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ABSTRACT

Paper-based evaporation concentrators with linear and radial geometries are compared. A new method of finding approximate analytic
solutions of the advection–dispersion equation is proposed, based on the behavior of concentrators with infinite sources. Analytic approxi-
mations are compared with numerical solutions, and the advantage of radial concentration is highlighted: linear concentration rates scale
with the square root of the Péclet number Pe while radial rates scale with Pe itself, leading to faster radial concentration beyond a critical
value. Experiments are performed with Brilliant Blue FCF dye, using optical transmission and the Beer–Lambert law for quantitation. Dye
concentrations are chosen for operation in the linear absorbance regime. Radial concentration is demonstrated under ambient conditions on
filter paper disks with 60 mm diameter evaporation areas fed from a perimeter source, in a reverse of the well-known “coffee stain” experi-
ment. Airflow enhanced concentration in strips and wedges is compared directly, using laser-patterned chromatography paper. The advan-
tage of radial concentration is confirmed (and enhanced by diversion of concentrate to the corners of strips) and concentration factors
greater than �500 (the dynamic range of measurement) are obtained in ∼2 h using 30 mm long columns.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0129510

I. INTRODUCTION

Originally developed as spot tests for common conditions and
more recently proposed to improve healthcare in the developing
world, lab-on-paper1 has emerged as an essential diagnostic tool
during the COVID-19 pandemic.2 Development has been rapid.3

Flow channels have been defined by boundary shaping and
printing;4–6 programmable delays have been developed to control
flow or increase analyte–antibody binding times;7 and detection
has been achieved using optical transmission,8 colorimetric indica-
tors,9 and electrochemistry.10

Increases in sensitivity are desirable for dilute and trace-level
samples. Field-driven concentration methods include isotachopho-
resis, isoelectric focusing, field amplified sample stacking, and ion
concentration polarization.11,12 Solvent evaporation13,14 does not
require electrodes and has been used in microfluidics for concen-
tration15,16 and crystallization.17,18 The related problem of perme-
ation has been investigated,19,20 and pervaporation has been used
to explore phase diagrams.21–25 Evaporation-driven concentration
has also been demonstrated on paper.26–28 Evaporation may be
enhanced using airflow, and capillary flow may be halted in

extreme cases, allowing separation when flow resumes.29 Similar
evaporation-driven effects also occur in fluidic self-assembly30 and
in chloride ion concentration in concrete.31

Paper diagnostic devices overwhelmingly use linear flow, but
the potential advantages of other geometries appear to have
escaped detailed attention, despite the observation of enhanced
concentration at tips in star- and wedge-shaped layouts.26,27

Ignoring boundary effects, a wedge-shaped substrate is a sector of a
radial system. Radial flow has long been used in chromatography32

and leads to the well-known “coffee stain” effect when combined
with evaporation.33,34 Radial flow has, therefore, been of consider-
able interest,35,36 and chromatography theory37 has been adapted to
radial geometries.38 Similar radial dispersion problems have also
been studied in hydrology.39,40

This paper compares paper-based concentration using linear
and radial flow. In each case, the main difficulties are that analytic
solutions to advection–dispersion equations (ADEs) are difficult
to obtain, and repeatable experiments are hard to perform. Both
problems are tackled; new analytic solutions are found, and exper-
iments are developed to demonstrate the major effects occurring.
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The arrangement of the paper is as follows. In Sec. II, approxi-
mate, linear ADEs for are presented in 1D and 2D. In Sec. III,
numerical results for infinite sources are presented, a new method
for finding approximate analytic solutions is proposed, and the
theoretical advantages of radial concentration are established.
Some limiting assumptions are then revisited. In Sec. IV, details
of materials and equipment for fully radial concentration are
given. Concentration of dye from a perimeter source is then dem-
onstrated on filter paper under ambient conditions in a reverse of
the coffee stain experiment, using optical transmission to quantify
concentration. In Sec. V, details of equipment for airflow-
enhanced concentration are given. Concentration in strips and
wedges on laser-patterned chromatography paper are then com-
pared. In each case, experimental results are matched with theory.
Conclusions are drawn in Sec. VI.

II. ADVECTION–DISPERSION EQUATIONS

In this section, we present the equations for evaporation con-
centration in linear and radial geometries. The analysis follows
microfluidic models,24 with adaption to a porous substrate29 fol-
lowing the standard chromatography theory.37 The models are
highly simplified, with the aim of generating analytic solutions that
highlight the effect of geometry in the linear regime.

