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Abstract. This work presents a high-fidelity in-house Fluid Structure Interaction (FSI) solver devel-
oped by combining discrete forcing Immersed Boundary Method (IBM) with a RK-4 based structural
solver. Classification of the grid points as fluid, solid and IB points in the IBM framework and the
solution of the pressure correction equations are the two most computationally expensive section in the
numerical solver. These computational efforts can be significantly reduced by implementing OpenMP
techniques. However, the successive over-relaxation (SOR) iterative method used in the serial code is not
suitable for OpenMP parallelization as it shows data dependencies from previous iterations. Therefore,
the Red-Black (RB) SOR is implemented to avoid the data dependencies.
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1 Introduction

Fluid–structure interaction (FSI) is of great relevance to a wide range of real life engineering applications.
One of the main difficulties experienced by researchers in numerically simulating these FSI problems is
associated with the handling of complex geometry and time dependent movement of the solid boundary. In
the conventional approaches, Arbitrary Langrangian Eulerian (ALE) method based flow solver is coupled
with a structural solver to study the combined FSI effects [1]. However, these ALE based approaches are not
suitable as significant effort is required to regenerate the mesh at every time-step as the solution is advanced.
One alternative method to solve these FSI problems efficiently is to incorporate the Immersed Boundary
Method (IBM) [2] as flow solver. Instead of direct application of physical boundary conditions at the grid
points, in IBM, the presence of a solid boundary inside a fluid is incorporated by imposing constraints to
the model governing equations. Therefore, in IBM framework, even a complex geometry problem involving
moving boundaries can easily be handled using simple structured grids without the requirement of re-meshing
at every time step. The primary advantage of IBM over body-fitted ALE method is that the task of grid
generation is greatly simplified which results in optimized CPU cost and ease of implementation.

In the present work the authors have developed an in-house FSI solver in the C++ environment by com-
bining discrete forcing IBM with RK−4 based structural solver. Although the mesh generation process is
trivial in IBM framework, the process of classification of the grid points at every time step for a moving
boundary problem is computationally intensive process. The solution of the pressure correction equations is
also one of the most expensive computational section. However, parallelization of all these computationally
expensive processes using OpenMP (Open Multi-Processing) techniques can significantly reduces the com-
putational time. In the Parallelized solver the red-black Successive Over-Relaxation (SOR) [3, 4] algorithm
is implemented for solving the set of algebraic equations to avoid data dependencies from previous iteration
which is otherwise present in the conventional SOR algorithm. Passive heaving of an elliptical foil with an
active pitching actuation in a free stream flow is simulated to test the efficacy of the parallelized code. Simu-
lations are performed with the following iterative algorithms: (a) the traditional SOR, (b) RB-SOR and (c)
RB-SOR with OpenMP on a Linux cluster with sixteen dual processor 2.60GHz 64 bit Intel Xeons, totalling
32 processors. Details of the structural and flow solver and the parallelization process is discussed next in
Section 2; Computational time taken by the three numerical approaches are compared in Section 3; Finally,
Section 4 summarizes the present paper with the concluding remarks.
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2 Numerical methodology

2.1 Structural solver

An elliptic cylinder is considered to be elastically mounted in the plunging degree of freedom and is allowed
to oscillate in a free stream flow. The equation of motion of the center of the elliptic section is given in the
non-dimensional form below [5]:
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where,M is mass per unit span of the elliptic cylinder; ȳ denotes the vertical displacement non-dimensionalized
by the length of the major axis (D); c is the damping coefficient, U∞ is the free stream velocity, fN is the
structural natural frequency, AR is the ratio of minor to major axis of elliptic cylinder, ρ/ρb is the ratio of
fluid to solid density. CL is the coefficient of lift force acting at the center of the elliptic body and is supplied
by a flow solver. An active control is also implemented via a pitching motion as: θ = Aθsin (2πfDτ); where, θ
is the angular displacement, Aθ is the pitching amplitude, fD is the driving frequency and τ(= tU∞/D) is the
non-dimensional time. The structural governing equation is solved using the explicit 4th order Runge-Kutta
(RK−4) method.

