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Abstract— In this paper, we propose a novel object-level
mapping system that can simultaneously segment, track, and
reconstruct objects in dynamic scenes. It can further predict
and complete their full geometries by conditioning on recon-
structions from depth inputs and a category-level shape prior
with the aim that completed object geometry leads to better
object reconstruction and tracking accuracy. For each incoming
RGB-D frame, we perform instance segmentation to detect
objects and build data associations between the detection and
the existing object maps. A new object map will be created for
each unmatched detection. For each matched object, we jointly
optimise its pose and latent geometry representations using
geometric residual and differential rendering residual towards
its shape prior and completed geometry. Our approach shows
better tracking and reconstruction performance compared to
methods using traditional volumetric mapping or learned shape
prior approaches. We evaluate its effectiveness by quantitatively
and qualitatively testing it in both synthetic and real-world
sequences.

I. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) research
aims to concurrently estimate both the scene geometry of
the unknown environment as well as the robot pose within it
from the data of its on-board sensors only. It has rapidly pro-
gressed from sparse SLAM [1], [2] into dense SLAM [3], [4],
and recently into semantic object-level SLAM [5], [6]. This
fast-evolving research has enabled many robotic applications.
Despite this, most SLAM research still assumes a static
scene, where points in the 3D world maintain constant spatial
positions in a global coordinate. Any information violating
this assumption, such as moving objects in the environment,
would be treated as outliers and are intentionally ignored in
tracking and mapping steps.

This setup, however, can only handle a small amount of
dynamic elements, excluding itself from many real-world
applications as environments, particularly where humans are
involved, are continually changing. A robust SLAM system
capable of handling highly dynamic environments, therefore,
is desirable. Most current dynamic SLAM research can be
categorised into three main directions. One maps the whole
changing world in a non-rigid deformable representation
to deal with the changing topology of deformable/moving
objects [7]. The second aims at improving the robustness
and accuracy of camera tracking by ignoring all possibly
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Fig. 1. Given RGB-D images, our system builds object-level dense dynamic
maps that can robustly track camera pose and object poses while completing
the missing sensor information using object priors. Compared to the classic
TSDF maps, our object maps fill in unobserved parts and their latent codes
can be optimised jointly with object poses. Interfered regions by humans
can be detected and intentionally removed in the system. The background
pointclouds are projected for pure visualisation purpose.

moving objects and building a single static background
model [8], [9], [10]. The third models dynamic environments
by creating object-centric maps for each possibly moving
rigid object in the scene while fusing corresponding infor-
mation into these object-level maps [11], [12]. Object-level
tracking and mapping can be conducted for each object
and camera motion against the static part of the map. This
paper aligns with the last direction as we believe that,
similar to human perception, an instance-awareness of the
surrounding environment can help intelligent robots perceive
the scene changes and enables meaningful interactions with
the surrounding environment.

By far most existing object-level dynamic SLAM systems
mentioned above adopt the classic map representation that
have been exploited in the static SLAM systems, such as
pointclouds [13], surfels [11] or volumetric maps [12]. This
leads to partial or incomplete object maps as only the
observable information can be fused into the object models.
Information in unseen parts can not be filled unless an object
or the sensor is moved actively. Contrary to reconstructing
objects from scratch, some works recently explored learning-
based category-level object shape priors and build object-
level maps based on learned shape priors [14], [15]. The
object geometry and pose are usually optimised via dif-
ferentiable rendering. However, most of these systems are
only applicable in static scenes. Besides, despite being able
to generate complete object geometry, object shape priors
cannot capture complex geometry details as the bottleneck
of its latent representation can only interpolate shapes in-
side the training datasets [16]. When combined with dense
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image alignment, such as photometric or ICP residuals, this
inconsistency between the measurement and the object prior
model inevitably leads to inaccurate object motion trajectory
estimates.