A. Geometries

The left-hand sides of Figs. 1(a) and 1(b) show linear and radial
concentration. In each case, a non-volatile solute is carried by a vola-
tile solvent from a source S to a concentration point C, where the
flow stagnates, with solvent evaporating between. We assume that
the substrates are horizontal, so gravitational effects may be
neglected, and ignore the third dimension. A strip-shaped substrate

should behave as half of a long strip fed from sources at either end.
Similarly, a wedge-shaped substrate should behave like a circular sub-
strate. Boundary effects might be expected; however, we ignore these
for simplicity. For practical reasons, a feed section may be needed to
connect the source. It is simple to incorporate one;25 however, we
omit this refinement on the grounds that it will be short.

B. 1D concentration

Usually, concentration is preceded by wetting, and many
authors have considered capillary flow in porous media.41–44

However, with moving boundary conditions, it is difficult to solve
ADEs and to measure concentration optically. We, therefore,
assume that the substrate is fully wetted at the start. This assump-
tion is not unrealistic; wetting takes minutes, while concentration
can take hours. In this regime, flow is no longer driven by capillary
effects, but by evaporation and the tension of water.

We also assume a uniform evaporation rate, allowing the flow
of solvent and solute to be decoupled. This simplification is
supported by more detailed models of evaporation from liquid
streams and porous media45–47 and is common in models of per-
meation19,20 and pervaporation.21–25 An exception is work by
Schindler and Adjari,24 who developed balance equations for
binary mixtures. However, they noted that the effect of coupling is
to render the evaporation rate, velocity, and diffusion coefficient all
functions of solute concentration. The analysis presented here is,
therefore, valid only for dilute solutions.

If the substrate has porosity ε and thickness d, and the total
evaporation flux from both sides is ve per unit area, solvent conti-
nuity implies that the velocity V in the �X direction is

V ¼ ve
d

� �
X ¼ 1

τe

� �
X: (1)

Here, X is the distance from C and τe ¼ d=ve is a characteristic
time constant. This variation is linear, as shown in the right-hand
side of Fig. 1(a), falling to zero at C.

We now consider the transport of a single solute with concen-
trations CL and CS in the liquid and solid phases. Although diffu-
sive dynamics are known to cause a non-Fickian form of diffusion
in channels,48 porous media,49,50 and micro-structured media,51,52

described by velocity-dependent axial and transverse diffusion coef-
ficients, we assume a constant scalar D for simplicity. We also
ignore the change in D resulting from the cooling effect of evapora-
tion, which may be estimated via the Stokes–Einstein relation. For a
flow velocity U in the þX direction, the continuity equation is

@CL

@T
þ F

@CS

@T
¼ D

@2CL

@X2
� @(UCL)

@X
: (2)

Here, T is the time, and F ¼ (1� ε)=ε is the volumetric ratio
of the stationary and mobile phases. The LHS describes accumula-
tion, and the RHS models describe diffusion and transport.
Substituting U ¼ �V , we obtain

@CL

@T
þ F

@CS

@T
¼ D

@2CL

@X2
þ X

τe

� �
@CL

@X
þ 1

τe

� �
CL, (3)

FIG. 1. Geometry (LH) and velocity profiles (RH) for (a) linear and (b) radial
concentration.

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 17, 014102 (2023); doi: 10.1063/5.0129510 17, 014102-2

© Author(s) 2023

https://aip.scitation.org/journal/bmf


where CS and CL are related by the adsorption isotherm
CS ¼ f (CL), which depends on the adsorption mechanism. For a
single solute, common models include linear, Langmuir (saturating),
Freundlich, and BET isotherms.53 For the linear isotherm,
CS ¼ aCL, where a is Henry’s coefficient. In this case, the continuity
equation becomes

1
Rf

@CL

@T
¼ D

@2CL

@X2
þ X

τe

� �
@CL

@X
þ 1

τe

� �
CL: (4)

Here, Rf ¼ 1=(1þ aF) is the retardation factor. We now
introduce a normalized time t ¼ T=τe and a normalized position
x ¼ X=XM , where XM is the substrate length to get

@CL

@t0
¼ 1

Pe
@2CL

@x2
þ x

@CL

@x
þ CL: (5)

Here, t0 ¼ Rf t and Pe ¼ X2
M

Dτe
is the Péclet number.54 A large

value of Pe ensures that advection can overcome back-diffusion to
achieve a locally high solute concentration. This ADE is more
complex than the well-studied form with uniform velocity and
constant coefficients. However, it corresponds to previous models
for microfluidic concentration and is extensible to nonlinear and
competitive adsorption.

