use these for classification. The 
classic architecture of a CNN consists of three main types of layers: convolutional, pooling, and fully connected.

2.2.1. Convolutional Layers

A convolutional layer applies a filter to an image, which transforms the image to a feature map which is passed 
to the next layer in the network (Figure 2a). The filter is a pixel grid, e.g., a 3 × 3 matrix, which is applied to a 
3 × 3 area of the image, and the dot product is calculated as an output value. The filter shifts across the image, 
known as the stride, eventually producing a feature map. The 3 × 3 filter would be composed of 9 weight terms 
which are adjusted during the backpropagation and gradient descent process to produce the optimal feature maps 
for the task. Applying the same filter across an entire image has important advantages in that it reduces the 
number of weights to train and it allows features to be detected in an image regardless of position (i.e., translation 
invariance).

2.2.2. Pooling Layers

Pooling has the key function of reducing the dimensionality of the input, thus reducing the computational power 
required to train the model. A kernel, such as a 2 × 2 grid, will move across a convolved image and either the 
maximum (known as max pooling) or average pixel value (average pooling) is taken from each 2  ×  2 area 
(Figure 2b). A typical CNN consists of several convolutional and pooling layer pairs placed in sequence, where 
the earlier layers learn broader scale features (e.g., edges) and deeper layers learn more detailed features.

2.2.3. Fully Connected Layers

A fully connected layer is a layer which is typically used in a feed-forward ANN, where every neurone in one 
layer is connected to every neurone in the next layer. The feature grid produced from the convolutional layers and 
pooling layers is flattened into a vector and passed through the layer of neurones (a fully connected layer). The 
output of one, or more, fully connected layers is then used for classification, where a sigmoid (for binary classifi-
cation) or softmax (for multiclass classification) function is applied to produce a probability.

Figure 2. Schematic illustrations of two key operations in a convolution 
neural network: (a) the convolutional operation and (b) the pooling operation. 
The convolutional operation demonstrates a vertical edge detection kernel 
applied to an image. The derived feature map highlights the presence of 
a vertical edge in the center of the image. The pooling operation shows a 
maximum pooling operation applied to an image, with a filter size of 2 × 2 
and a stride of 2,2.
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2.3. Model Regularization

Overly complex machine learning models can learn the training data too well and therefore have poor performance 
(insufficient generalization) when exposed to new data. This is termed overfitting. One of the most common 
ways to mitigate against overfitting is weight regularization, in which a regularization term is added to the cost 
function—which penalizes the model if weights become too large—forcing the weights to become smaller, thus 
producing a less complex model (L1 and L2 regularization; Ng, 2004). More recently, dropout regularization 
has become a favored approach (Hinton et al., 2012; Srivastava et al., 2014), and generally performs better than 
weight regularization (Wager et al., 2013). Dropout is a method where randomly selected neurones are dropped 
out during the training process. This has the effect of reducing dependencies on neurones, causing weights to 
become more evenly distributed, and thus producing a less complex model. The probability of dropping out each 
neurone during training is defined by the probability term p. During validation and testing, dropout is not used, 
and the output weights are reduced (by 1 − p) in order to compensate for the larger outputs from the layers that 
were dropped out during training (Srivastava et al., 2014).

Another highly regarded regularization approach for CNNs is data augmentation, where images in the training 
data set are slightly modified randomly to increase the diversity of the training data set (Perez & Wang, 2017; 
Shorten & Khoshgoftaar, 2019). Examples of transformations that can be applied are: rotation, mirroring, zoom-
ing, changing contrast, and brightness. Data augmentation can be performed using preprocessing layers in the 
Python implementation of keras (Chollet, 2015), which enables this step to be integrated within the CNN pipeline 
so that for every training epoch, each image in the training set undergoes a random data augmentation.

A final useful regularization approach is batch normalization (Ioffe & Szegedy, 2015). During each iteration of 
adjusting parameters during a training epoch (known as a mini-batch), the activations for each layer are normal-
ized to a fixed mean and variance. The main benefit of this is that it causes an acceleration in the training process, 
since the variance of the weights is reduced which leads to a faster convergence during gradient descent (Ioffe & 
Szegedy, 2015). Batch normalization can also have a regularizing effect since it adds noise to the activations and 
thus can reduce overfitting.

2.4. Model Selection

Selecting an appropriate CNN for a classification task can be challenging because there are a huge number of 
parameters that can be varied, such as the number of layers, the kernel size, and stride (the number of pixels 
moved by the kernel after each step) of convolutional and pooling layers and the number of neurones in fully 
connected layers. This study follows the approach of adapting preexisting model architectures which have proved 
successful across numerous domains. The earliest CNN model, known as LeNet-5, which was proposed for the 
recognition of handwritten digits (LeCun et al., 1989, 1998), consists of two pairs of convolutional and pooling 
layers followed by three fully connected layers. More recent CNN models have employed more sophisticated 
architectures and a larger number of layers: e.g., the GoogLeNet model (Inception v1; Szegedy et  al.,  2014) 
contains 22 layers and millions of trainable parameters. In this study, four different CNN architectures were used, 
to compare the relative performance of models with increasing numbers of parameters and complexity:

1.  A baseline neural network model with no convolution or pooling operations (i.e., a multilayer perceptron).
2.  An adaptation of the LeNet-5 CNN model originally proposed by LeCun et al. (1989, 1998), with some modi-

fications based on more recent CNN model advances.
3.  The AlexNet CNN model (Krizhevsky et al., 2012), originally proposed for classification of 1.2 million high 

resolution images belonging to 1,000 classes (the ImageNet database; Deng et al., 2009).
4.  The VGG model (Simonyan & Zisserman, 2015), also originally designed for classification of the ImageNet 

database, which contains 16–19 layers.

