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Sparse model identification enables the discovery
of nonlinear dynamical systems purely from data;
however, this approach is sensitive to noise, especially
in the low-data limit. In this work, we leverage
the statistical approach of bootstrap aggregating
(bagging) to robustify the sparse identification
of the nonlinear dynamics (SINDy) algorithm. First,
an ensemble of SINDy models is identified from
subsets of limited and noisy data. The aggregate
model statistics are then used to produce inclusion
probabilities of the candidate functions, which
enables uncertainty quantification and probabilistic
forecasts. We apply this ensemble-SINDy (E-SINDy)
algorithm to several synthetic and real-world datasets
and demonstrate substantial improvements to the
accuracy and robustness of model discovery from
extremely noisy and limited data. For example,
E-SINDy uncovers partial differential equations
models from data with more than twice as much
measurement noise as has been previously reported.
Similarly, E-SINDy learns the Lotka Volterra dynamics
from remarkably limited data of yearly lynx and
hare pelts collected from 1900 to 1920. E-SINDy is
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computationally efficient, with similar scaling as standard SINDy. Finally, we show that
ensemble statistics from E-SINDy can be exploited for active learning and improved model
predictive control.

1. Introduction
Data-driven model discovery enables the characterization of complex systems where first
principles derivations remain elusive, such as in neuroscience, power grids, epidemiology, finance
and ecology. A wide range of data-driven model discovery methods exist, including equation-
free modelling [1], normal form identification [2–4], nonlinear Laplacian spectral analysis [5],
Koopman analysis [6,7] and dynamic mode decomposition (DMD) [8–10], symbolic regression
[11–15], sparse regression [16,17], Gaussian processes [18], combining machine learning and
data assimilation [19,20], and deep learning [21–27]. Limited data and noisy measurements are
fundamental challenges for all of these model discovery methods, often limiting the effectiveness
of such techniques across diverse application areas. The sparse identification of nonlinear dynamics
(SINDy) [16] algorithm is promising, because it enables the discovery of interpretable and
generalizable models that balance accuracy and efficiency. Moreover, SINDy is based on simple
sparse linear regression that is highly extensible and requires significantly less data in comparison
with, for instance, neural networks. In this work, we unify and extend innovations of the SINDy
algorithm by leveraging classical statistical bagging methods [28] to produce a computationally
efficient and robust probabilistic model discovery method that overcomes the two canonical
failure points of model discovery: noise and limited data.

The SINDy algorithm [16] provides a data-driven model discovery framework, relying on
sparsity-promoting optimization to identify parsimonious models that avoid overfitting. These
models may be ordinary differential equations (ODEs) [16] or partial differential equations (PDEs)
[17,29]. SINDy has been applied to a number of challenging model discovery problems, including
for reduced-order models of fluid dynamics [30–35] and plasma dynamics [36–38], turbulence
closures [39–41], mesoscale ocean closures [42], nonlinear optics [43], computational chemistry
[44] and numerical integration schemes [45]. SINDy has been widely adopted, in part, because it
is highly extensible. Extensions of the SINDy algorithm include accounting for control inputs
[46] and rational functions [47,48], enforcing known conservation laws and symmetries [30],
promoting stability [49], improved noise robustness through the integral formulation [37,50–54],
generalizations for stochastic dynamics [44,55] and tensor formulations [56], and probabilistic
model discovery via sparse Bayesian inference [57–61]. Many of these innovations have been
incorporated into the open source software package PySINDy [62,63]. Today, the biggest challenge
with SINDy, and more broadly in model discovery, is learning models from limited and noisy
data, especially for spatio-temporal systems governed by PDEs.

Model discovery algorithms are sensitive to noise because they rely on the accurate
computation of derivatives, which is especially challenging for PDEs where noise can be strongly
amplified when computing higher-order spatial derivatives. There have been two key innovations
to improve the noise robustness of SINDy: control volume formulations and ensemble methods.
The integral formulation of SINDy [50] has proven powerful, enabling the identification of
PDEs in a weak form that averages over control volumes, which significantly improves its
noise tolerance. This approach has been used to discover a hierarchy of PDE models for
fluids and plasmas [37,51–54,64,65]. Several works have begun to explore ensemble methods to
robustify data-driven modelling, including the use of bagging for DMD [66], ensemble-Lasso
[67], subsample aggregating for improved discovery [61,68], statistical learning of PDEs to select
model coefficients with high importance measures [69] and improved discovery using ensembles
based on subsampling of the data [51,52,61,65]. Also, symbolic regression methods [11–13] and
spectral proper orthogonal decomposition (SPOD) [70] are inherently imbued with ensembling
ideas. Symbolic regression models are formed by initially randomly combining mathematical
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building blocks (library terms) and then recombining building blocks (equations or library terms)
that best model the experimental data. In SPOD, a modal decomposition method closely related
to DMD, optimally averaged DMD modes are obtained from an ensemble DMD problem. Thus,
both these methods naturally include ensembling ideas.

When dealing with noise-compromised data, it is also critical to provide uncertainty estimates
of the discovered models. In this direction, recent innovations of SINDy use sparse Bayesian
inference for probabilistic model discovery [57–60]. Such methods employ Markov Chain Monte
Carlo, which is extremely computationally intensive. These extensions have all improved the
robustness of SINDy for high-noise data, although they have been developed largely in isolation
and they have not been fully characterized, exploited and/or integrated.