This work stands in the middle between reconstructing
object geometry from scratch and mapping using object
shape priors. We reconstruct the observable part by continu-
ously fusing depth measurements into a volumetric canonical
space and predict the complete geometry by conditioning
it on the fused volume. The resulting object geometry can
preserve the details that have been observed in the past and
simultaneously complete the missing geometry information.
We also verified that this completed object geometry can
further improve the accuracy of object tracking. The main
contributions in this paper can be summarised as follows:

1) we present, to the best of our knowledge, the first
RGB-D object-level dynamic mapping system that can
complete unseen parts of objects using a shape prior
encoded in neural networks while still reconstructing
observed parts accurately;

2) a joint optimisation of object pose and shape geometry
based on geometric residuals and differentiable render-
ing;

3) extensive experiments of object tracking and recon-
struction components on synthetic and real-world data
to evaluate the benefits of object geometry completion
for object-level SLAM.

II. RELATED WORKS

a) Object-level dynamic SLAM: Although object-level
dynamic SLAM research can be dated back to [17], visual
dense object-level dynamic SLAM has only been explored
recently. From RGB-D sensor inputs, Co-Fusion [18] seg-
ments objects by either ICP motion segmentation or semantic
segmentation and then tracks objects separately based on
ElasticFusion [19]. MaskFusion [11] segments objects using
a combination of instance segmentation from Mask-RCNN
and geometric edges, and tracks objects using the same
approach as Co-Fusion. Both Co-Fusion and MaskFusion use
surfels to represent map models, which is memory efficient
but cannot directly provide free space information in the map,
and neither surface connectivity. DynSLAM-II [13] extends
from ORB-SLAM II [20] and formulates object tracking
using sparse feature descriptor matching. Object maps are
represented using clusters of pointclouds, which can bring
object poses and geometries into the pose graph optimisation
but also lack space connection awareness. Instead, MID-
Fusion [12] uses memory-efficient octree-based volumetric
signed distance field (SDF) representation for objects and
re-parametrises tracking residuals in object coordinates and
weights. EM-Fusion [21] similarly uses volumetric SDF
object maps but formulates object tracking as direct align-
ment of input frames with the SDF representations. Their
following work [22] infers the missing object geometry by
penalising the hull and intersection constraints. However, it
did not explore shape prior information and requires heavy
computation to optimise SDF field explicitly. Instead, we

fuse the depth measurement into object-level SDF maps and
predict completed object geometries by incorporating a shape
prior in continuous occupancy fields.

b) SLAM with shape prior maps: Instead of estimat-
ing both object geometry and poses from scratch, some
approaches use a shape prior to represent objects. Since
the coordinates of object shape priors and the run-time
measurement are not necessarily aligned, a relative rigid
transformation needs to be estimated. This is analogous to
the localisation-only problem in SLAM. SLAM++ [23] is
one of the pioneering object-level RGB-D SLAM systems.
It scanned objects in advance and then maps the detected
instances at run-time by jointly optimising a pose graph of
camera and object poses. Relying on pre-scanned objects,
however, limits its ability to scale to unknown object models.
Rather than using instance-level shape priors, several follow-
ing works exploited category-level shape priors as there is
limited variance in certain object categories. The category-
level shape prior can be learnt in various representations,
such as PCA models as in DirectShape [24], occupancy grids
as in Deep-SLAM++ [25], variational autoencoders as in
NodeSLAM [14], or autodecoders as in DSP-SLAM [15].
However, most of these works only target static environ-
ments, as multi-view consistency of static world points
is required to localise the shape prior models. [26] relax
this restriction using a Bayesian filter to associate object
detections on different frames and fuse the prior model by
simply averaging the latent codes from each frame. However,
object shape deviations cannot always be captured by the
shape prior interpolation. The object tracking accuracy would
be affected by the discrepancy between the prior shape model
and the online measurement. We address this challenge by
conditioning the completion network on the integrated 3D
reconstruction model.

c) Object-level tracking: To track moving objects in
RGB-D sequences, several pioneering object-level works
adopt the frame-to-model tracking methods from RGB-D
SLAM systems [18] and parametrise them for object track-
ing [12], [13]. The classic photometric residual, however,
is difficult to deal with as object lighting changes; several
approaches explore using learning-based robust features to
formulate object tracking in direct [27] and in-direct ways
[28]. Parallel to learning category-level shape priors, Wang
et al. [29] proposed to learn category-level pixel-wise cor-
respondence from RGB-D images to the canonical space.
The shape is implicitly defined from this correspondence
and the frame-to-canonical transformation can be estimated
from this noisy correspondence. Rempe et al. [30] further
proposed to generate more stable correspondences by ac-
cumulating temporal information from RGB-D sequences.
Recently, Muller et al. [31] proposed to track moving objects
and predict their complete geometry using such canoni-
cal correspondence representation. In this work, the object
pose is initially predicted using canonical correspondence
regression. However, we found it does not necessarily yield
alignment to the canonical space and we further optimise
the pose tracking using geometric residual and differential



rendering.