A summary of these models can be found in Table 2, in the Supporting Information S1 (Tables S1–S4) and 
in the following subsections. The ANN which does not contain any convolutional or pooling layers was 
trained for comparative purposes. This baseline model flattens the input image and contains two hidden layers 
with 128 and 32 neurones, respectively.

2.4.1. A Modified LeNet Architecture

Here, an adaptation of the LeNet-5 model is first applied, since the model was designed for classification of gray-
scale images with smaller size, whereas recent CNN models that were designed for classification of color images 
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of larger size. Five modern advances in CNN architecture have been added to the LeNet-5 model to improve 
performance:

1.  3 × 3 convolutions were used instead of 5 × 5 convolutions, since these have a smaller receptive field and 
therefore can capture more complex features such as oscillatory zoning. This also reduces the number of 
trainable parameters by ∼25,000.

2.  Padding was used, where the images are padded with layers of zeros prior to convolution operations. This 
mitigates against the undesirable effect of convolutions causing pixels at the edge and corners of images to be 
used much less than pixels at the center, which may lead to information loss. Padding was only used in the first 
convolutional layer because, as the image dimensions reduces, information becomes more uniformly distrib-
uted across the image. Padding retains the height and width of images after a convolution has been applied.

3.  Use of ReLU activation functions, as opposed to the tanh functions used in the original LeNet-5 model. The 
ReLU activation function has become the preferred option in neural networks (Glorot et al., 2011; Krizhevsky 
et al., 2012; Nair & Hinton, 2010) because the logistic and tanh functions suffer from vanishing gradients (i.e., 
gradient descent struggles to converge because gradients can become very small).

4.  Max pooling was used instead of average pooling because the former has been shown to have stronger perfor-
mance in object detection (Ranzato et al., 2007; Scherer et al., 2010).

5.  Regularization approaches have been implemented to reduce the probability of model overfitting. Dropout 
regularization was applied to the CNN models developed in this study, with a dropout probability of 0.5 set 
during the training process. Data augmentation was performed in order to ensure that the CL images in the 
training data set represented the continuum of possibilities that may be encountered. Random rotation (0.2), 
zooming (0.4), and modification of brightness and contrast (0.2) of images were used (Figure S1 in Supporting 
Information S1). The latter two methods are particularly important since, during image acquisition, brightness, 
and contrast were empirically set and therefore models could be biased toward classifying by these criteria.

The LeNet architecture used here consists of seven hidden layers (Figure 3). The first convolutional layer C1 
applies 6 convolutions of 3 × 3, using a stride of 1, to produce 6 feature maps of 32 × 32. A pooling layer S2, uses 
max pooling to halve the number of pixels in the feature maps, hence outputting 6 feature maps of size 16 × 16. 
A second convolutional layer, C3, applies 16 3 × 3 convolutions using a stride of 1 to produce 16 feature maps of 
size 16 × 16. This is then max pooled by pooling layer S4 to produce an 8 × 8 image. The final convolutional layer 
C5 applies 32 3 × 3 convolutions to produce 32 8 × 8 images. The final pooling layer S6 then produces 32 4 × 4 
images. These images are flattened to form a one-dimensional pixel vector of 512 length. A fully connected layer, 
F7, is then used to map this into a 32-feature vector. A dropout layer is used in between with a dropout probability 
of 0.5. A final output layer, along with another dropout layer (p = 0.5) is used and, in the final layer, a sigmoid 
activation function is used to produce a probability between 0 and 1 for the binary output (i.e., whether the zircon 
image is derived from a porphyry Cu-related rock).

Overall, four versions of the LeNet-style architecture model were run, with differing components of regulari-
zation, in order to evaluate the contribution of these methods to improving performance. The four LeNet-style 

Figure 3. Schematic illustration of the LeNet-style convolutional neural network used in this study. Repeated sequences of 
convolution (C), max pooling (S) operations are applied to decrease the size of the image, while extracting the key features 
from the image. After each step, the dimension of the image is shown (width, height, channels). After the final max pooling 
layer, the image is flattened to produce a 512-dimensional vector, from which two fully connected layers (F) are used to 
predict the binary output. Between these F layers, dropout regularization is used with a probability of 0.5.
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models trained are: (a) no regularization; (b) dropout; (c) data augmentation; and (d) both. Batch normalization 
(Ioffe & Szegedy, 2015) was also tested, although this was found not to improve model performance.