C. 2D concentration

We now consider the ADE in the radial geometry. For inward
radial flow and uniform evaporation, the solvent velocity profile is

V ¼ 1
τe

� �
R
2
: (6)

Here, R is the distance from C. This variation is again linear,
as shown in the right-hand side of Fig. 1(b); however, the
maximum velocity is half that obtained for a strip substrate. For a
variable flow velocity U in the þR direction, the solute continuity
equation is

@CL

@T
þ F

@CS

@T
¼ D

@2CL

@R2
þ 1

R

� �
@CL

@R

� �

� @(UCL)
@R

þ 1
R

� �
UCL

� �
: (7)

Substituting U ¼ �V , introducing a normalized time and a
normalized position r ¼ R=RM , where RM is the substrate radius,
and assuming a linear isotherm, we obtain

@CL

@t0
¼ 1

Pe
1
r

� �
@

@r
r
@CL

@r

� �
þ r

2

� � @CL

@r
þ CL: (8)

Here, Pe ¼ R2
M

Dτe
is the radial Péclet number.

The linear and radial ADEs are different and, hence, must
yield different concentration profiles. In each case, CS can be
found from the isotherm once CL is known, and the average con-
centration CAV (which is optically measurable) is evaluated as

CAV ¼ εCL þ (1� ε)CS. For linear adsorption, CAV ¼ kCL, where
k ¼ εþ a(1� ε).

ADEs with constant coefficients have been solved by change
of variables, Laplace transforms and numerical integration, and
solutions are known in hydrology for many boundary conditions
and initial conditions.55 The main difficulties are to identify substi-
tutions, invert transforms, and integrate stiff equations. Less atten-
tion has been paid to ADEs with spatially variable coefficients,
although solutions exist for fortuitous combinations arising from
Taylor dispersion.56,57 Analytic approximations21–25 and numerical
solutions24 have also been presented for the linear and nonlinear
cases, respectively.

III. SOLUTION OF THE ADEs

In this section, we first provide numerical solutions to the
ADEs and review existing approximations. We then develop new
approximations for the full concentration profile.

A. Numerical solutions and approximations

Assuming abrupt connection to a reservoir at concentration
CL0, the boundary conditions in the linear case are CL(x, 0) ¼ 0;
CL(1, t0) ¼ CL0 and @CL=@xjx¼0 ¼ 0 and the solution requires inte-
gration over 0 � x � 1, 0 � t0t0max . Boundary conditions are similar
in the radial case, replacing x with r. Numerical solutions are
obtained in Matlab using the function “pdepe,” which can integrate
parabolic and elliptic partial differential equations. The blue lines
in Figs. 2 and 3 show concentration profiles on a logarithmic scale
at different normalized times Δt0 ¼ t0 � t0F for 1D and 2D concen-
tration, respectively, assuming that Pe ¼ 500. Here, t0F is the filling
time, discussed below.

Near the reservoir (x, r � 0) all curves tend to a steady
profile. In this region, approximate solutions CLx and CLr for the

FIG. 2. Theoretical profiles for 1D concentration. Blue lines show numerical
results. Green and red lines show approximations for the ramp and concentra-
tion peak.
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two cases can be obtained by neglecting time variation and diffu-
sion, as

CLx

CL0
� 1

x
;

CLr

CL0
� 1

r2
: (9)

These solutions are shown in green in Figs. 2 and 3. They
match the numerical results well in the ramp regions but poorly
elsewhere. The solution for the 1D geometry is known as the
hyperbolic ramp.21–24 In each case, concentration rises gradually
with distance from the reservoir, but unfortunately tends to infinity
at the origin. The rise is clearly faster for the radial case.

Near the origin (x, r � 1), the profiles are Gaussian, with a
peak value that increases linearly with time. Here, the following
approximate solutions are valid,

CLx

CL0
� (t0 � t0Fx)

p 2Pe
π

� �
e�x2Pe=2;

CLr

CL0
� (t0 � t0Fr)

Pe
4
e�r2Pe=4:

(10)

Here, t0Fx and t0Fr are normalized filling times. Once again, the
solution for the 1D geometry is already known.21 These solutions
are shown in red in Figs. 2 and 3. They match the numerical pro-
files near the concentration peak but are clearly inaccurate else-
where. The peak is clearly wider in the radial case but, despite this,
concentration factors are much larger.

Filling times may be estimated by matching the peak concen-
trations CLMx ¼ max(CLx) and CLMr ¼ max(CLr) from Eq. (10) to
numerical results. The full and dotted lines in Fig. 4 show numeri-
cal and analytic variations for 1D (LH) and 2D (RH) concentration
and two values of Pe. In each case, the numerical variations gradu-
ally tend to the linear approximations, and the longer filling times

but larger concentration rates achieved in the radial case should be
noted.

The points in Fig. 5 show the variations with ln (Pe) of nor-
malized filling time obtained by this matching, together with
straight-line fits that allow the following analytic estimates:

t0Fx � ln
ffiffiffiffiffi
Pe

p� �
; t0Fr � ln (Pe=2): (11)

Again, the expression for t0Fx is known.25 The estimates are
accurate unless Pe is small. For Pe . 4 (a trivial value), the filling
time is longer for the radial case.