In this work, we unify and extend recent innovations in ensembling and the weak formulation
of SINDy to develop and characterize a more robust ensemble-SINDy (E-SINDy) algorithm.
Furthermore, we show how this method can be useful for active learning and control. In
particular, we apply b(r)agging1 to SINDy to identify models of nonlinear ODEs of the form

d
dt

u = f(u), u(0) = u0, (1.1)

with state u ∈ R
n and dynamics f(u), and for nonlinear PDEs of the form

ut = N(u, ux, uxx, . . . , x, μ), (1.2)

with N(·) a system of nonlinear functions of the state u(x, t), its derivatives and parameters μ;
partial derivatives are denoted with subscripts, such that ut := ∂u/∂t. We show that b(r)agging
improves the accuracy and robustness of SINDy. The method also promotes interpretability
through the inclusion probabilities of candidate functions, enabling uncertainty quantification.
Importantly, the ensemble statistics are useful for producing probabilistic forecasts and can be
used for active learning and nonlinear control. We also demonstrate library E-SINDy, which
subsamples terms in the SINDy library. E-SINDy is computationally efficient compared with
probabilistic model identification methods based on Markov Chain Monte Carlo sampling [60],
which take several hours of CPU time to identify a model. By contrast, our method identifies
models and summary statistics in seconds by leveraging the sparse regression of SINDy with
statistical bagging techniques. Indeed, E-SINDy has similar computational scaling to standard
SINDy. This method applies under the same conditions as the standard SINDy algorithm, where it
is assumed that all relevant variables are measured at a sufficient temporal and spatial resolution
so as to approximate derivatives. We investigate different ensemble methods, apply them to
several synthetic and real-world datasets, and demonstrate that E-SINDy outperforms existing
sparse regression methods, especially in the low-data and high-noise limit. A schematic of
E-SINDy is shown in figure 1. We first describe SINDy for ODEs and PDEs in §2, before
introducing the E-SINDy extension in §3, and discussing applications to challenging model
discovery, active learning and control problems in §4.

2. Background
Here, we describe SINDy [16], a data-driven model discovery method to identify sparse nonlinear
models from measurement data. First, we introduce SINDy to identify ODEs, followed by its
generalization to identify PDEs [17,29].

(a) Sparse identification of nonlinear dynamics
The SINDy algorithm [16] identifies nonlinear dynamical systems from data, based on the
assumption that many systems have relatively few active terms in the dynamics f in equation
(1.1). SINDy uses sparse regression to identify these few active terms out of a library of candidate
linear and nonlinear model terms. Therefore, sparsity-promoting techniques may be used to find

1b(r)agging refers to robust bagging based on median, rather than mean, information.
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Figure 1. (a–c) Schematic of the E-SINDy framework. E-SINDy exploits the statistical method of bootstrap aggregating
(bagging) to identify ordinary and partial differential equations that govern the dynamics of observed noisy data. First, sparse
regression is performed on bootstraps of the measured data, or on the library terms in case of library bagging, to identify
an ensemble of SINDy models. The mean or median of the coefficients are then computed, coefficients with low inclusion
probabilities are thresholded, and the E-SINDy model is aggregated and used for forecasting. (Online version in colour.)

parsimonious models that automatically balance model complexity with accuracy [16]. We first
measure m snapshots of the state u in time and arrange these into a data matrix

U = [u1 u2 · · · um]T. (2.1)

Next, we compute the library of D candidate nonlinear functions Θ(U) ∈ R
m×D

Θ(U) = [1 U U2 · · · Ud · · · sin(U) · · · ]. (2.2)

This library is constructed to include any functions that might describe the data, and this choice
is crucial. The underlying dynamical system is unknown and we cannot guarantee that the
dynamics are well described by the span of the library. Therefore, the recommended strategy
is to start with a basic choice, such as low-order polynomials, and then increase the complexity
and order of the library until sparse and accurate models are obtained.

We must also compute the time derivatives of the state Ut = [u̇1 u̇2 · · · u̇m]T, typically by
numerical differentiation. We therefore need a suitable data sampling time that allows for the
computation of the time derivatives, which may limit the applicability of the SINDy algorithm
for certain datasets with coarse or uneven sampling in time. The system in equation (1.1) may
then be written in terms of these data matrices

Ut = Θ(U)Ξ . (2.3)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 F

eb
ru

ar
y 

20
23

 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210904

..........................................................

Each entry in Ξ ∈ R
D×n is a coefficient corresponding to a term in the dynamical system. Many

dynamical systems have relatively few active terms in the governing equations. Thus, we may
employ sparse regression to identify a sparse matrix of coefficients Ξ signifying the fewest active
terms from the library that result in a good model fit

Ξ = arg min
Ξ̂

1
2
||Ut − Θ(U)Ξ̂ ||22 + R(Ξ̂ ). (2.4)

The regularizer R(Ξ ) is chosen to promote sparsity in Ξ . For example, sequentially thresholded
least-squares (STLS) [16] uses R(Ξ ) = λ||Ξ ||0 with a single hyperparameter λ, whereas
sequentially thresholded ridge regression (STRidge) [17] uses R(Ξ ) = λ1||Ξ ||0 + λ2||Ξ ||2 with
two hyperparameters λ1 and λ2. STLS was first introduced to discover ODEs and STRidge
was introduced to discover PDEs where data can be highly correlated and STLS tends to
perform poorly. There are several other recently proposed regularizers and optimization schemes
[49,71,72]. We illustrate STRidge in pseudo code algorithm 1, noting that STRidge reduces to STLS
for λ2 = 0.