III. METHOD

A. Notations and Preliminaries

In this work, we will use the following notation: a coordi-
nate frame is denoted as F−→A. The homogeneous transforma-
tion from F−→B to F−→A is denoted as TAB , which is composed
of a rotation matrix CAB and a translation vector ArAB .

Every detected object is represented in its individual
object coordinate frame F−→On

, with n ∈ {0 . . . ,N}, where
N is the total number of objects (excluding background)
and 0 denotes background. We assume a canonical static
volumetric model is stored in each object coordinate frame,
forming the basis of our multi-instance SLAM system. To
leverage the category-level shape prior, we need to align the
canonical space with the one defined in training, otherwise
the completion performance will be deteriorated since it
cannot fully take advantage of the shape variances of the
objects in the same category. The relative transformation
between the current world coordinate and the corresponding
object canonical space is defined as a joint state composed
of a rigid transformation TWOn

and the object scale sOn
. We

define the object pose using this joint state. TWOn
needs to

be continuously updated for a moving object but the object
scale should be consistent across different frames.

B. System Overview

Figure 3 shows the pipeline of our proposed system.
Each input RGB-D image is processed by Mask R-CNN to
perform instance segmentation. The camera pose is tracked
against background regions, excluding the human mask area
and moving objects, similar to what has been proposed in
MID-Fusion [12].

The object geometry is composed of two nodes with a
shared object pose: prior node and posterior node, as shown
in Figure 2. The prior node represents its category-level
shape prior using a latent code z0 ∈ R64. It can be used to
express the continuous SDF field s on any query 3D location
in object canonical coordinate v ∈ R3 using a DeepSDF
shape prior network F0 [16] as

s = F0(v,z0). (1)

The prior node is used to initialise the object pose and re-
localise the object model when object tracking is lost as its
shape is not affected by measurements. The posterior node
encodes a fused partial TSDF volume and its associated
TSDF weight volume into TSDF feature volume θt and
TSDF confidence volume θc separately using 3D-UNet [32].
Then a complete occupancy field o can be predicted on any
given 3D position v ∈R3 using a shape completion network
F1:

o = F1(v,θt [v],θc[v],z1). (2)

where θt [v] ∈ R32 and θc[v] ∈ R1 denote the feature vectors
tri-linearly interpolated at the point v inside the volumes θt
and θc, respectively. We additionally condition it on a latent
code z1 ∈ R32 so that the hidden space can be optimised

to generate novel shapes. The shape completion network F1
shares a similar architecture to the CONet [33], but also takes
extra inputs of TSDF confidence weight and an instance-level
latent code.

We perform an efficient Axis Aligned Bounding Box
(AABB) ray intersection test [34] to find all the visible
existing object models in the current viewpoint and render
object masks for each visible models. An Intersection of
Union (IoU) between the detections on the current frame
and the rendered model masks is computed to build data
associations between the current frame detections and ex-
isting object models. Then we track each object model and
complete its geometry by performing a joint optimisation of
pose and geometry (Section III-C). Using estimated poses
of the camera and objects, new depth measurements are
fused into an object model and a complete shape geometry
can be predicted by conditioning on the fused model. New
objects are created for unmatched detections by initialising
their initial object pose using object prior models.