FIG. 3. Theoretical profiles for 2D concentration. Blue lines show numerical
results. Green and red lines show approximations for the ramp and concentra-
tion peak.

FIG. 4. Variations of peak concentration with normalized time for 1D (LH) and
2D (RH) concentration. Full lines show numerical results, and dotted lines show
analytic approximations.

FIG. 5. Variation of 1D and 2D filling times with ln(Pe). Points show estimates
from numerical solutions; lines show analytic estimates.

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 17, 014102 (2023); doi: 10.1063/5.0129510 17, 014102-4

© Author(s) 2023

https://aip.scitation.org/journal/bmf


B. New analytic approximations

The approximations above are not satisfactory since they do not
allow complete concentration profiles being drawn. We now develop
new solutions that avoid this problem. To do so, we assume at the
outset that the profile after filling can be written as the sum of time-
varying and static parts. In the linear case, we, therefore, write for
t0 . t0Fx ,

CLx(x, t
0) � (t0 � t0Fx)C1(x)þ C2(x): (12)

Substitution into the ADE then yields the ordinary differential
equation,

C1 � (t0 � t0Fx)
1
Pe

d2C1

dx2
þ x

dC1

dx
þ C1

� �
þ 1
Pe

d2C2

dx2
þ x

dC2

dx
þ C2:

(13)

Since the time-dependent terms must vanish separately, C1

must satisfy

1
Pe

d2C1

dx2
þ x

dC1

dx
þ C1 ¼ 0: (14)

Direct substitution shows that

C1(x)
CL0

¼ A exp �Pe
x2

2

� �
: (15)

To match the filling rate for unit strip width, solute conserva-

tion requires that
Ð 1
0 C1 dx ¼ CL0 � 1 so that A ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2Pe=π
p

. This
result implies that the time-varying solution corresponds exactly to
the upper of Eq. (10). The function C2 must then satisfy

1
Pe

d2C2

dx2
þ x

dC2

dx
þ C2 ¼ CL0

ffiffiffiffiffiffiffi
2Pe
π

r
exp

�x2Pe
2

� �
: (16)

Surprisingly, this inhomogeneous equation can be integrated
directly. Assuming the boundary conditions C2 ¼ @C2

@x ¼ 0 on
x ¼ 0, we obtain

C2(x)
CL0

¼ Pe exp
�x2Pe

2

� �ðx
0
erf y

ffiffiffiffiffi
Pe
2

r !
exp

y2Pe
2

� �
dy: (17)

It is simple to show that this result approximates a hyperbola
as x ! 1, but the overall variation is now a realistic bounded func-
tion that tends to zero as x ! 0.

Performing a similar procedure for the radial case but now
assuming that CLr(r) � (t0 � t0Fr)C1(r)þ C2(r) for t0 � t0Fr and
requiring that

Ð 1
0 C1 2πr dr ¼ CL0 � 2πr � 1=2 (where the factor of

½ arises from the radial velocity profile) leads to

C1(r)
CL0

¼ Pe
4
exp

�rPe2

4

� �
: (18)

This result implies that the time-varying solution corresponds
exactly to the lower of Eq. (10). Substitution and integration
then yields

C2(r)
CL0

¼ Pe
4

� �
exp

�r2Pe
4

� �
ei

r2Pe
4

� �
� ln

r2Pe
4

� �
� γ

� �
: (19)

Here, ei(x) ¼ Ð x�1
et
t dt is the exponential integral and

γ � 0:57721 is the Euler–Mascheroni constant. Equation (19)
tends to 1=r2 as r ! 1, but the overall variation has again been
replaced by a bounded function.

Figures 6 and 7 show these analytic solutions at different nor-
malized times Δt0 for linear and radial concentration, respectively,
again assuming that Pe ¼ 500. These results should be compared
with Figs. 2 and 3.

The new solutions present physically realistic approximations
for the entire concentration profile and (despite some inaccuracy
for small Δt0 ) tend to the numerical variations as Δt0 increases.

Using the analytic solutions, the filling times may be estimated
as

t0Fx ¼
Ð 1
0 C2 dxÐ 1
0 C1d x

; t0Fr ¼
Ð 1
0 C2 2πr drÐ 1
0 C1 2πr dr

: (20)

Numerical integration shows that these expressions agree well
with Eq. (11) and Fig. 5.

We have not been able to perform an analytic integration;
however, we note that Eqs. (17) and (19) may be approximated as

C2(x)
CL0

� 1� e� x
ffiffiffiffiffiffiffi
Pe=2

p	 
3
x

;
C2(r)
CL0

� 1� e�
1ffiffi
2

p Per
2
4ð Þ2

r2
: (21)

These expressions highlight the limiting behavior near the
source and stagnation point more clearly. Usefully, they may both

FIG. 6. New approximate theoretical profiles for 1D concentration, at different
normalized times.