(b) Discovering PDEs
SINDy was recently generalized to identify PDEs [17,29] in the partial differential equation functional
identification of nonlinear dynamics (PDE-FIND) algorithm. PDE-FIND is similar to SINDy, but with
the library including partial derivatives. Spatial time-series data are arranged into a column vector
U ∈ R

mn, with data collected over m time points and n spatial locations. Thus, for PDE-FIND, the
library of candidate terms is Θ(U) ∈ R

mn×D. The PDE-FIND implementation of Rudy et al. [17]
takes derivatives using finite difference for clean data or polynomial interpolation for noisy data.
The library of candidate terms can then be evaluated:

Θ(U) = [1 U U2 · · · Ux · · · UUx · · · ]. (2.5)

The time derivative Ut is reshaped into a column vector and the system in equation (1.2) is
written as

Ut = Θ(U)Ξ . (2.6)
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For most PDEs, Ξ is sparse and can be identified with a similar sparsity-promoting regression

Ξ = arg min
Ξ̂

1
2
||Ut − Θ(U)Ξ̂ ||22 + R(Ξ̂ ). (2.7)

STRidge improves model identification with highly correlated data that is common in PDE
regression problems. PDE-FIND is extremely prone to noise, because noise is amplified when
computing high-order partial derivatives for Θ . To make PDE-FIND more noise robust, integral
[50] and weak formulations [51,54] were introduced. Instead of discovering a model based on
equation (1.2), the PDE can be multiplied by a weight wj(u, t) and integrated over a domain Ωk.
This can be repeated for a number of combinations of wj(u, t) and Ωk. Stacking the results of the
integration over different domains using different weights leads to a linear system

q0 = QΞ , (2.8)

with q0 and Q = [q1, . . . , qD] the integrated left-hand side and integrated library of candidate
terms, which replace Ut and the library of nonlinear functions Θ(U). As with PDE-FIND, sparse
regression can be employed to identify a sparse matrix of coefficients Ξ , using STLS, STRidge or
other regularizers. For all of our results, we use this weak formulation as a baseline and for the
basis of ensemble models.

3. Ensemble SINDy
In this work, we introduce E-SINDy, which incorporates ensembling techniques into data-
driven model discovery. Ensembling is a well-established machine learning technique that
combines multiple models to improve prediction. A range of ensembling methods exist, such
as bagging (bootstrap aggregation) [28], bragging (robust bagging) [73,74] and boosting [75,76].
Structure learning techniques such as cross-validation [77] or stability selection [78] can also be
considered ensembling methods, because they combine and use the information of a collection of
learners or models. For model discovery, ensembling improves robustness and naturally provides
inclusion probabilities and uncertainty estimates for the identified model coefficients, which
enable probabilistic forecasting and active learning.

Here, we propose two new ensemble model discovery methods: the first method is called
b(r)agging E-SINDy, and the second method is called library E-SINDy. A general schematic of
E-SINDy is shown in figure 1, and a schematic of the sparse regression problems for b(r)agging
and library E-SINDy is shown in figure 2. Our first method, b(r)agging E-SINDy, uses data
bootstraps to discover an ensemble of models that are aggregated by taking the mean of the
identified model coefficients in case of bagging, and taking the median in the case of bragging.
Bootstraps are data samples with replacement. Applied to SINDy to identify ODEs, we first build
a library of candidate terms Θ(U) and derivatives Ut. From the m rows of the data matrices
Ut and Θ(U), corresponding to m samples in time, we select q bootstrapped data samples and
generate q SINDy models in the ensemble. For each of these q data bootstraps, m new rows are
sampled with replacement from the original m rows of the data matrices. On average, each data
bootstrap will have around 63% of the entries of the original data matrices, with some of these
entries being represented multiple times in the bootstrap; for large m this quantity converges to
1 − e−1 ≈ 0.632, which is the limit of 1 − (1 − (1/m))m for m → ∞. In this way, randomness and
subsampling is inherent to the bootstrapping procedure. From the q identified SINDy models in
the ensemble, we can either directly aggregate the identified models, or first threshold coefficients
with low inclusion probability. The procedure is illustrated in algorithm 2 for bagging E-SINDy
using STRidge. The same procedure applies for bragging, taking the median instead of the mean,
and using other regularizers than STRidge. Note that there are other random data subsampling
approaches that may be used, such as generating q models based on q random subsamples of
p < m rows of the data without replacement, of which there are

(m
p
)
. However, boostrapping based

on selection with replacement is the most standard procedure.
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Figure 2. Schematic of SINDy and E-SINDy with b(r)agging and library bagging. Shown is a single model of the ensemble. In
the case of b(r)agging, data bootstraps (data samples with replacement) are used to generate an ensemble of SINDy models.
The E-SINDy model is aggregated by taking the mean of the identified coefficients for bagging, and the median for bragging.
In case of library bagging, instead of data bootstraps, library term bootstraps are sampled without replacement. Library terms
with low inclusion probability are discarded and the E-SINDymodel can be identified on the smaller library using standard SINDy
or b(r)agging E-SINDy. (Online version in colour.)

The second method proposed, library bagging E-SINDy, samples library terms instead of data
pairs. We sample l out of D library terms without replacement. In case of sampling library terms,
replacement does not affect the sparse regression problem. However, using smaller libraries can
drastically speed up model identification, as the complexity of the least-squares algorithm is
O(ml2). Library bagging with small l can therefore help counteract the increased computational
cost of solving multiple regression problems in the ensemble. As with bagging E-SINDy, we
obtain an ensemble of models and model coefficient inclusion probabilities. We can directly
aggregate the models and threshold coefficients with low inclusion probabilities to get a library
E-SINDy model. We can also use the inclusion probabilities to threshold the library, only keeping
relevant terms, and run bagging E-SINDy using the smaller library. This can be particularly useful
if we start with a large library: we first identify and remove all library terms that are clearly not
relevant and then run bagging E-SINDy on the smaller library. However, the library bagging
inclusion probability threshold needs to be selected carefully to not remove relevant terms from
the library. We show a pseudo code of library bagging E-SINDy in algorithm 3.
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E-SINDy provides inclusion probabilities and uncertainty estimates for the discovered model
coefficients, thus connecting to Bayesian model identification techniques. The identified ensemble
of model coefficients can be used to compute coefficient probability density functions, which form
a posterior distribution p(Ξ |X). In terms of forecasting, we can either use the aggregated mean or
median of the identified coefficients to forecast, or we can draw from multiple identified SINDy
models to generate ensemble forecasts that represent posterior predictive distributions p(x(t)|X)
that provide prediction confidence intervals.