2.4.2. AlexNet

Many of the more recently developed CNN architectures are likely too large and complex for this task given they 
are designed for large RGB images (e.g., 224 × 224 × 3) and for multiclass classification purposes (e.g., 1,000 
classes). After the introduction of LeNet-5, Krizhevsky et al. (2012) introduced a CNN architecture, known as 
AlexNet. This model contains five convolutional layers, three max pooling layers, and three fully connected 
layers. The model uses ReLU activation functions, data augmentation, and dropout.

A modified version of AlexNet was implemented, with two additional, fully connected layers to reduce the output 
to a binary classification. This model contains 10.3 million trainable parameters. Batch normalization was used 
after each convolutional layer to speed up the training process.

2.4.3. VGG and Transfer Learning

The VGG-16 CNN architecture contains 16 layers (13 convolutional layers and 3 pooling layers), and the convo-
lutional layers use small 3 × 3 convolutions (Simonyan & Zisserman, 2015). The model was originally built for 
classification of the ImageNet database (i.e., high resolution, multiclass images) and so a modified classification 
head was added to produce a binary output. The images here (64 × 64 × 1) were padded with zeros and converted 
to three channels (by duplicating the singular color channel to three channels) to meet the input dimension size 
for the model (224 × 224 × 3). In total, this model contains 14.8 million trainable parameters.

Due to the large size of this model, transfer learning was used in order to reduce training time and to test whether 
it may improve model performance. Transfer learning is when the weights of a pretrained model on a larger data 
set are used, and only the classification layer and possibly a few top layers of the CNN are trained from scratch. A 
common example, which is used here, is when large CNN models are being trained for image classification tasks; 
the weights can be initialized using pretrained weights on the ImageNet data set. The classification head that was 
added to this model consists of three fully connected layers which maps a 512-dimensional output to 128, 32 and 
finally a binary output.

2.4.4. Model Training

All models were trained using the Adam (Adaptive Moment Estimation) optimization algorithm for optimizing 
the minimum of the cost function (Kingma & Ba, 2017). A mini-batch size of 32 was used, meaning that weights 
were updated after 32 training examples had been passed through the network. These iterations continue until 
the entire training set has undergone a forward pass through the network, which is known as a training epoch. A 
learning rate of 0.001 was used (except for the VGG model), which determines the step size for each iteration of 
the training process.

During training of the VGG model, the VGG base model was frozen, so only the classification head was trained 
(69,825 trainable parameters), for 200 epochs with a learning rate of 0.001 (Figure  7). The model was then 
“fine-tuned” by unfreezing the final convolutional layer (a total of 2,429,633 trainable parameters) of the VGG 
model, and training for 20 more epochs at a lower learning rate (0.0001). Training the model for more epochs and/
or using a higher learning rate led to overfitting. Unfreezing additional layers of the VGG model was not found 
to further improve performance.

In all models, the cost function used was the binary cross-entropy loss function. During an epoch, each training 
example underwent data augmentation, where the image was randomly flipped, rotated, and contrast and bright-
ness adjusted. The accuracy, loss, and the receiver operating characteristic-area under curve (ROC-AUC) were 
evaluated after each training epoch. The focus was to train the models to optimize the ROC-AUC, since the ability 
to rank probabilities of porphyry zircons higher than batholith zircons is the most desirable metric if such models 
are to be applied to mineral exploration tasks. This metric is also better suited to class imbalanced data sets.

The CNN models in this study were built and applied using open-source machine learning packages for Python 
(Tensorflow v.2.6.0; Abadi et al., 2016 and Tensorflow-Keras v. 2.4.0; Chollet, 2015). Models (with exception of 
the LeNet model due to its small number of trainable parameters) were trained using a GPU to accelerate the train-
ing process. The training was run on Google Cloud (Google Colabatory) using a NVIDIA T4 GPU. The Python3 
code used for this study is available in annotated form as a Jupyter Notebook (see Data Availability Statement).
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3. Results
3.1. Zircon Textures

The zircons studied show a range of morphologies, sizes, and textures which vary between the different litholo-
gies (Figures 4 and 5 and Table 1). Zircons from the Yarabamba Monzonite, particularly sample QVC074, show 
a distinct morphology and texture (Figure 4a). These zircons are anhedral with irregular edges and often contain 
fractures. The majority of crystals in this unit are generally unzoned, large (>50 μm) crystals with a weak CL 
response surrounded by a bright, narrow rim. A smaller number of crystals in this unit are smaller (>50 μm), with 
a bright CL response, strong oscillatory zoning, and large amounts of mineral/melt inclusions. The Toquepala 
Granodiorite sample contains subhedral, small (>50 μm) zircons which are variably oscillatory zoned (Table 1 
and Figure 5). Zircons from the two Quellaveco Granodiorite samples (QVC028 and QVC058), the youngest 
member of the Yarbamba Batholith, are indistinguishable from the Quellaveco porphyry zircons (Figure 4c). 
These porphyry zircons show euhedral morphologies characterized by pyramidal and prismatic forms, are gener-
ally large (>70 μm and often >100 μm) and are strongly oscillatory and/or weakly sector zoned (Figures 4d–4f). 
A proportion of these zircons (𝐴𝐴 ∼ 20%) have small, unzoned cores surrounded by a strongly oscillatory zoned 
exteriors. In all units, a small to moderate proportion of zircon crystals contain inclusions which are predomi-
nantly apatite and melt inclusions.