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 17, 014102 (2023); doi: 10.1063/5.0129510 17, 014102-5

© Author(s) 2023

https://aip.scitation.org/journal/bmf


be integrated analytically, to yield

t0Fx � ln
ffiffiffiffiffi
Pe

p� �
þ γ

3
� ln(2)

2

� �
;

t0Fr � ln
Pe
2

� �
þ γ

2
� ln 4

ffiffiffi
2

p	 

2

( )
:

(22)

In each case, the first term may be recognized as the corre-
sponding filling time in Eq. (11), confirming the dependence on
Pe. The second term is a small constant error, which has the
numerical value −0.1541 in the 1D case and −0.5778 in the 2D
case.

Although the 1D geometry has a shorter filling time, a flatter
ramp, and a sharper concentration peak, these results imply that
the radial geometry concentrates more quickly after filling. In fact,
the ratio of the peak values CLMr and CLMx for t0 � t0F is

CLMr

CLMx
�

ffiffiffiffiffiffiffiffi
πPe
32

r
: (23)

This ratio is unity for Pe � 10 and 10 for Pe � 1000.
Radial-flow evaporation concentrators are, therefore, fundamentally
more effective than linear concentrators, and this advantage is clear
in the earlier Fig. 4. The only uncertainty is whether a suitably high
Pe can be achieved experimentally before permeability effects limit
capillary rise to an intermediate stagnation point.29 We now
confirm this is the case.

C. Model limitations

We now consider three limitations of the model. First, the
analyte supply is likely to be finite. ADEs can always be solved
numerically for such cases. For example, the blue lines in Fig. 8

show concentration profiles at different times for a 1D concentrator
with Pe ¼ 1000, assuming injection of an analyte slug for a time
Δt0 ¼ 0:25 followed by pure solvent. Solute may be seen entering
from the source until t0 ¼ Δt0; after this, it travels to the origin by
solvent pumping. The concentration peak now tends to a steady
state, which from previous analysis must clearly be CLx � Δt0C1(x).
The prediction of this expression is shown in green in Fig. 8; the
agreement with the final numerical curve is exact. A similar result
is obtained for radial flow, confirming retention of its geometric
advantage for a finite supply.

Second, the velocity spread inherent in porous media results
in Taylor dispersion, often modeled by an effective axial diffusion
coefficient Da ¼ D(1þ κVm), where D is the molecular coefficient,
V is the velocity, and κ and m are constants. For the velocity
profile in a 1D concentrator, this can be written as
Da ¼ D(1þ αxm), where α ¼ κ(XM=τe)

m. The effect of a varying
diffusion coefficient Da ¼ Df (x) is then to modify the ADE to

@CL

@t0
¼ 1

Pe

� �
@

@x
f
@CL

@x

� �
þ x

@CL

@x
þ CL: (24)

The previous method allows solutions for C1 and C2 to be
found for the infinite source case, for both m ¼ 1 and m ¼ 2. The
expressions are complicated, so here we give only those for C1,

m ¼ 1; C1 ¼ A ePe
{log(1þαx)�αx}

α2 , (25)

m ¼ 2; C1 ¼ A

(αx2 þ 1)
Pe
2α

: (26)

Here, A is a constant chosen to conserve the quantity of
solute in the peak and is most easily found by numerical

FIG. 7. New approximate theoretical profiles for 2D concentration, at different
normalized times.

FIG. 8. Theoretical profiles for 1D concentration at different normalized times
assuming injection of a finite slug followed by pure solvent (blue); steady-state
peak shape (green).
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integration. Figure 9 shows this solution for Pe ¼ 1000, m ¼ 1,
and different α.

The effect of increasing α is to broaden the concentration
peak and reduce the concentration rate. However, because the
velocity is inherently low near the origin, large values are required
to make a significant difference. A similar ADE may be constructed
for radial concentrators; this can be solved numerically, but we
have so far failed to find analytic solutions.

Third, non-uniform evaporation may give rise to a nonlinear
normalized flow velocity profile g(x). In this case, the ADE modi-
fies to

@CL

@t0
¼ 1

Pe
@2CL

@x2
þ @(gCL)

@x
: (27)

The previous method again allows solutions for C1 and C2 to
be found for the infinite source case. Assuming the polynomial var-
iation g(x) ¼ a1x þ a2x2 þ a3x3 � � � the solution for C1 is the modi-
fied Gaussian concentration profile,

C1 ¼ Aexp �Pex2
a1
2
þ a2

3
x þ a3

4
x2 . . .

� �n o
: (28)

For evaporation profiles varying mainly near the source, the
effect on the peak shape is also small.