C. Joint Optimisation of Object Pose and Geometry

Instead of defining an arbitrary canonical space for object
coordinates [12], we need to estimate the 7DoF relative
transformation, which is composed of TWOn

and sOn
, to align

the initialised object coordinate to the training canonical
space for each object detection in order to take advantage
of the learned prior information.

a) Initialisation: Given an RGB-D frame (IL,DL) and
detected object mask Mn, we predict their positions in the
canonical space v and associated confidences w from back-
projected pointcloud using a modified normalised object
correspondence network Fn from [30]:

CL
v(uL) = π−1(uL,DL[uL]),∀uL ∈Mn, (3)

Fn

(
CL

v
)
→ v,w (4)

Then we solve the 7-DoF relative transformation, scale
sOn

, rotation CCLOn
, and translation CL

rCLOn
from the re-

gressed correspondences using the Umeyama algorithm [35]
with SVD decomposition:

argmin
sOn

,TCLOn

∑
uL∈Mn

w

(
v− 1

sOn

T−1
CLOn CL

v(uL)

)
. (5)

For the latent codes z0 and z1, we use both zero code ini-
tialisations. We only run this pose initialisation step for new
unmatched object detections. The initial pose solved from
SVD decomposition, however, is necessary to be close to
the ground-truth canonical pose, due to the unseen shapes or
viewpoints, affecting the performance of shape completion.

b) Coarse Estimation: To refine object canonical poses
from the initial pose prediction, we jointly optimise it with
the prior latent code z0 to minimise the 3D SDF loss ESDF
and 2D rendering loss Erender:

Ecoarse = λsESDF +λr0Erender +λz0||z0||. (6)
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The 3D SDF loss is defined to encourage the back-project
depth points to align with the object surface, where the zero
SDF value is defined

ESDF = ∑
uL∈Mn

F0

(
1

sOn

T−1
CLOn CL

v(uL),z0

)
. (7)

We cannot compute SDF residuals for empty space since
ground-truth SDF values are not available at test time.
Instead, for the non-surface areas, we use differentiable
rendering to encourage the rendered depth DL to be close
to the measured depth D̃L. We compute the rendering loss
for the visible 3D space inside the object 3D bounding box:

Erender = ∑
uL∈Bn

DL[uL]− D̃L[uL], (8)

where

DL[uL] =
N

∑
i=1

widi, (9)

and wi is the ray-termination probability [14] of sample i at
depth di along the ray from the pixel uL,

wi = oi

i−1

∏
j=1

(1−o j), (10)

and Bn is the 2D bounding box rendering from the estimated
object 3D bounding box on this frame. A continuous occu-
pancy field can be extracted from the continuous prior SDF
field as proposed in [15]:

oi =−
1

2σ
F0

(
1

sOn

T−1
CLOn

(
π−1(uL,di)

)
,z0

)
, (11)

where σ is the truncation distance to control the transition.
By freezing the network weight in Fn, the cost function in

Equation (6) can be iteratively solved using Gauss-Newton
optimisation with analytical Jacobians. Since the prior shape
is not necessarily aligned with the actual observation, it is
unnecessary to sample every pixel ray. Instead, we run this
optimisation on sparse ray samples, which can speed up the
optimisation without losing much accuracy.

c) Dense Refinement: After the coarse estimation, we
have a rough alignment of the object model with the canon-
ical space. However, the optimised object prior z0 cannot
necessarily capture the details of depth measurements. To
further align the object model and to complete the hidden
part, we jointly optimise the posterior latent code z1 with
the object pose by minimizing a 3D occupancy loss Eocc on
both occupied and empty space (excluding the unknown 3D
space) and a similar 2D rendering loss Erender:

Erefine = λoEocc +λr1Erender +λz1||z1||. (12)

The occupied space is defined on the back-projected points
and the empty space is uniformly sampled in the background
space as well as the foreground space before the depth
measurement. The occupancy loss is defined using the binary
cross-entropy loss between the predicted occupancy value ov
from the shape completion network using Equation (2) and
the ground-truth occupancy values o∗v (0.5 for the occupied
space and 0 for the empty space) for sampled points v inside
the occupied and empty space:

Eocc =−∑
v
[ov log(o∗v)+(1−ov) log(1−o∗v)]. (13)

Similar to the coarse estimation, we can also evaluate
the 2D rendering loss using Equation (8). The difference
is here we use the decoded continuous occupancy value for
the sampled di using Equation (2), instead of converting it
from the SDF field in Equation (11). The refined object pose
TCLOn

is used to integrate the current depth frame into the
corresponding TSDF volume and weight volume [3].