Based on the association of rocks with mineralization, two populations of zircon were defined. The first popu-
lation, termed “porphyry,” includes all zircons from the Quellaveco porphyry rocks and the host granodiorite. 
The Quellaveco Granodiorite (the latest member of the Yarabamba Batholith) was included in this population 
since it displays geochemistry (both whole rock and zircon) akin to the porphyry intrusions and is thought to be 

Figure 4. SEM-CL images of zircon mounts from six representative samples showing the range of morphologies, sizes, and 
textures of zircons within the studied samples. The scale is identical for all six images.
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associated with minor mineralization in the district (Nathwani et al., 2021; Simmons, 2013). In addition, initial 
textural examination of the crystals indicates that the Quellaveco Granodiorite exhibits textures identical to the 
porphyry intrusions (comparing Figures 4c–4f). Therefore labeling these zircon images as porphyry-related will 
lead to a more robust classification model. The second population, termed “batholith,” includes the two intrusive 
phases of the Yarabamba Batholith which significantly predate mineralization (the Yarabamba Monzonite and 
Toquepala Granodiorite).

A total of 750 images are available in this data set, with 72 of these images (from two samples) withheld in the 
independent test set. Six hundred and seventy-eight images comprised the training and validation set and the 
“porphyry” and “batholith” populations yielded 409 and 269 images, respectively. These images were randomly 
split into training and validation subsets using an 80:20 ratio in order to test model performance after each train-
ing epoch.

3.2. Model Training and Validation

The accuracy and ROC-AUC of the training and validation data set generally increases after each training epoch, 
while the loss decreases (Figure 6). For the LeNet-5 and AlexNet models, with a smaller number of training 

Figure 5. Randomly selected images of zircons from four samples. QVC074 (Yarabamba Monzonite)—zircons are anhedral with dull, unzoned cores, and bright rims. 
QVC083 (Toquepala Granodiorite)—zircons are subhedral with more variable textures but often weakly zoned. QVC028 (Quellaveco Granodiorite) and QVC034 
(Early Porphyry)—zircons are euhedral with oscillatory zoning. For each image, the trained LeNet model output (p) is given above, which indicates the probability that 
the zircon belongs to the “porphyry” population as determined by the CNN. Note that these zircons are within the data set used to train the model. Images are converted 
from grayscale to viridis color scale to increase contrast.
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epochs (<100), the validation set performance generally exceeds the training set and the performances converge 
as the training process reaches 200 epochs (Figure 6 and Table 2). In cases such as this, where the validation 
performance exceeds the training performance, poor generalization is indicated, perhaps due to the small size 
of the data set and potentially due to the fact that dropout was turned off during the validation process so all 
neurones in the network were available (Srivastava et al., 2014). The CNN models greatly outperform the base-
line, where the baseline is the ANN without any convolutional or pooling layers (Figure 6).

Models with differing components of regularization show large differences in performance metrics on the vali-
dation data set (Figure S2 in Supporting Information S1 and Table 2). With no regularization, the performance 
(particularly the loss and ROC-AUC) decreases after 20 training epochs, indicating that the model has overfit 
the training data (Figure S2 in Supporting Information S1). Adding dropout regularization (with a probability of 
0.5) generally appears to mitigate against overfitting, and improves model performance. Adding data augmen-
tation also appears to improve model performance and, after 200 epochs of training, there is no evidence for 
overfitting. Combining dropout and data augmentation produces a similar to marginally better performance. This 

Table 1 
Summary of Samples Used in the Train and Test Data Sets for the Zircon CNN Models From the Quellaveco Porphyry Cu District

Sample Lithology Age (Ma) Train/test Zircon notes Classification n

QVC074 Yarabamba Monzonite – Train Anhedral, dark unzoned cores, bright rims Batholith 175

QVC075 Yarabamba Monzonite 67.18 ± 1.56 Test Anhedral-euhedral, variable zoning Batholith 46

QVC082 Toquepala Granodiorite 60.96 ± 1.39 Train Euhedral, oscillatory zoning Batholith 21

QVC083 Toquepala Granodiorite 61.64 ± 1.26 Train Euhedral, variable zoning Batholith 122

QVC028 Quellaveco Granodiorite 58.99 ± 1.20 Train Euhedral, strong oscillatory zoning Porphyry 103

QVC058 Quellaveco Granodiorite – Train Euhedral, strong oscillatory zoning Porphyry 43

QVC009 Granodiorite Porphyry – Train Euhedral, strong oscillatory zoning Porphyry 62