4. Results
We now apply E-SINDy to challenging synthetic and real-world datasets to identify ODEs
and PDEs. We apply library bagging E-SINDy to a real-world ecological dataset, showing its
performance in the very low data limit. For PDEs, we use the recent weak-SINDy (WSINDy) [54]
as a baseline and show the improved noise robustness when using E-SINDy for identifying a
range of PDEs. Trends for the noise and data length sensitivity of bagging, bragging and library
bagging to identify the chaotic Lorenz system dynamics are presented in appendix A.

(a) ODEs
We apply E-SINDy to a challenging real-world dataset from the Hudson Bay Company, which
consists of the yearly number of lynx and hare pelts collected from 1900 to 1920. These pelt
counts are thought to be roughly proportional to the population of the two species [79]. Lynx
are predators whose diet depends on hares. The population dynamics of the two species should,
therefore, be well approximated by a Lotka–Volterra model. There are several challenges in
identifying a SINDy model from this dataset: there are only 21 data points available, and there is
large uncertainty in the measurements arising from weather variability, consistency in trapping
and other changing factors over the years measured. In figure 3, we show that E-SINDy correctly
identifies the Lotka–Volterra dynamics, providing model coefficient and inclusion probabilities
and confidence intervals for the reconstructed dynamics. We use library bagging, followed by
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Figure 3. Library bagging E-SINDy (LB-SINDy) on real data: data consisting of measurements by the Hudson Bay Company of
lynx and hare pelts from 1900 to 1920. (a) Uncertainty in the identified model coefficients, (b) inclusion probabilities of the
model coefficients (with 65% threshold) and (c) model reconstruction. LB-SINDy (continuous lines) uses the mean value of the
identified coefficients for reconstruction, and the95%confidence interval depicts ensemble reconstruction, drawingfivemodels
and averaging the coefficients for 1000 realizations. (Online version in colour.)

bagging using a library of polynomials up to third order, to identify a sparse model in this very
low data limit with only 21 data points per species. Similar results for the lynx-hare dataset were
recently published using a probabilistic model discovery method [60] based on sparse Bayesian
inference. This approach employed Markov Chain Monte Carlo, for which the computational
effort to generate a probabilistic model is comparably high, taking several hours of CPU time.
By contrast, E-SINDy takes only seconds to identify a model and its coefficient and inclusion
probabilities.

(b) PDEs
In this section, we present results applying E-SINDy to discover PDEs from noisy data. We use
the recent WSINDy implementation [54] as the baseline model for ensembling. WSINDy was
successfully applied to identify models in the high-noise regime using large libraries. We perform
library bagging on the system of equation (2.8) instead of equation (2.6), and refer to the resulting
method as ensemble weak SINDy (E-WSINDy).

We apply E-WSINDy to identify PDEs from synthetic data for the inviscid Burgers, Korteweg
de Vries, nonlinear Schroedinger, Kuramoto–Sivashinsky and reaction–diffusion equations.
Details on the numerical methods for creating the data are discussed in appendix B and in
our E-SINDy data and code repository. We quantify the accuracy and robustness of the model
identification by assessing the success rate and model coefficient errors for a number of noise
realizations. The success rate is defined as the rate of identifying the correct non-zero and zero
terms in the library, averaged over all realizations. The model coefficient error Ec quantifies how
much the identified coefficients Ξ̂ deviate from the true parameters Ξ that we use to generate the
data:

Ec = ||Ξ − Ξ̂ ||2
||Ξ ||2

. (4.1)

The results are summarized in figure 4. For all PDEs, E-WSINDy reduces the model coefficient
error and increases the success rate of the model discovery. Moreover, E-WSINDy can accurately
identify the correct model structure for the reaction–diffusion case, where WSINDy falsely
identifies a linear oscillator model instead of the nonlinear reaction–diffusion model. To
investigate the limits of E-WSINDy, we further increase the noise level for each case up to the
point where the success rate drops below 90%. On average, for all investigated PDEs, we find
that ensembling improves the noise robustness of WSINDy by a factor of 2.3. We conclude that
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PDE
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de Vries

nonlinear
Schrödinger
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Sivashinsky
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diffusion

20% 77.7% | 7.1% 0.0% | 99.5%

29.5% | 24.7% 87.5% | 99.5%

13.0% | 11.3% 82.0% | 100%

27.5% | 4.0% 93.5% | 100%

2.6% | 2.5% 99% | 100%

100%

100%

100% ut + 0.5uux = 0

ut + 0.5uux + uxxx = 0

iut + 0.5uxx + |u|2u = 0

ut + 0.5uux + uxx + uxxxx
 = 0

ut = 0.1—2u + l (A)u – w (A)v

vt = 0.1—2v + w(A)u + l(A)v
A2 = u2 + v2, w =  –bA2, l = 1 – A2

50%

u

v

noise level form
model error

WSINDy | E-WSINDy
success rate

WSINDy | E-WSINDy

Figure 4. Comparison of model error and success rate of discovered PDEs using weak-SINDy and ensemble weak-SINDy.
Ensembling robustifies and improves the accuracy of PDE identification. (Online version in colour.)

ensembling significantly improves model discovery robustness and enables the identification of
PDEs in the extreme noise limit.