D. Training Setup

The learnable network parameters in this work includes
three part, canonical correspondence network Fn, shape prior
network F0, shape posterior network F1.

We train the canonical correspondence network using the
partial pointcloud generated from the synthetic shapenet
dataset [36]. During training, we augmented the input point-
cloud with random object pose and solve the 7DoF object
poses using Equation (5). To help network prediction robust
to outliers, we also added random depth outliers in the
pointcloud generation to learn the correspondence confidence
w in a self-supervised way. The solved pose is compared to
the augmented ground-truth pose and the whole network is
trained end-to-end since the estimation is differentiable.

We use the pre-trained off-shelf network weights for the
category-level shape prior network F0 [16], which was also
trained in the shapenet dataset [36]. To train the posterior
shape completion network, we rendered depth maps for each
object in the shapenet dataset [36] and trained the shape
completion network using the partial depth observation. We
use the occupancy loss defined in Equation (13) to encourage
the completed shape to be similar to the ground-truth one.
Similar to the latent code training in DeepSDF [16], dif-
ferent object shapes have their own latent codes, which are
trained together with the network. We make different partial
observations of the same object shape share the same latent
code.

IV. EXPERIMENTS

A. Quantitative Reconstruction Evaluations

1) Experimental Setup: We validate the reconstruction
quality of our method on object-level surface reconstruction
tasks. We conduct a comparison on the chair category of
the ShapeNet [36] dataset. The split of train/val/test sets
follows the same setting in [33]. We randomly select 50
models from the test set to conduct quantitative evaluations.
We generate input depth images by rendering images using
uniformly sampled virtual camera viewpoints surrounding
the CAD model. The hyperparameters used in inference
optimization are chosen as σ = 0.05, λs = 100, λr0 = 2.5,
λz0 = 5, λo = 100, λr1 = 1, and λz1 = 1.

2) Baseline Methods: To evaluate the object mapping, we
compare with the following baseline methods:

• TSDF-fusion: We fuse the depth measurements into a
TSDF volume grid as in [3].

• DeepSDF mapping: We use the pre-trained decoder
weight in [16]. As the shape completion code is not
provided, we optimise the SDF loss on the input point-
cloud as well as the empty space constraint proposed in
IGR [37].

• CONet: We use the weights trained from partial point-
cloud input in [33] and pass the accumulated pointcloud
in the canonical space to generate the continuous occu-
pancy field where the meshes are extracted.

3) Metrics: To quantitatively evaluate the quality and
completeness of the shape reconstruction, we use the fol-
lowing metrics:
• IoU: We sample 100k points uniformly in the bounding

box and evaluate on both the reconstructed and the
ground-truth meshes whether each point is inside or
outside. The final value is the fraction of intersection
over union. Higher is better.

• Chamfer Distance: we sample 100k points on the sur-
face of both the ground-truth and the reconstructed
mesh. We compute the closest points from the recon-
structed to the ground-truth mesh using kD-tree and
vice-versa. We then compute the average of the L1
distances to the closest points in each direction. Lower
is better.

• (In-)completeness: As the completeness of the object
map is essential in this work, we also report complete-
ness, which is the one-way chamfer distance from the
ground-truth meshes to the reconstructed ones. This is
to measure the closest distance from each ground-truth
mesh points to the reconstruction. Lower is better.

4) Results and Discussions: We quantitatively evaluate
how the view number of depth measurement would impact
the reconstruction results of different methods. Figure 4
reports the result. It can be seen that our proposed method
consistently show better reconstruction results from single
view depth completion to multiple views. When the view
number is limited, classic TSDF-Fusion shows worse result
as it can only reconstruct the visible parts. CONet completes
some missing information, but still struggles as it heavily
depends on the input pointcloud. DeepSDF does not condi-
tion on the input and the latent code optimisation can fit the
few depth measurement and shows better completion and
reconstruction results. Our proposed method uses both the
input information and shape prior information, yielding best
performance. When more depth measurements are received,
TSDF-Fusion and CONet start to fill in the missing informa-
tion while DeepSDF struggles to leverage more measurement
information. Our result also improves since we can also take
advantage of the measurement information. Figure 5 shows
an examples of reconstruction results by each method in the
view number case of 1, 5, and 10.