QVC034 Early Porphyry 54.40 ± 1.11 Train Euhedral, strong oscillatory zoning Porphyry 49

QVC024 Intermineral Porphyry 54.19 ± 1.10 Train Euhedral, strong oscillatory zoning Porphyry 64

QVC060 Intermineral Porphyry 54.88 ± 1.12 Train Euhedral, strong oscillatory zoning Porphyry 40

QVC061 Monzodiorite Porphyry 55.26 ± 1.15 Train Euhedral, strong oscillatory zoning Porphyry 30

QVC055 Late Porphyry 55.45 ± 1.16 Test Euhedral, strong oscillatory zoning Porphyry 25

QVC029 Late Porphyry 54.68 ± 1.12 Train Euhedral, strong oscillatory zoning Porphyry 41

Note. Ages are emplacement ages derived from the weighted mean of LA ICP-MS U-Pb zircon dates from Nathwani et al. (2021). Brief notes on the key textures of 
zircons in each sample are given plus the class label and the number of images used in the train or test sets.

Figure 6. Plots showing changes in accuracy, loss, and receiver operating characteristic-area under curve (ROC-AUC) during the training process. Metrics after each 
training epoch are shown, which is one complete pass of the training data set through the model. The similar metrics for both the training (blue) and validation (orange) 
suggests that the model has generalized the data well. The gray dashed line (baseline) indicates the validation data set performance of a fully connected artificial neural 
network (ANN).
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best performing LeNet model achieves an accuracy close to 0.8 and an ROC-AUC of 0.9, indicating that the 
model has a 90% probability of ranking a randomly selected “porphyry” zircon higher than a “batholith” zircon. 
The validity of these metrics based on a training-validation split was further tested by performing a fivefold 
cross-validation, where 80:20 splits were performed five times until all data appeared in the validation data set 
once. This yielded comparable performance metrics: an accuracy of 0.81 ± 0.02, a loss of 0.43 ± 0.06, and an 
ROC-AUC of 0.90 ± 0.03 (Table S2 in Supporting Information S1), suggesting the training-validation split and 
metrics are valid. Overall, the performance suggests that CNNs can effectively discriminate the two populations, 
and that employing regularization is paramount in producing models that generalize well.

The AlexNet model shows greater variability during the training process (Figure  7), likely due to the fact it 
contains 2 orders of magnitude more trainable parameters, which is substantial relative to the number of training 
examples and the mini-batch size. After 200 epochs, the model achieves a similar classification performance to 
the regularized LeNet-style models, with accuracy and ROC-AUC on the validation data set of 0.86 and 0.95, 
respectively (Table 2).

The transfer learning approach with the VGG-16 model generally shows the best performance, with accuracy and 
ROC-AUC scores of 0.88 and 0.96 on the validation set. This improved performance relative to other models is 

Table 2 
Summary of Model Architectures Implemented in This Study and the Performance Metrics for Training, Validation, and Testing of the Models

Model LeNet-5 LeNet-5 LeNet-5 LeNet-5 AlexNet VGG

Regularization None Dropout Data augmentation Dropout + data 
augmentation

Dropout + data 
augmentation + BatchNorm

Dropout + data 
augmentation

Parameters 22,029 22,029 22,029 22,029 10,347,009 (2,752) 14,784,513

Training From scratch From scratch From scratch From scratch From scratch Transfer learning

Train Loss 0.00 0.04 0.29 0.41 0.25 0.26

Accuracy 1.00 0.99 0.88 0.81 0.91 0.89

ROC-AUC 1.00 1.00 0.95 0.89 0.96 0.96

Validate Loss 0.96 0.73 0.30 0.31 0.31 0.24

Accuracy 0.82 0.81 0.83 0.88 0.86 0.88

ROC-AUC 0.89 0.91 0.95 0.94 0.95 0.96

Test Loss 2.90 0.43 1.36 0.59 1.09 0.40

Accuracy 0.69 0.83 0.69 0.75 0.56 0.86

ROC-AUC 0.81 0.91 0.74 0.88 0.79 0.93

Note. Parameters in parentheses indicate those which are nontrainable (from batch normalization).

Figure 7. A comparison of the performance of each model on the validation set during the training process. The baseline is the multilayer perceptron described in the 
text (i.e., with no convolutional layers or pooling layers). Note that the VGG16 model is trained for 20 more epochs at a lower training rate (0.0001) in which the final 
convolutional layer was unfrozen, which was found to improve model performance.
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largely caused by the “fine tuning” stage in which the model is trained for 20 further epochs at a lower learning 
rate with the final convolutional layer unfrozen.