IV. RADIAL CONCENTRATION

In this section, we demonstrate radial concentration using
water-soluble dye on filter paper disks. There are several experi-
mental difficulties. The first is to provide a peripheral source, and
a repeatable geometry was achieved by paper cutting on a jig. The
second is to measure dye concentration. This can be estimated
from optical transmission. However, variations due to changes in
paper morphology are difficult to avoid. Measurements were,

therefore, only carried out when substrates were mechanically sta-
bilized. The third is to obtain a suitable dynamic range of concen-
tration. Trials were, therefore, carried out with different dye
concentrations. The last is to control ambient conditions.
Temperature and humidity are unrepeatable without an environ-
mental chamber. These parameters were, therefore, simply moni-
tored as in the range 20–22 °C and 45–65% RH using a
temperature and humidity meter (Type 971, Fluke).

A. Materials

Concentration was carried out on 90 mm diameter Qualitative
Circles (1001090, Whatman, Little Chalfont, UK, thickness
180 μm, pore size 11 μm). The solute was the water-soluble triphe-
nylmethane dye Brilliant Blue FCF (erioglaucine disodium salt or
C37H34N2Na2O9S3, also known as acid blue 9, E133, and CI
42090), used as a food dye and as a tracer in soil science. Its diffu-
sion coefficient is known to be D ¼ 5:68	 10�10 m2=s.58 Dye was
obtained at ≥97% purity (80717, Sigma Aldrich, St. Louis, USA)
and dissolved in de-ionized water to form stock solutions. Its retar-
dation factor on Whatman paper is quoted as close to unity,34 and
we have verified it as Rf � 0:98.29

Absorbance was measured over a wide concentration range
using an Ultrospec III UV-visible spectrophotometer (Pharmacia
LKB Biotechnology AB, Uppsala, Sweden). The upper plots in
Fig. 10 show normalized spectra at low (1:09 μg=ml) and high
(558 μg=ml) concentrations using liquid cells. In each case, absor-
bance peaks at 630 nm. It follows that spatial maps of dye concen-
tration can also be deduced by monitoring the red channel of any
imaging sensor producing an RGB image. There are smaller peaks
near 310 and 410 nm, implying that there will also be smaller
changes in the blue channel.

Figure 11 shows the variation of absorbance at 630 nm with
concentration obtained using 0.2 mm thick liquid-filled cells and
0.18 mm thick dye-wetted paper strips, with the former rescaled to

FIG. 10. Spectral variation of absorbance for Brilliant Blue (upper) and sensitiv-
ity for Dino-Lite image sensor (lower).

FIG. 9. Peak profiles for 1D concentration with Pe ¼ 1000, m ¼ 1, and differ-
ent values of the Taylor coefficient α.
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match thickness. While some minor nonlinearity is apparent at
high concentration, the Beer–Lambert law can be used to deduce
concentration from measured absorbance.8 The spectra in Fig. 8
are almost identical, and spectra for the liquid-filled cells and
wetted paper strips (not shown) are also very similar. Hence, peak
shapes and positions are unaffected by dye concentration or a
paper substrate.

Concentration experiments were monitored by measuring
transmission with a Dino-Lite AM2011 Basic digital microscope
(AnMo Electronics Corp., Taipei, Taiwan), using white
InGaN-on-sapphire LED striplights for illumination (LuckyLight,
Shenzhen, China). The spectral variation in sensitivity of any
image sensor is determined by its color filter array (CFA), and the
characteristics of the Dino-Lite sensor were investigated by imaging
monochromatic light from the spectrophotometer. The lower plots
in Fig. 8 show the normalized sensitivities of the red, green, and
blue channels, which agree well with the published data for other
Bayer pattern CFAs.59 The red channel variation is an excellent
match to the dye absorption peak; however, all three channels are
broadband, and polychromatic measurements are well known to
yield apparently nonlinear variations at high absorbance.60,61 Very
dilute dye solutions (�0:8 μg=ml) were, therefore, used to keep
absorbance in the linear regime and light intensity within the
dynamic range of the sensor even at high concentration.

B. Apparatus

Figure 12 shows a schematic of the equipment used. The
paper was held horizontally between two rapid prototyped sup-
ports, designed to allow suspension of a portion with diameter
Dmax ¼ 2Rmax ¼ 60 mm above a white LED striplight. The lower
support contained an annular reservoir linked to the evaporation
section by a 5 mm-long non-evaporative feed, and the upper
support contained 24 slots and holes to act as scalpel guides and
allow dye injection. Gentle airflow from a 22 CFM axial fan
(D481T-012KA-3, Micronel AG, Zurich, Switzerland) placed

nearby was used to avoid air stagnation. Transmission was mea-
sured by time-lapse photography using the digital microscope.
Matlab was used to locate the center and radius of the evaporation
region in digital images and extract the brightness along a diame-
ter. Averaging and Gaussian smoothing was used to improve
signal-to-noise ratio. Relative transmission was obtained by com-
parison with a reference image and converted to absorbance.
Relative dye concentration was then estimated by comparison with
calibration measurements.