B. Quantitative Tracking Evaluations

1) Experimental Setup: To quantitatively evaluate the
object-level tracking and mapping performance, we ran-
domly select 10 object models from the test split of the chair
category in the ShapeNet [36] and render 200 frames using
Blender. To ensure diversity of object motion, texture, and
illuminations, we randomise four point light sources, camera
viewpoint, and object trajectories. We then subsample the
sequences using sampling intervals 1, 2, 4 in order to create
small, medium and large motion subsets.

2) Baseline Methods: To evaluate the object tracking, we
compare with the following baseline methods:
• RGB-D VO: a non-learning-based visual odometry

method proposed in [38], which minimises the photo-
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Fig. 4. Quantitative comparison of reconstruction quality and completion of
our proposed methods v.s. classic TSDF-Fusion, learning-based DeepSDF
and CONet. Our proposed method consistently show better reconstruction
results from single view depth completion to multiple views.
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Fig. 5. Qualitative Results on reconstructions. Our method is superior to
all other methods in completing missing information and reconstructing fine
details.

metric loss between two frames. We re-parametrised it
for object tracking.

• Point-to-Plane ICP: a non-learning geometric registra-
tion method [39]

• Color ICP: a non-learning registration method using
both color and geometric information [40]

• Prior: a state-of-the-art object pose estimation using
DeepSDF shape prior model. It is originally proposed
in [15] for static object pose estimation and we re-
parametrised it for estimating moving objects. This is
equivalent to an ablation study of using the prior model
only without conditioned completion refinement from
Section III-C c).

• NOCS: a state-of-the-art learning-based canonical corre-
spondence regression method. We adopted the network
architecture proposed in [30]. This is equivalent to an
ablation study of using only the initial prediction from

Section III-C a).
3) Metrics: To quantitatively evaluate the accuracy of the

object tracking, we use the following metrics:
• ATE: Absolute. Trajectory Error defined in [41], in the

unit of of meters
• RPE t: relative pose error (RPE) metrics in translation

defined in [41], in the unit of of metres
• RPE R: relative pose error (RPE) metrics in rotation

defined in [41], in the unit of of degrees
• R err: mean orientation error on each frame individu-

ally, in the unit of degrees
• t err: mean translation error on each frame individually,

in the unit of metres
The above metrics all indicate better tracking performance
when the values are lower. To analyse the trajectory, we align
the first frame of the estimated object pose to the ground-
truth canonical space.

4) Results and Discussions: Table I reports the ex-
perimental results. It shows that our approach consis-
tently outperforms both the learning-based and non-learning-
based methods in small and large motion situations. For
non-learning approaches, RGB-D VO [38], Point-to-Plane
ICP [39], and Color ICP [40] only leverage the depth and
intensity information from two-view measurements, without
taking into account any object shape prior information.
The single view canonical correspondence prediction from
NOCS [30] only considers shape prior information and does
not take advantage of the multiview constraint. Our pro-
posed method instead combines both multi-view constraint
and shape prior information into object pose estimation
for better tracking accuracy. Similar to ours, the shape
prior method [15] adopts category-level shape prior from
DeepSDF [16] and uses differential rendering to estimate
object poses. However, latent code optimisation cannot nec-
essarily capture the geometry deviation between training
space and test shapes and thus affects the accuracy of pose
estimation.

C. Timing analysis

We implemented our system in PyTorch. The average
inference time for a pair of RGB-D image in the resolution
of 320 × 240 is 1.337s on a RTX 3090 platform. A more-
detailed breakdown of computation time for each component
is shown in Table IIa. A further breakdown of computation
time on tracking components is shown in Table IIb.

We would like to highlight that our current implementation
is prototyped in Python. We believe a real-time system can be
achieved by exploiting C++ and further GPU parallelisation.