(c) Exploiting ensemble statistics for active learning
We now present results exploiting the ensemble statistics for active learning [80,81]. Active
learning is a machine learning method that can reduce training data size while maintaining
accuracy by actively exploring regions of the feature space that maximally inform the learning
process [82,83]. This can be particularly effective for systems with large feature spaces that are
expensive to explore, such as in biological systems or high-dimensional systems with control.
In biological systems, collecting samples can be time consuming and expensive, but it may be
possible to initialize specific new initial conditions of the system. Active learning can inform the
selection of these initial conditions for improved data efficiency of the learning process and model
discovery. For control problems, similarly, exploration of large feature spaces may be expensive,
such as repeatedly performing robotics experiments. Active learning can enable data-efficient
exploration by the guided collection of relevant and descriptive data that optimally supports
the model discovery process of the controlled robotic system. Here, we leverage the ensemble
statistics of E-SINDy to identify and sample high-uncertainty regions of phase space that
maximally inform the sparse regression. In E-SINDy, we collect data from a single initial condition
or from multiple randomly selected initial conditions and identify a model in one shot. Instead,
we can successively identify E-SINDy models and exploit their ensemble statistics to identify
new initial conditions with high information content, which can improve the data efficiency of
the model discovery process. The basic idea is to compute ensemble forecasts from a large set of
initial conditions using successively improved E-SINDy models and only explore regions with
high ensemble forecast variance. Our simple but effective active E-SINDy approach iteratively
identifies models in three steps: (1) collecting a small amount of randomly selected data to identify
an initial E-SINDy model; (2) selecting a number of random initial conditions and computing the
ensemble forecast variance for each initial condition using the current E-SINDy model; and (3)
sampling the true system with the initial condition with highest variance. Finally, we concatenate
the newly explored data to the existing dataset to identify a new E-SINDy model, and continue the
model identification until the model accuracy and/or variance of the identified model coefficients
converge.
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Figure 5. Exploiting ensemble statistics for active learning. Active E-SINDy randomly selects a number of initial conditions
(IC), computes the ensemble forecast variance at each IC and explores the IC with highest variance. (a) Ensemble forecasts from
different ICs. (b) Reduced varianceof identifiedmodel coefficients after several active learning steps. (c) Improveddata efficiency
and accuracy of model discovery using active learning. (Online version in colour.)

Here, we test active E-SINDy on the Lorenz system dynamics introduced in figure 1 and
appendix A and show the results in figure 5. In figure 5a, we show five illustrative ensemble
forecasts from different initial conditions after initializing the algorithm. In total, at each iteration,
we compute ensemble forecasts at 200 different initial conditions. We found that at each initial
condition, integrating a single time step forward in time is informative enough to compute
ensemble forecasting variance. In figure 5b, we show the probability density functions of the
identified model coefficients at initialization have wide distributions, and after 80 active learning
steps the variance of the distributions is significantly reduced. Figure 5c also shows the improved
data efficiency of the model discovery using active learning E-SINDy compared with E-SINDy.
Through active E-SINDy, we reduce the variance of the identified model coefficients, increase
the success rate of identifying the correct model structure and reduce the model coefficient error
compared with standard E-SINDy.

(d) Ensemble SINDy model predictive control
It is also possible to use E-SINDy to improve model predictive control (MPC) [84–86]. MPC
is a particularly compelling approach that enables control of strongly nonlinear systems with
constraints, multiple operating conditions and time delays. The major challenge of MPC lies in
the development of a suitable model. Deep neural network models have been increasingly used
for deep MPC [87,88]; however, they often rely on access to massive datasets, have limited ability
to generalize, do not readily incorporate known physical constraints and are computationally
expensive. Kaiser et al. [46] showed that sparse models obtained via SINDy perform nearly as well
with MPC, and may be trained with relatively limited data compared to a neural network. Here,
we show that E-SINDy can further reduce the training data requirements compared to SINDy,
enabling the control of nonlinear systems in the very low data limit.

We use E-SINDy to identify a model of the forced Lorenz system dynamics and use MPC to
stabilize one of the two unstable fixed points (±√

72, ±√
72, 27). The Lorenz system is introduced

in figure 1 and we add a control input u to the first state of the dynamics: ẋ = σ (y − x) + u. The
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E-SINDy with control:
low-data limit system identification
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Figure 6. System identification in the low-data limit for model predictive control (MPC). (a) MPC cost function average J̄ over
number of time steps used for training with E-SINDy (blue continuous line) and SINDy (red dashed line). Controlled trajectory
coordinates x, y, z of Lorenz system with MPC input u, for models trained with E-SINDy (blue continuous line) and SINDy (red
dashed line) using (b) 50 and (c) 150 time-step data points. (Online version in colour.)

control problem is based on Kaiser et al. [46]. We describe the MPC problem in more detail in
appendix C. In figure 6, we show the performance of MPC based on E-SINDy models for different
training data length and noise = 0.01. In figure 6a, we show the sensitivity of the mean MPC
cost to training data length. We run 1000 noise realizations and average the mean MPC cost of
all runs. Figure 6b shows trajectories of the controlled Lorenz system for models trained with
E-SINDy and SINDy, using 50 and 150 time-step data points. E-SINDy significantly improves the
MPC performance in the low data limit compared with SINDy.