2.2 Flow solver

The flow equations are solved broadly following the discrete forcing IBM proposed by Kim et al. [2]. In
this framework of IBM, the boundary conditions are satisfied at the solid boundaries by adding a additional
forcing term to the momentum conservation equation. A mass source/sink term is also added to the continuity
equation to ensure the mass conservation across the immersed boundary. The flow equations are solved on a
background Eulerian mesh and the location of the solid boundary is tracked by a set of Lagrangian markers.
The Eulerian mesh nodes are needed to be classified as fluid points and solid points at every time step. The
momentum forcing and the mass source/sink term are applied throughout inside the entire solid domain to
reduce the Spurious Force Oscillation (SFO). The flow around the oscillating body is primarily governed by
the incompressible Navier-Stokes Equations. The flow governing equations are given in the non-dimensional
form below:
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where u = (u, v) denotes the flow velocity non-dimensionalised by the free stream velocity U∞, p is the
pressure non-dimensionalised with ρU2

∞ where ρ is the fluid density. Re = U∞D/ν is the Reynolds number
where ν is kinematic viscosity of the fluid. Here, f = (fx, fy) is the momentum forcing applied to enforce the
no-slip boundary condition at the solid boundary immersed in the fluid.

The flow governing Eqs. (2) and (3) are solved using Fractional Step Method (FSM) on a Cartesian
staggered grid arrangement. The convective term of the momentum equation is discretized using Adams-
Basforth discretization whereas the diffusion term is discretized using the Crank-Nicolson technique. The
velocity is corrected using a pseudo pressure correction term so that the continuity is satisfied at every time
step. The discretised form of Eqs. (2) and (3) are as follows:
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Re
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where L(∗) is the discretised form of the Laplace operator and H(∗) denotes the discretised form of the
convective term, ûk is the intermediate velocity at kth time step, φ is the pseudo pressure correction term
and∆τ is the time increment. All the spatial derivatives are evaluated using the second-order central difference
scheme.

In the present FSI framework, the flow equations are solved to get the flow-field around the body and the
aerodynamic loads acting on the body are evaluated at every time step. Then this lift force computed by the
flow solver is supplied to the structural equation to compute the position of the body in the next time step.
Thus, at every time step, the flow solver and structural solver exchange informations in a staggered manner
resulting in a weak coupling FSI solver.

2.3 Parallelization

OpenMP. The most computationally costly sections in the sequential code are: (i) classifications of the
grid points as fluid, solid and IB points in the IBM framework and (ii) solution of the pressure correction
equations. OpenMP is implemented in these sections along with the other possible places to enhance the
overall performance of the solver. OpenMP is an Application Programming Interface (API) that serves a
convenient, scalable model to the developers of shared memory parallel applications [6]. It uses explicit direct
multi-threaded and shared memory parallelism. OpenMP uses the fork-join model of parallel execution as
presented in Fig. 1. OpenMP employs multiple processors to execute the same code and thus accelerates
the numerical process, hence decreases computational time. It is necessary to check data dependencies, data
conflicts, race conditions and deadlock situations before implementing OpenMP as it may cause erroneous
results, if not taken care properly. OpenMP is called in the loop executable using “#pragma omp parallel”.
OpenMP is also implemented for solving discretized momentum equations and for reading and writing several
data files parallelly.

Fig. 1. Fork-Join model for OpenMP parallelisation

Red-Black SOR. The traditional SOR algorithm used in the sequential code suffers from data dependency
on previous iteration and therefore cannot be parallelized using OpenMP. The RB-SOR method [3,4], on the
other hand, eliminates this issue and takes advantage of OpenMP parallelization. The RB ordering technique
and its implementation are schematically shown in Fig. 2. The red and black nodes are located alternatively
as shown in the figure. In RB-SOR algorithm, the values at the black nodes are updated using the values at
the red nodes and the values at the red nodes are updated using the values at the black nodes. Therefore, it
can be partitioned into independent tasks that can be performed by multiple threads simultaneously.
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(a) (b)

Fig. 2. Red-Black ordering technique and implementation of the SOR algorithm: (a) updating the values of the black
nodes using red nodes and (b) updating the values of the red nodes using black nodes.