D. Qualitative Evaluations

We further demonstrate our proposed method in various
real-world scenarios. Figure 6 shows the results in two
different scenes. For each input image, we provide object
reconstructions from the currently estimated camera view-
point to visualise the observed part and from the top-down
viewpoint to visualise the hidden part. As a qualitative
comparison, we also show the reconstructions using classic



method [unit] ATE [m] RPE t [m] RPE R [◦] R err [◦] t err [m]

Ours 0.030 0.027 3.845 3.931 0.040
Prior 0.044 0.047 8.200 6.269 0.068
RGBD 0.254 0.106 18.47 32.25 0.314
Point2Plane 0.047 0.035 4.672 5.970 0.064
Color ICP 0.254 0.114 29.12 56.18 0.320
NOCS 0.074 0.059 23.46 37.87 0.085

(a) Keyframe gap-1

method [unit] ATE [m] RPE t [m] RPE R [◦] R err [◦] t err [m]

Ours 0.033 0.032 5.243 4.224 0.043
Prior 0.046 0.052 11.91 8.063 0.063
RGBD 1.068 0.403 30.89 50.95 1.309
Point2Plane 0.070 0.056 8.570 9.384 0.087
Color ICP 0.536 0.351 36.69 60.56 0.568
NOCS 0.074 0.074 21.65 37.78 0.084

(b) Keyframe gap-2

method [unit] ATE [m] RPE t [m] RPE R [◦] R err [◦] t err [m]

Ours 0.034 0.038 6.767 4.834 0.044
Prior 0.043 0.050 17.20 9.885 0.061
RGBD 1.942 0.866 43.34 68.86 2.177
Point2Plane 0.807 0.442 18.22 20.16 0.892
Color ICP 2.786 1.885 42.73 77.89 2.802
NOCS 0.073 0.085 26.95 35.41 0.083

(c) Keyframe gap-4

TABLE I
QUANTITATIVE EVALUATION OF OBJECT TRACKING METHOD ON THE

SYNTHETIC MOVING OBJECTS DATASET.

Components Tracking Integration Completion (visualization)
Time (s) 1.284 0.003 0.474

(a) System components

Components Initialization Coarse est. Dense refinement
Time (ms) 0.643 0.150 1.129

(b) Object tracking components

TABLE II
RUN-TIME ANALYSIS (S)

TSDF fusion [3] and the learned category-level DeepSDF
object prior [16], it can be seen that TSDF-Fusion can only
reconstruct the visible parts, leaving many empty holes in the
object models. DeepSDF, on the other hand, has watertight
reconstructions, but does not match the measurement neces-
sarily, especially for the objects that deviate from the training
space. On the contrary, our system can maintain highly
detailed reconstructions and generate watertight meshes by
filling in the missing parts using category-level shape priors
thanks to the conditioned completion. Figure 7 also shows a
scene where our system can reconstruct the visible parts and
complete the hidden information of a moving object. The
object pose and object geometry for the moving object are
optimised jointly.

V. CONCLUSIONS

We present a novel approach for object-level tracking
and mapping system in dynamic scenes by incorporating
learned category-level shape priors. It enables to reasonably
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(a) Completion of a red chair

In
pu

t

C
on
di
tio
ne
d

co
m
pl
et
io
n

TS
D

F

Camera view Topdown view

D
ee

pS
D

F
pr

io
r

(b) Completion of a blue chair

Fig. 6. Qualitative comparison of classic TSDF volume representation
(gray), DeepSDF shape prior representation (blue), and our conditioned
completion representation (green): our representation can reconstruct the
observed part more correctly than a shape prior and completes the unseen
part where TSDF fusion fails.

complete the object geometry of unseen parts based on
the prior knowledge, and provide more robust and accurate
tracking accuracy, even under large frame-by-frame motion
and in dynamic environments with moving human involved.
Experimental results in various scenarios demonstrate the
effectiveness of our method. We hope our method can create
a deeper understanding of exploring object prior information
in object-level SLAM and benefit robots interacting with
their surrounding environments. Continue from here, we
would like to extend our system to a full graph-based object
SLAM system.
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Appendix: Learning to Complete Object Shapes for Object-level
Mapping in Dynamic Scenes

Binbin Xu1, Andrew J. Davison1, Stefan Leutenegger1,2
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Fig. 1. The architecture of our canonical correspondence network. The ar-
chitecture is modified from [1]. It extracts global features and spatiotemporal
local features from the PointNet encoder [2] and spatial local features from
the PointNet++ encoder [3]. These features are concatenated and passed to
an MLP to regress the canonical shape correspondence and the associated
confidence.