5. Discussion
This work has developed and demonstrated a robust variant of the SINDy algorithm based
on ensembling. The proposed E-SINDy algorithm significantly improves the robustness and
accuracy of SINDy for model discovery, reducing the data requirements and increasing noise
tolerance. E-SINDy exploits foundational statistical methods, such as bootstrap aggregating,
to identify ensembles of ODEs and PDEs that govern the dynamics from noisy data. From
this ensemble of models, aggregate model statistics are used to generate inclusion probabilities
of candidate functions, which promotes interpretability in model selection and provides
probabilistic forecasts. We show that ensembling may be used to improve several standard
SINDy variants, including the integral formulation for PDEs. Combining ensembling with the
integral formulation of SINDy enables the identification of PDE models from data with more
than twice as much measurement noise as has been previously reported. These results are
promising for the discovery of governing equations for complex systems in neuroscience, power
grids, epidemiology, finance or ecology, where governing equations have remained elusive.
Importantly, the computational effort to generate probabilistic models using E-SINDy is low.
E-SINDy produces accurate probabilistic models in seconds, compared with existing Bayesian
inference methods that take several hours. Library bagging has the additional advantage of
making the least-squares computation more efficient by sampling only small subsets of the library.
E-SINDy has also been incorporated into the open-source PySINDy package [62,63] to promote
reproducible research.

We also present results exploiting the ensemble statistics for active learning and control. Recent
active exploration methods [89] and active learning of nonlinear system identification [90] suggest
exploration techniques using trajectory planning to efficiently explore high uncertainty regions
of the feature space. We use the uncertainty estimates of E-SINDy to explore high uncertainty
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regions that maximally inform the learning process. Active E-SINDy reduces the variance of the
identified model coefficients, increases the success rate of identifying the correct model structure
and reduces the model coefficient error compared with standard E-SINDy in the low data limit.
Finally, we apply E-SINDy to improve nonlinear MPC. SINDy was recently used to generate
models for real-time MPC of nonlinear systems. We show that E-SINDy can significantly reduce
the training data required to identify a model, thus enabling control of nonlinear systems with
constraints in the very low data limit. An exciting future extension of the computationally efficient
probabilistic model discovery is to combine the active learning and MPC strategies based on
E-SINDy. An important avenue of future work may also explore active sampling that is
constrained by the physical limitations of a given simulation or experiment. Highly efficient
exploration and identification of nonlinear models may also enable learning task-agnostic models
that are fundamental components of model-based reinforcement learning.
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Appendix A. E-SINDy trends compared with standard SINDy
Here, we evaluate noise and data length sensitivity of E-SINDy compared with the standard
SINDy implementation with no innovations for noise robustness. This case does not demonstrate
the maximum noise robustness, but rather provides a simple and intuitive introduction to how
E-SINDy compares with a baseline SINDy algorithm. E-SINDy can be used with most SINDy
variants, and similar performance increases are found. For example, using integral SINDy or
computing derivatives using the total variation derivative will dramatically improve the baseline
robustness and therefore the E-SINDy robustness, as shown in §4b.

We define three commonly used metrics of success for identifying sparse nonlinear models:
(1) the structure of the identified model, i.e. identifying the correct zero and non-zero terms
in library; (2) the error of the identified model coefficients; and (3) the accuracy of predicted
trajectories. The accuracy of a predicted trajectory is highly sensitive to small differences in
the model coefficients, especially for chaotic systems. Therefore, we assess the structure of the
identified model and the error of the identified coefficients quantitatively, and assess the accuracy
of the forecast qualitatively. In figure 7, we compare the noise level and data length sensitivity of
SINDy with bagging, bragging and library bagging E-SINDy, for data from the Lorenz system.
We generate trajectories from the Lorenz system with system parameters shown in figure 1 and
initial condition u0 = [−8, 7, 27], for a range of data length. We then add Gaussian white noise
with zero mean and variance σ/||u||rms, where ||u||rms is the root mean squared value of the
trajectory data. We test each noise level and data length case with 1000 random realizations of
noise, compute the success rate of identifying the correct model structure in Ξ and calculate the
mean error of the identified model coefficients. The sparsity promoting hyperparameter is set to
λ = 0.2 for all methods. The number of models in the ensemble is set to q = 100. The inclusion
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Figure 7. Noise level and data length sensitivity of different SINDy and ensemble SINDymodels of the Lorenz system dynamics.
(a) Model coefficient error and (b) success rate in identifying the correct model structure. Each noise level and data length case
is run on 1000 realizations of noise and averaged for plotting. Ensembling improves the accuracy of SINDy with less data and
more noise. (Online version in colour.)

probability used to threshold model coefficients is set to tol = 0.6 for b(r)agging and tol = 0.4 for
library bagging. We choose a smaller threshold for library bagging because we perform bagging
after library bagging. Thus, the goal is not to aggressively threshold the identified coefficients,
but only to reduce the initial library size to simplify the complexity of the subsequent bagging
E-SINDy. We found that this strategy can improve the success rate and reduce the model error.
Additionally, in the case of library bagging, we define the number of library terms in each sample
to be l = 0.6D.

The results for the different ensemble methods over noise level and data length are shown
in figure 7. We see that ensembling clearly improves the accuracy and robustness of the model
discovery, enabling model identification with less data and more noise than standard SINDy. As
expected, bragging further robustifies bagging, and library bagging also improves accuracy and
robustness. Additionally, library bagging has the advantage that we can consider larger libraries,
discarding irrelevant terms in the library before applying b(r)agging E-SINDy. In the low data
limit with little or no noise, we see that bagging does not significantly improve accuracy, and can
even perform worse than standard SINDy. This is caused by outliers in the ensemble of identified
models that decrease the accuracy of the aggregated model. We therefore suggest bragging, which
robustifies bagging and improves the accuracy of the identified model by taking the median
instead of the mean of the ensemble.