3 Results and discussion

3.1 Simulation Results

The flow domain and the mesh grid used in the present study are shown schematically in Fig. 3. At the initial
time, the centre of the elliptic foil lies at the origin. A Dirichlet condition is applied at the left-hand side
boundary as inflow, and the slip boundary conditions are applied at upper and lower boundaries. A Neumann

(a) (b)

Fig. 3. (a) Flow domain and corresponding boundary conditions and (b) Cartesian grid.

type boundary condition is employed at the velocity outlet. The boundary conditions are shown in Fig. 3(a).
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The Non-uniform cartesian grid is considered in this study as shown in Fig. 3(b). For the pressure correction
equation, Neumann type boundary condition is applied at all the domain boundaries.

To test the efficacy of the present FSI solver, passive heaving with active pitching actuation of an elliptic
cylinder is simulated with parameter values as: cD/MU∞ = 0.503, fNc/U∞ = 0.2, AR = 1/6 and ρ/ρb = 0.2
and the results are compared with that of Griffth et al. [5]. The simulations are performed at a low Reynolds
number ofRe = 200. The lengths of the computational domain along the stream-wise and transverse directions
are 32.5D and 25D, respectively. The flow domain is discretized using a structured Cartesian mesh with
718 × 1017 grid points along the horizontal and vertical directions, respectively. A constant time step of
10−4 is considered to perform the simulations. The computational domain, grid spacing and time step size
are chosen after performing suitable convergence test. Simulation results of SOR, RB-SOR and RB-SOR
with OpenMP solvers match very closely with each other. Here, we present the comparison of instantaneous

Fig. 4. Comparison of flow-field: (a) Griffith et al. [5] and (b) present work using OpenMP parallelisation
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Fig. 5. Comparison of (a) CL, and (b) vertical displacement y obtained from the present work using OpenMP paral-
lelisation with that of Griffith et al. [5].



6

vorticity contour, evolution lift coefficient (CL) and vertical displacement (y) from the present work using
OpenMP parallelisation with that of Griffith et al. [5] in Fig. 4 and 5, respectively. Very good agreement is
observed between the results from the present OpenMP FSI solver and that of Griffith et al. [5].

3.2 Performance Results

The performance enhancement of the numerical solvers is evaluated in terms of computational time taken by
the solvers to perform 1000 time step iterations i.e. τ = 0 to τ = 0.1. The solver speed (S) is defined as

S =
TSOR − Tx
TSOR

× 100%, (8)

where, Tx indicates the real clock time taken by RB-SOR or RB-SOR with OpenMP. The number of threads
considered for the execution of code in parallel are sixteen for all the computations. The performance of
the iterative solvers on a Linux cluster with sixteen dual processor 2.60GHz 64 bit Intel Xeons, totaling 32
processors is compared in Table 1. The RB-SOR with OpenMP shows significant speedup as compared to
sequential FSI solver.

Table 1. Time taken to compute 1000 time steps (non-dimensional time (τ))

Solver Time taken (T/sec.) Speedup (S)

SOR 12920 −
Red-Black SOR 11780 8.77%

Red-Black SOR with
OpenMP

3740 70.61%

4 Conclusion

In this work, a high-fidelity in-house Fluid Structure Interaction (FSI) solver developed by combining dis-
crete forcing Immersed Boundary Method with a RK-4 based structural solver is presented. The RB-SOR
method is successfully implemented to get rid of data dependencies from previous iterations and the solver
is parallelize using OpenMP technique. The computational time taken to execute 1000 time-steps have been
compared between SOR, RB-SOR and RB-SOR with OpenMP parallelization. The RB-SOR with OpenMP
parallelization is seen to run significantly faster and has shown the notable speed up as compared to serial
code.
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