3.3. Hyperparameter Selection

Building CNN models requires manual selection of a number of parameters that are not learned during the train-
ing process, known as hyperparameters. Typically, the optimal parameters will be selected by running several 
models with varying parameters and selecting the best model. In general, the size, stride, and number of convo-
lutional layers were selected in order to progressively, and evenly, decrease the image size, while simultaneously 
increasing the number of channels, because this has been shown to be optimal for CNNs (Krizhevsky et al., 2012; 
LeCun & Bengio, 1998). The models were adjusted and retrained with higher resolution images, of 64 × 64 pixels 
rather than 32 × 32 pixels. These images contain larger amounts of information, such as a more detailed record 
of zoning. However, using higher resolution images was found to not produce a discernible increase in model 
performance. Furthermore, the LeNet model with a 64 × 64 input contains 4.7 times as many trainable parame-
ters (156,645 compared to 33,765) and was thus more computationally expensive to run and also more prone to 
overfitting. In conclusion, using the lower resolution images was found not to result in a loss of useful information 
for classification purposes. Other hyperparameters that were tested were: the learning rate, the optimization algo-
rithm, the activation function, the effect of padding during convolutions, the stride of convolutions, and the kernel 
size. The full list of hyperparameters that were tested can be found in Table S5 in Supporting Information S1.

3.4. Model Testing

The trained LeNet model (with data augmentation and dropout) also performed well on the two independent test 
samples from the Yarabamba Monzonite (“batholith”) and the Late Quellaveco Porphyry (“porphyry”) showing 
comparable metrics to the validation set (Table 2). Examining the distributions of probabilities produced for 
each sample clearly shows that the bulk population lies greater than and less than the classification threshold 
for the “porphyry” and “batholith” rock, respectively (Figure 8). The trained AlexNet model performed slightly 
less well on the test set relative to its validation performance (accuracy = 0.56 and ROC-AUC = 0.79; Table 2 
and Figure 8). This poorer generalization is likely the result of the large number of model parameters relative 
to the number of images in the training data set. The transfer learning VGG-16 approach performed best on the 
test data set, producing comparable performance metrics relative to validation performance (accuracy = 0.86 
and ROC-AUC = 0.93; Table 2 and Figure 8). Therefore, the transfer learning approach appears to produce the 
best model generalization. The ability of a CNN model to better generalize when pretrained on the ImageNet 
data set highlights the ability for transfer learning to produce exceptional results even in the absence of a large 
training data set. This finding is in agreement with work in other fields such as remote sensing (Pires de Lima & 
Marfurt, 2020) and prospectivity mapping (Li et al., 2020; Wu et al., 2022).

In order to identify possible features of importance, it is possible to individually examine crystals in the data sets, 
to compare the true class label with the predicted label and its probability. Generally, the trained LeNet model 

Figure 8. Histograms showing the convolutional neural network (CNN) output probabilities for the two samples in the test data set, from the LeNet (includes dropout 
and data augmentation), AlexNet and VGG16 models. The loss, accuracy, and receiver operating characteristic-area under curve (ROC-AUC) for each model test are 
shown.
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confidently predicts an image as “porphyry” if the crystal is euhedral and exhibits oscillatory zoning (Figure 5). 
On the contrary, if a zircon crystal is anhedral and weakly zoned, the model predicts the image as “batholith” with 
high confidence. For more complex crystals, the model has lower confidence in its prediction. As an example, a 
strongly oscillatory zoned image that represents a fragment of a crystal, rather than an entire crystal, is misclassi-
fied (with low confidence), likely because the model is not familiar with this morphology.

3.5. Data Set Size and Transfer Learning

Relative to other studies implementing deep CNNs to solve computer vision tasks, the data set size here is 
relatively small. For example, it has been proposed that the number of training examples should be 10 times 
the number of parameters in a deep learning model (Miotto et al., 2018). The data set size here (678 images) is 
orders of magnitude less than the number of parameters in some CNN models (e.g., over 10 million for AlexNet). 
Therefore, training such large models is prone to overfitting and poor generalization (Nasir & Sassani, 2021), and 
may contribute to the strong performance of the transfer learning approach where only a fraction of parameters 
are adjusted. The implementation of data augmentation also likely plays a key role in improving generalization 
in the models trained here.

In order to evaluate the role of data set size on performance, the LeNet and VGG (transfer learning) models were 
retrained with progressively smaller, randomly subsampled data sets (Figure 9a and Figures S3, S4 in Support-
ing Information S1). Decreasing the data set size causes a progressive decrease in performance of the LeNet 
model, and leads to high variance of performance metrics during the training process (Figure 9a). With a data 
set greater than 400 images, the performance only shows marginal performance gains, suggesting data set size 
is a less strong limiting factor in model performance beyond this. The surprisingly high performance with only 
400 images, may be the result of the relatively low complexity of the crystal features that the models must recog-
nize in order to make correct predictions (e.g., crystal and zoning morphology). The transfer learning approach 
with the VGG-16 model (Figure 9b) also shows poorer performance with decreasing data set size. As discussed 
previously, the greater performance of this approach, relative to training the LeNet-5 model from scratch is 
evident here. Notably, this approach, regardless of the number of training examples, is able to achieve stronger 
performance after a short training time (50 epochs), demonstrating that the transfer learning approach can be used 
as a computationally cheaper methodology. Overall, with only a data set of 400 zircon CL images, our models 
perform well. A transfer learning approach serves as the best approach to overcome the challenges of small data 
sets, which may be particularly common in geoscience studies. Furthermore, our trained VGG-16 model may 
provide a useful weight initialization for future studies applying CNNs to classify crystal textures.