In terms of the accuracy of the E-SINDy forecast, we show library bagging for 2.5% noise and
data length T = 10s in the bottom of figure 1. Library bagging E-SINDy (coloured solid line) is
able to forecast several chaotic lobe switches, compared with SINDy (grey dotted line), which
deviates much earlier from the true dynamics (dashed line). We also show the 95% confidence
intervals for different ensemble forecasting strategies, where multiple models are drawn from the
bootstrap and used for prediction. Additionally, figure 1 shows the model coefficient distribution
and inclusion probabilities of the identified library bagging E-SINDy model. The variance of the
identified coefficients is comparably low, and the inclusion probabilities for the non-zero terms
are clearly higher than for the zero terms.

Alternative resampling strategies such as jackknife [91] or using out-of-bag error estimates [92]
may also improve the robustness of model discovery. In jackknife, we sequentially remove one
observation from the data and identify an ensemble of models. This method may efficiently be
used with library bagging, however, we found that bootstrapping outperforms jackknife, which
is also reported in the literature [91]. We may also use out-of-bag error estimates to improve
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plotting). (a) Success rate in identifying the correct model structure and (b) model coefficient error. (Online version in colour.)

bagging. In bagging, each bootstrap sample leaves out approximately 37% of the data. This
data can be used to give error estimates of the bagged predictor. We tested out-of-bag bagging
E-SINDy, where we only aggregate the 10% most accurate models in terms of out-of-bag error. We
found improved performance compared with bagging, however, we found lower accuracy and
success rate compared with bragging. The more recent stability selection method [78] is another
alternative to bagging and bragging. We perform the same sensitivity analysis to noise level and
data length using the stability selection method that was recently used for PDE model discovery
in [69]. Stability selection can be used to automatically determine the level of regularization in
SINDy. The method randomly samples data subsets of size m/2 without replacement, identifies
SINDy models for each subset, computes an importance measure and thresholds library terms,
and solves a final linear least-squares regression on the thresholded library. The method in its
original form performs slightly worse than b(r)agging E-SINDy. However, the success rate of
stability selection SINDy can be improved, achieving comparable performance with bragging
E-SINDy, by sampling subsets of size m with replacement instead of m/2 without replacement. In
figure 8, we show the noise level sensitivity of the different ensemble SINDy methods including
jackknife, out-of-bag bagging and stability selection of the Lorenz system dynamics for 4s data
length.

Appendix B. PDEs
Here, we describe the numerical methods and discretizations for creating the data used in
the PDE model discovery results in §4b. The code to generate the data and reproduce the
results can be found in our E-SINDy data and code repository https://github.com/urban-fasel/
EnsembleSINDy. We use the data, numerical methods and spatial and temporal discretizations
from [17,54].

The numerical solutions are obtained for (x, t) ∈ xb × tb and spatial- and temporal discretization
n and m with periodic boundary conditions using Fourier-spectral differentiation and a Runge–
Kutta-45 ODE solver (except for the inviscid Burgers where exact data are taken from a shock-
forming solution described in [54]). The domain discretizations for the different examples are
given in table 1.

Appendix C. MPC
In MPC, we compute a control sequence u(xj) = {uj+1, . . . , uj+mc }, given the current state estimate
or measurement xj, by a constrained optimization over a receding horizon Tc = mc�t, with �t
the time step of the model and mc the number of time steps. At each time step, we repeat the
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Table 1. Spatial and temporal discretizations for different PDEs.

PDE n m xb tb
Inviscid Burgers 256 256 [−4000, 4000] [0, 4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Korteweg de Vries 400 601 [−π ,π ] [0, 0.006]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nonlinear Schroedinger 256 251 [−5, 5] [0,π ]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kuramoto–Sivashinsky 256 301 [0, 100] [0, 150]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reaction–diffusion 256 × 256 201 [−10, 10] × [−10, 10] [0, 4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

optimization, update the control sequence over the control horizon and apply the first control
action uj+1 to the system. The optimal control sequence u(xj) is obtained by minimizing a cost
function J over a prediction horizon Tp = mp�t ≥ Tc. The cost function is

J =
mp−1∑

k=0

||x̂j+k − rk||2Q +
mc−1∑

k=1

(||uj+k||2Ru
+ ||�uj+k||2R�u

),

subject to the discrete-time dynamics and constraints. The cost function J penalizes deviations
of the predicted state x̂ from the reference trajectory r, the control expenditure u and the rate
of change of the control signal �u. Each term is weighted by the matrices Q, Ru and R�u,
respectively.

Here, we use E-SINDy to identify a model of the forced Lorenz system dynamics and use MPC
to stabilize one of the two unstable fixed points. The Lorenz dynamics are given by

ẋ = σ (y − x) + u (C 1a)

ẏ = x(ρ − z) − y (C 1b)

and ż = xy − βz (C 1c)

with system parameters σ = 10, β = 8/3, ρ = 28, and control input u affecting only the first state.
The MPC objective is to stabilize one of the two unstable fixed points (±√

72, ±√
72, 27). The

weight matrices are Q = I3, Ru = R�u = 0.001, and the actuation input is limited to u ∈ [−50, 50].
The control and prediction horizon is mp = mc = 5 and the sparsity-promoting parameter in
SINDYc is λ = 0.2. We train the model with a Schroeder sweep and show the performance of
the MPC for different training data length in figure 6. We show trajectories of the controlled
Lorenz system for models trained with E-SINDy and SINDy and show that E-SINDy significantly
improves the MPC performance in the low data limit compared with SINDy.
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9. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009 Spectral analysis of
nonlinear flows. J. Fluid Mech. 645, 115–127. (doi:10.1017/S0022112009992059)

10. Kutz JN, Brunton SL, Brunton BW, Proctor JL. 2016 Dynamic mode decomposition: data-driven
modeling of complex systems. Philadelphia, PA: SIAM.