C. Results

Exact circular symmetry was impossible to obtain due to
anisotropy in the cellulose microstructure, which follows the
so-called machine- and cross-directions.32 Anisotropic swelling
increases expansion in the cross-direction and this, in turn,
creates surface wrinkles. Anisotropic permeability then leads to
faster capillary filling in the machine direction and elliptical con-
centration spots, with principal axes parallel and perpendicular to
wrinkles. A single drop of water was, therefore, first used to iden-
tify the machine direction, and the principal directions were
aligned to x- and y-axes of the optical system. Figure 13(a) shows
the orientation process; the fast-flow direction is vertical. Scalpel
cuts were then made to allow the paper to be folded into the res-
ervoir, and the substrate was wetted. The reservoir was then filled

FIG. 13. Radial concentrator: (a) identification of the machine direction,
(b) complete rig after concentration, and (c) correlation of concentration ellipse
with the machine direction.

FIG. 11. Variation of peak absorbance with concentration for Brilliant Blue.

FIG. 12. Arrangement for radial concentration.
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with dye solution and concentration was carried out. Figure 13(b)
shows the rig after an experiment; the concentrate is clearly
visible at the paper center. Figure 13(c) shows a concentration
spot. The ellipse is correlated with paper anisotropy, with the
minor axis in the fast-flow direction.

The blue lines in Fig. 14 show typical concentration profiles
for the major axis on a log scale at the times shown in minutes up
to 10 h. Profiles follow theoretical predictions. There are two peaks
during filling, which merge as concentration proceeds. The
maximum measurable concentration factor is �600, the limit of
dynamic range.

Theory was matched to the experiment as follows. There is
only one free parameter, the evaporation rate, which determines
the time constant τe. This can be written in terms of the Péclet
number as τe ¼ R2

M=PeD. Normalized time is determined from
actual time as t0 ¼ Rf T=τe, while normalized filling time is
t0Fr � ln (Pe=2). Pe was, therefore, adjusted using known values of
Rf , D, and RM to match the peak at the longest time shown.
There is some noise in perimeter regions caused by paper granular-
ity, and some oscillations caused by mechanical changes. Both
degrade the ramp profile, but a good match is obtained to a
Gaussian distribution near the concentration peak (red line) and to
the full profile (green line) for Pe � 500. Similar results were
obtained for the minor axis, but with a small increase in Pe. These
results confirm the basic principles of inward radial concentration.

V. COMPARATIVE CONCENTRATION

In this section, we compare linear and radial concentration on
patterned substrates. The first difficulty is again measurement and
control of the evaporation rate. Concentration was, therefore, mea-
sured for strip and wedge shapes on a common substrate, using
flow parallel to a common axis, under conditions when the

temperature and humidity must be identical. The second is to
provide a repeatable geometry. Wax and laser patterning were com-
pared, and similar results were obtained in each case. However,
laser patterning gave improved edge definition and was, therefore,
used in the results that follow.

A. Materials

Figure 15(a) shows the substrate layout, which contained adja-
cent parallel and tapered columns of length Xmax ¼ 30 mm and
width W ¼ 8 mm. In each case, a short (5 mm) non-evaporative
feed section linking to a wick inserted into the reservoir was
incorporated.

The substrate was 1 Chr paper (3001-845, Whatman, thick-
ness and pore size 0:18 mm and 11 μm), which has the fast-flow
direction parallel to the long axis of the paper. Patterning was
carried out with a Lotus Blu 100 CO2 laser (Lotus Laser Systems,
Basildon, UK). The solute was again Brilliant Blue FCF, at a similar
initial concentration.

B. Apparatus

Figure 15(b) shows a schematic of the equipment used, which
consisted of a nylon support designed to fit in a Perspex tube. The
support was machined to contain a reservoir and an LED striplight,
and the upper surface of the tube was replaced with a microscope
slide to improve imaging. The substrate was folded to define canti-
lever and feed sections and taped to a thin, translucent, hydropho-
bic polymer sheet (which provided mechanical support, but
restricted evaporation to one surface) above the striplight, with the
feed linking to the reservoir. The support was then inserted into
the tube.

This arrangement provided a rectangular duct with walls
�2 mm from the paper on either side. Airflow was induced using
the axial fan, linked to the duct by a tapered adaptor. The substrate
was prefilled with water and concentration was monitored by time-
lapse photography. Figure 16(a) shows laser-patterned paper

FIG. 15. (a) Layout of patterned substrates; (b) arrangement for concentration
on strip- and wedge-shaped devices.