3.6. Feature Extraction

The strong performance of the LeNet model was assessed carefully to ensure that image discrimination was 
based on texture and/or morphology, rather than on undesirable features, such as contrast. One useful method for 

Figure 9. Comparison of receiver operating characteristic-area under curve (ROC-AUC) scores for (a) LeNet-5 and (b) 
VGG-16 transfer learning approaches, as the size of the data set is changed. The maximum size (max) is 678 images. The 
ROC-AUC for the validation set is shown. Note that the data set size is the sum of the training and validation sets. The 
vertical dashed line in b indicates when fine tuning of the model begins (for 20 epochs; see text for further details).
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evaluating the behavior of CNN models is to remove the final layer and extract results from the penultimate (fully 
connected) layer (Chen et al., 2016). In this instance, this approach will produce a 32-dimensional vector for each 
training example. The 32-dimensional outputs for all training examples then can be clustered using a dimension-
ality reduction algorithm; in this case, we implemented the UMAP algorithm (Figure 10), which uses manifold 
learning techniques (McInnes et al., 2020). The UMAP algorithm generates a probability distribution between 
high dimensional data points, where similar data are assigned a high probability and less similar data are assigned 
a low probability. These are then compared to probabilities in a low dimension space (e.g., 2D or 3D) and the 
algorithm minimizes the difference (measured by the cross-entropy cost function) between the two prob ability 
distributions. This dimensionality reduction technique has an advantage over principal component analysis in that 
it can capture nonlinear relationships. It is also commonly preferred to its predecessor, the t-distributed stochas-
tic neighbor embedding (t-SNE) algorithm, due to its speed and better ability to preserve global data structure 
(McInnes et al., 2020). The UMAP algorithm was implemented using the Python umap-learn package (v. 0.5.1; 
Sainburg et al., 2021).

Figure 10. Dimensionality reduction of the LeNet model's penultimate layer output (32-dimensional vector) for the training 
and test data set. The clustering algorithm used is the UMAP algorithm, which reduces the 32 dimensions into 3 dimensions 
(UMAP1, UMAP2, and UMAP3). (a) and (b) show 2D projections of UMAP embedding vectors and (c) shows 3D 
projection.
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The feature extraction results clearly show that samples QVC074 and QVC075 (both “batholith”) are the most 
distinct from all other samples, characterized by a predominance of diagnostic unzoned and anhedral zircon 
crystals. On the contrary, samples QVC082 and QVC083 (both also “batholith”) are less distinct, yet partly 
distinguishable, from the porphyry zircons; this is consistent with their subhedral shapes and weakly zoned 
textures. The “porphyry” zircons partly overlap and are partly distinct from the batholith zircons, in UMAP 
space, reflecting their tendency to be dominated by strongly zoned and euhedral zircons. As noted earlier, the 
Quellaveco Granodiorite zircons, which are derived from an intrusion which is transitional between batholith 
construction and porphyry formation, do not show any clear difference from the Quellaveco porphyry zircons. 
Another interesting observation is that the UMAP dimensions generally correspond to particular features of 
a zircon image where UMAP1, UMAP2, and UMAP3 are interpreted to reflect the crystal shape, frequency/
abundance of zoning, and the intensity of CL response, respectively. Overall, this feature extraction approach 
corroborates observational differences between zircons from each sample, and the ability of the model to discrim-
inate “porphyry” and “batholith” crystals based on real textural and morphological differences, thus providing 
important model understandability.

Another useful approach for evaluating CNN behavior is to extract the results from individual convolutional 
layers for a given training example (Chollet, 2017). For a randomly selected zircon, the output of intermediate 
layers in the LeNet-5 model was extracted and a subset of these are presented (Figure 11 shows 5 maps for the 
first six layers). Two more examples can be found in the Supporting Information S1 (Figures S5 and S6). It is 
evident that the first convolutional layer (C1) is extracts the larger scale features of a zircon crystal, such as the 

Figure 11. Feature maps extracted from the convolutional neural network (CNN) model for a zircon in the training data set. 
Each columns show the first five feature maps for each layer, with maps from deeper in the network from left to right. The 
labeled columns indicate the abbreviated layer name as shown in Figure 2. In the first layer (C1), the feature maps extract 
different edges from the image, such as particular zoning patterns, crystal morphology, and an apatite inclusion in the top 
portion of the crystal. The max pooling layers (e.g., S2) reduce the dimensionality of the image while capturing the key 
information. Moving deeper in the network, the feature maps become progressively less interpretable.
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crystal edges and the zoning patterns. In addition, the model is clearly able to recognize the presence of an apatite 
inclusion in the uppermost portion of the crystal. Pooling layers (e.g., S2) reduce the size of the feature extracted 
maps while preserving key features. On moving deeper in the network, the activations become increasingly more 
abstract and difficult to interpret. These layers are mostly encoding higher level features such as angles or corners.