11. Bongard J, Lipson H. 2007 Automated reverse engineering of nonlinear dynamical systems.
Proc. Natl Acad. Sci. USA 104, 9943–9948. (doi:10.1073/pnas.0609476104)

12. Schmidt M, Lipson H. 2009 Distilling free-form natural laws from experimental data. Science
324, 81–85. (doi:10.1126/science.1165893)

13. Schmidt MD, Vallabhajosyula RR, Jenkins JW, Hood JE, Soni AS, Wikswo JP, Lipson H. 2011
Automated refinement and inference of analytical models for metabolic networks. Phys. Biol.
8, 055011. (doi:10.1088/1478-3975/8/5/055011)

14. Daniels BC, Nemenman I. 2015 Automated adaptive inference of phenomenological
dynamical models. Nat. Commun. 6, 8133. (doi:10.1038/ncomms9133)

15. Daniels BC, Nemenman I. 2015 Efficient inference of parsimonious phenomenological models
of cellular dynamics using S-systems and alternating regression. PLoS ONE 10, e0119821.
(doi:10.1371/journal.pone.0119821)

16. Brunton SL, Proctor JL, Kutz JN. 2016 Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937.
(doi:10.1073/pnas.1517384113)

17. Rudy SH, Brunton SL, Proctor JL, Kutz JN. 2017 Data-driven discovery of partial differential
equations. Sci. Adv. 3, e1602614. (doi:10.1126/sciadv.1602614)

18. Raissi M, Perdikaris P, Karniadakis GE. 2017 Machine learning of linear differential equations
using Gaussian processes. J. Comput. Phys. 348, 683–693. (doi:10.1016/j.jcp.2017.07.050)

19. Gottwald GA, Reich S. 2021 Supervised learning from noisy observations: combining
machine-learning techniques with data assimilation. Physica D 423, 132911. (doi:10.1016/j.
physd.2021.132911)

20. Gottwald GA, Reich S. 2021 Combining machine learning and data assimilation to forecast
dynamical systems from noisy partial observations. Chaos 31, 101103. (doi:10.1063/5.0066080)

21. Raissi M, Perdikaris P, Karniadakis GE. 2019 Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys. 378, 686–707. (doi:10.1016/j.jcp.2018.10.045)

22. Chen RT, Rubanova Y, Bettencourt J, Duvenaud D. 2018 Neural ordinary differential
equations. Preprint. (https://arxiv.org/abs/1806.07366)

23. Champion K, Lusch B, Kutz JN, Brunton SL. 2019 Data-driven discovery of coordinates
and governing equations. Proc. Natl Acad. Sci. USA 116, 22 445–22 451. (doi:10.1073/pnas.
1906995116)

24. Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. 2020
Fourier neural operator for parametric partial differential equations. Preprint. (https://arxiv.
org/abs/2010.08895)

25. Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, Skinner D, Ramadhan A.
2020 Universal differential equations for scientific machine learning. Preprint. (https://arxiv.
org/abs/2001.04385)

26. Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. 2021 Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3,
218–229. (doi:10.1038/s42256-021-00302-5)

27. Long Z, Lu Y, Ma X, Dong B. 2018 PDE-net: learning PDEs from Data. In Int. Conf. on Machine
Learning, pp. 3208–3216. PMLR.

28. Breiman L. 1996 Bagging predictors. Mach. Learn. 24, 123–140. (doi:10.1007/BF00058655)
29. Schaeffer H. 2017 Learning partial differential equations via data discovery and sparse

optimization. Proc. R. Soc. A 473, 20160446. (doi:10.1098/rspa.2016.0446)
30. Loiseau JC, Brunton SL. 2018 Constrained sparse Galerkin regression. J. Fluid. Mech. 838, 42–

67. (doi:10.1017/jfm.2017.823)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 F

eb
ru

ar
y 

20
23

 

http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1146/fluid.2013.45.issue-1
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1073/pnas.0609476104
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.1088/1478-3975/8/5/055011
http://dx.doi.org/10.1038/ncomms9133
http://dx.doi.org/10.1371/journal.pone.0119821
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.1126/sciadv.1602614
http://dx.doi.org/10.1016/j.jcp.2017.07.050
http://dx.doi.org/10.1016/j.physd.2021.132911
http://dx.doi.org/10.1063/5.0066080
http://dx.doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/1806.07366
http://dx.doi.org/10.1073/pnas.1906995116
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1098/rspa.2016.0446
http://dx.doi.org/10.1017/jfm.2017.823


18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210904

..........................................................

31. Loiseau JC, Noack BR, Brunton SL. 2018 Sparse reduced-order modeling: sensor-based
dynamics to full-state estimation. J. Fluid Mech. 844, 459–490. (doi:10.1017/jfm.2018.147)

32. Loiseau JC. 2020 Data-driven modeling of the chaotic thermal convection in an annular
thermosyphon. Theor. Comput. Fluid Dyn. 34, 339–365. (doi:10.1007/s00162-020-00536-w)

33. Guan Y, Brunton SL, Novosselov I. 2021 Sparse nonlinear models of chaotic electroconvection.
R. Soc. Open Sci. 8, 202367. (doi:10.1098/rsos.202367)
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