The learnable network parameters in this work include
three parts, canonical correspondence network Fn, shape
prior network F0, and shape posterior network F1.

Figure 1 shows the architecture of our canonical corre-
spondence network Fn. It takes the partial pointcloud CL

v
from the depth measurements as input and predicts its corre-
spondence v in canonical space and the associated confidence
w. We train the canonical correspondence network using
partial pointclouds generated from the synthetic shapenet
dataset [4]. During the training, we augment the input
pointcloud with random object poses and solve the 7DoF
object poses using Equation (1). To help network prediction
robust to outliers, we also add random depth outliers in the
pointcloud generation to learn the correspondence confidence
w in a self-supervised way. The solved pose is compared to
the augmented ground-truth pose and the whole network is
trained end-to-end since the estimation is differentiable.

argmin
sOn

,TCLOn

∑
uL∈Mn

w

(
v− 1

sOn

T−1
CLOn CL

v(uL)

)
. (1)

We use the pre-trained off-shelf network weights from
the category-level shape prior network DeepSDF [5] for F0,
which was also trained in the synthetic shapenet dataset [4].
Its architecture is visualized in Figure 2.

Figure 3 shows the architecture of our posterior shape
completion network F1. It takes the input of a TSDF feature
volume and a TSDF confidence volume, which are extracted
separately from a partial TSDF volume and its weight
volume. The input of TSDF confidence volume is designed
to balance the observed depth measurement and shape prior

The authors are with Department of Computing, Imperial
College London, United Kingdom. {b.xu17, a.davison,
s.leutenegger}@imperial.ac.uk

2 The author is also with the Smart Robotics Lab, Technical University
of Munich, Germany {stefan.leutenegger}@tum.de
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Fig. 2. The architecture of the shape prior network [5]. The input vector is
fed through a decoder, which contains eight fully-connected (FC) layers with
one skip connection. FC+ denotes a FC with a following softplus activation
and the last FC layer output a single SDF value.
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Fig. 3. The architecture of our shape completion network, modified from
CONet [6]. The encoder extracts the TSDF feature vector θt [v] ∈ R32 and
the TSDF confidence vector θc[v] ∈ R1 from TSDF feature volume and
TSDF confidence volume, respectively, and concatenates them with a latent
code z1 as an input to the network. It goes through 3 fully-connected (FC)
ResNet-blocks to extract local latent features, which are then fed into an
occupancy decoder [7] to predict occupancy probabilities on the position
vector v.

information. The unseen part has TSDF weight of zero value
and biases towards prior shape and will gradually switch to
3D reconstruction when more depth information is fused into
the corresponding TSDF voxel. We additionally concatenate
the inputs with a latent code z1 ∈ R32 so that the hidden
space can be optimised to generate novel shapes, as shown
in Figure 4. The shape completion network F1 can predict
a complete object geometry represented in a continuous
occupancy function by inferring an occupancy value o on
any given 3D position v ∈ R3 in canonical space.

Since the partial observation in reality mostly happens due
to self-occlusions and sometimes also due to occlusions from
other objects, we rendered depth maps using objects in the
shapenet dataset [4]. To train the posterior shape completion
network, we rendered depth maps for each object in the
shapenet dataset [4] to simulate partial depth observations.
We use the occupancy loss defined in Equation (2) to
encourage the completed shape to be similar to the ground-
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Fig. 4. Editing the conditioned latent code can change the geometry of
the unobserved part in the object model.

truth one.

Eocc =−∑
v
[ov log(o∗v)+(1−ov) log(1−o∗v)]. (2)

Similar to the training in DeepSDF [5], different object
shapes belonging to the same category have different latent
codes, but share the same decoder network weight. We make
different partial observations of the same object shape share
the same latent code.
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