4. Discussion
4.1. Petrogenetic Implications

The predominance of strongly oscillatory zoned zircons in the Quellaveco porphyry intrusions supports previous 
observations from other porphyry Cu systems (Chelle-Michou et al., 2014; Leslie et al., 2021; Lu et al., 2016; 
Pizarro et al., 2020). In addition, the occurrence of unzoned cores and strongly oscillatory zoned exteriors in 
some Quellaveco porphyry zircons is in accordance with studies of zircons in other porphyry Cu deposits (Lu 
et al., 2016). Similarly, more variable zircon textures (weakly/patchy zoned or homogeneous) in premineraliza-
tion batholiths which are not associated with porphyry Cu mineralization in the district have also been described 
previously, such as at Coroccohuayco, Peru (Chelle-Michou et al., 2014).

Although oscillatory zoned textures and euhedral crystal shapes appear to be particularly common in porphyry 
zircons (Aghazadeh et al., 2015; Buret et al., 2016; Chelle-Michou et al., 2014; Large et al., 2018, 2020; Lee 
et al., 2017; Loader et al., 2022), oscillatory zoning can be present in zircons from a variety of other granitoids 
(Corfu et al., 2003; Fowler et al., 2002; Hoskin, 2000). Generally, brighter oscillatory zones are characterized 
by higher concentrations of U, Th, and REEs (Fowler et  al., 2002). Hoskin  (2000) suggested that oscillatory 
zoning in zircon is driven by dynamics at the zircon/melt interface involving cation substitution, diffusion, and 
melt polymerization. Chemical heterogeneities are generated by the fast growth rate of a zircon crystal relative 
to the diffusion of high field strength element ions, reflecting kinetic factors rather than changes in mineral-melt 
partitioning (Hofmann et al., 2014). Recent modeling by Melnik and Bindeman (2018) showed that fluctuations 
in temperature and pressure during recharge and convection within magmatic systems can explain oscillatory 
zoning in zircon. They further added that oscillatory zoning in zircon is most readily produced in wet, crystal-rich 
magmas with temperatures <700°C. The oscillatory zoned nature of the Quellaveco porphyry zircons could 
therefore reflect the more evolved, cooler, fluid-saturated compositions of the Quellaveco magmas, compared to 
the hotter, intermediate, and the lower water contents inferred for the Yarabamba magmas (Nathwani et al., 2021).

Regardless of the origin, the ability to rapidly discriminate textural populations using CNNs may provide a novel 
and effective exploration approach. The outputs derived from such models could be used as an initial screening 
process and subsequently integrated with zircon trace element compositions (Loader et al., 2017; Lu et al., 2016; 
Zou et al., 2022) in assessments of porphyry copper potential, and would be especially effective for analysis of 
zircon concentrates separated from stream sediments.

4.2. Future Work

This work highlights the potential for automated textural recognition and the classification of zircons from 
porphyry Cu districts. Further work should also be done to train such models on a more diverse range of litholo-
gies that may be encountered in a porphyry district such as Quellaveco (e.g., more unmineralized intrusions and 
volcanic rocks). Testing of such models on detrital zircons in stream sediments should be done to test the poten-
tial of the approach for identifying porphyry zircons in catchment areas. These applications to detrital zircons 
may require additional work because further training of the models on detrital zircons may be required to yield 
model outputs invariant to loss of shape due to sedimentary transport. The approach can also be applied to other 
districts, and eventually can be applied on a broader scale to previously unexplored areas. If successful, such tools 
could be used, alongside whole rock geochemistry, zircon trace element chemistry, and geochronology, to assist 
in providing an assessment of porphyry Cu fertility. CNN classifiers could also be employed for studies on other 
indicator minerals, such as apatites, which show textural variability (Bouzari et al., 2016). The approach could 
also be applied to other petrological tasks, such as distinguishing crystal cargo populations erupted at volcanoes 
(Sheldrake & Higgins, 2021) and integrating this with geochemistry could help better constrain the evolution of 
magmatic plumbing systems. Further development of unsupervised CNN approaches also has significant poten-
tial to discriminate and cluster crystal populations for these purposes. Such methodologies are also applicable 
in sedimentology, where textures of grains can be used to constrain sedimentary provenance (Moral Cardona 
et al., 2005).
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5. Conclusions
This study has shown that CNNs provide a viable method for automated mineral texture recognition and discrim-
ination. The method was capable of distinguishing zircons from intrusions associated with Quellaveco porphyry 
Cu deposit, from zircons from the premineralization Yarabamba Batholith with reasonable accuracy. The results 
indicate that the porphyry zircons can be ranked at a higher probability of belonging to a “porphyry” rock than a 
batholith-derived zircon with an ∼85% success rate. This represents a novel approach to enable rapid discrimina-
tion of crystal populations in mineral exploration and provenance studies.

Data Availability Statement
The code and data for this study are available at https://github.com/ChetanNathwani/zirconCNN and archived at 
the point of submission at https://doi.org/10.5281/zenodo.7260821.
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