FIG. 14. Concentration profiles on filter paper. Blue lines show measured data;
red and green lines show theoretical fits to the concentration peak and full
profile.
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devices, Fig. 16(b) shows a substrate mounted for measurement,
and Fig. 16(c) shows the complete rig. Images were processed by
extracting the brightness along lines through device centers and
analyzing results as before.

C. Results

Some departures from ideal behavior were again noted.
Figure 17 shows photographs during initial wetting, at the times
indicated. There is minor evidence of width-dependent flow, but
flow profiles across both channels are largely flat.

Similarly, Fig. 18 shows concentration profiles from a typical
experiment, plotted in 3D. Here, the strip channel is on the left and
the wedge on the right. The wedge concentrates as expected, but
there is clear evidence of concentration at the strip corners, which
must act as stagnation points for locally radial systems. This effect
must reduce 1D concentration rates, but some mitigation was
achieved using relatively wide strips.

The blue lines in Figs. 19 and 20 show the corresponding con-
centration profiles at the times indicated in minutes up to 1 h

40 min, which confirm an increase in ramp slope and concentra-
tion rate for the wedge geometry.

The points in Fig. 21 compare the time variation of peak con-
centration in each case. These data confirm the advantage of the
radial geometry: although the filling time is longer, the concentra-
tion rate after filling is higher, and a peak concentration factor of
�580 is demonstrated. Similar results were obtained in repeated
experiments, with exact details depending on the Péclet number.

Theory was matched to experiment as before, using in addi-
tion the 1D filling time t0Fx � ln

ffiffiffiffiffi
Pe

p	 

. However, it was difficult to

match both sets of data using a single fitting parameter. Instead, Pe
was estimated by matching theory to 2D data, and then used to

FIG. 16. (a) Laser-patterned substrates, (b) substrate on support, and (c) com-
plete rig.

FIG. 17. Time-lapse photographs of initial wetting.

FIG. 18. 3D presentation of typical concentration profiles.

FIG. 19. 1D concentration profiles. Blue lines show measured data; red and
green lines show theoretical fits to the concentration peak and full profile.
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predict 1D results. The red profiles in Figs. 17 and 18 show
Gaussian concentration peaks (red lines) and full profiles (green
lines) for Pe � 2000. This value is 4x larger than that in Sec. V B,
despite the use of single-sided evaporation. Similarly, the dashed
lines in Fig. 19 show the approximate linear variations of peak con-
centration. For the wedge, the experimental concentration profile
and rate both agree reasonably with theory. For the strip, experi-
mental results lie below theoretical estimates. This poor perfor-
mance is ascribed to diversion of concentrate to strip corners.
However, the qualitative agreement between theory and experiment
is reasonable given the omission of anisotropy and edge effects.

VI. CONCLUSIONS

Paper-based evaporation concentrators with linear and radial
geometry have been compared. Approximate analytic solutions to
advection–dispersion equations have been presented for complete
concentration profiles using infinite sources. These show that 1D
concentration rates scale as

p
Pe, while 2D rates scale as Pe. Radial

concentration, therefore, involves longer initial filling times but
then quickly offers faster concentration. Radial concentration has
been demonstrated on filter paper fed from an “infinite” perimeter
source using optical transmission through dye for quantitation, in a
reverse of the “coffee stain” experiment. Under ambient conditions,
concentration factors of several 100 were obtained on 60mm
diameter substrates in timescales of 10 h. Airflow-enhanced con-
centration has been compared in strips and wedges, using a laser-
patterned chromatography paper. The faster concentration of
wedge geometries has been confirmed and high (.500) concentra-
tion factors have been demonstrated on a timescale of 2 h using
30 mm long columns. This advantage is only increased by diversion
of concentrate to corners in strip-shaped columns.

Further work is required to describe and exploit this effect.
More realistic kinetics must be included in evaporation, flow, and
diffusion models, together with anisotropy and boundary effects,
and the consequence of saturating and competitive adsorption at
high concentrations must be understood. Exact analytic solutions
to ADEs with spatially varying, nonlinear coefficients are then
required for different initial conditions. Anisotropy could be miti-
gated using alternative porous media such as thin-layer chromatog-
raphy substrates. Applications might lie in reconcentration of
adsorbed samples using pure solvent (for example, of blood spots
in blood analysis devices62). Applications for wedge-shaped devices
may be as pre-concentrators for tapered spray sources,63 and con-
centration effects may explain the results observed for paper spray
with extended solvent supply.64
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FIG. 20. 2D concentration profiles. Blue lines show measured data; red and
green lines show theoretical fits to the concentration peak and full profile.

FIG. 21. Time variation of peak concentration in 1D and 2D. Points show exper-
imental data; dashed lines show theory.
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