Oncogene

ARTICLE

www.nature.com/onc

W) Check for updates

Comparison of phenomics and cfDNA in a large breast
screening population: the Breast Screening and Monitoring

Study (BSMS)

Justin Stebbing'*>, Panteleimon G. Takis
David Guttery

3,5

© The Author(s) 2023

*, Daniel Fernandez-Garcia®, Lindsay Primrose* and Jacqueline A. Shaw

™ Caroline J. Sands®, Lynn Maslen (7 Matthew R. Lewis®, Kelly Gleason', Karen Page®,

14

To assess their roles in breast cancer diagnostics, we aimed to compare plasma cell-free DNA (cfDNA) levels with the circulating
metabolome in a large breast screening cohort of women recalled for mammography, including healthy women and women with
mammographically detected breast diseases, ductal carcinoma in situ and invasive breast cancer: the Breast Screening and
Monitoring Study (BSMS). In 999 women, plasma was analyzed by nuclear magnetic resonance (NMR) and Ultra-Performance Liquid
Chromatography-Mass Spectrometry (UPLC-MS) and then processed to isolate and quantify total cfDNA. NMR and UPLC-MS results
were compared with data for 186 healthy women derived from the AIRWAVE cohort. Results showed no significant differences
between groups for all metabolites, whereas invasive cancers had significantly higher plasma cfDNA levels than all other groups.
When stratified the supervised OPLS-DA analysis and total cfDNA concentration showed high discrimination accuracy between
invasive cancers and the disease/medication-free subjects. Furthermore, comparison of OPLS-DA data for invasive breast cancers
with the AIRWAVE cohort showed similar discrimination between breast cancers and healthy controls. This is the first report of
agreement between metabolomics and plasma cfDNA levels for discriminating breast cancer from healthy subjects in a true
screening population. It also emphasizes the importance of sample standardization. Follow on studies will involve analysis of
candidate features in a larger validation series as well as comparing results with serial plasma samples taken at the next routine
screening mammography appointment. The findings here help establish the role of plasma analysis in the diagnosis of breast

cancer in a large real-world cohort.

Oncogene; https://doi.org/10.1038/s41388-023-02591-z

INTRODUCTION

Breast cancer (BC) is the most frequent cause of death among
women after lung cancer, worldwide [1]. Current diagnosis is
largely based on a physical examination, mammographic and
other imaging and histopathological assessment of tissue biopsy,
complemented by blood tests for the detection of specific
antigens and/or proteins [2, 3]. Early diagnosis significantly
increases long-term survival rates [4]. However, more sensitive
and breast cancer-specific biomarkers are required for early
detection of aggressive disease.

Use of cfDNA was first described over 60 years ago [5]. Elevated
levels are seen in cancer in part due to reduced DNase activity
[6-8]. Elevated levels of cfDNA in plasma have been suggested for
the diagnosis of breast cancers and qualitative tests have
demonstrated increased cfDNA integrity/size [9-11]. However
elevated levels of cfDNA are also sometimes observed in benign
breast disease [12], reducing its specificity for cancer. Certain
patterns in cfDNA (e.g. mutations, loss of heterozygosity (LOH),

hypermethylation) have the potential to provide specific markers
and have also been investigated [13-15]. We have previously
described that that patient-specific circulating tumor (ctDNA)
analysis can detect early evidence of progression up to 2 years
ahead of imaging [16].

Altered metabolism is one of the key hallmarks of cancer. The
development of sensitive, reproducible and robust bioanalytical
tools such as NMR and mass spectrometry (MS) techniques has
allowed us to explore its role [17, 18] in conjunction with other
new methods. We have previously shown that metabonomics
identifies excess energy expenditure pathways perturbed during
chemotherapy for breast cancer [19] and have suggested new
therapeutic approaches that focus on metabolism [20]. Either
individually or grouped as a metabolomic profile, detection of
metabolites can be carried out in the same plasma samples as
cfDNA analysis. We have thus explored the potential of using both
cfDNA and the metabolome together, in a large cohort of women
recalled for mammography at Imperial College Healthcare NHS
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Table 1. Summary of OPLS-DA models comparing Invasive BC cases versus all other groups based upon untargeted/targeted NMR and MS assays

with their corresponding cross-validated (CV) accuracy and AUC values.

Models Accuracy (CV) (%) AUC (CV)

NMR NOESY CPMG Targeted NOESY CPMG Targeted
(metabolites/ (metabolites/
lipoproteins) lipoproteins)

Invasive BC vs Cancer-free 534 50.8 50.1/38.8 0.55 0.53 0.47/0.36

Invasive BC vs in situ 553 525 53.1/63.0 0.31 0.44 0.51/0.41

Invasive BC vs Benign 50.3 50.7 48.3/40.8 0.49 0.54 0.44/0.38

Invasive BC vs Healthy (AW) - - 89.1/86.3 = = 0.94/0.93

In situ vs Healthy (AW) = = 90.2/74.3 - - 0.95/0.78

Benign vs Healthy (AW) = = 88.2/75.7 - - 0.95/0.79

LC-MS HILIC+ Lipid RPC Lipid RPC— (LNEG) HILIC+ Lipid RPC Lipid RPC— (LNEG)

(HPOS)® + (LPOS) (HPOS)® + (LPOS)

Invasive BC vs Cancer-free 67.1 64.8 64.2 0.62 0.58 0.58

Invasive BC vs In situ 62.5 62.7 60.6 0.58 0.59 0.55

Invasive BC vs Benign 56.4 61.6 57.3 0.54 0.59 0.54

Invasive BC vs Disease/ 69.5 67.8 66.4 0.66 0.60 0.61

Medication-free

Disease/ Medication-free 85.8 753 70.6 0.90 0.74 0.74

(subgroup 1) vs Disease/

Medication-free (subgroup 2)

Invasive BC vs Disease/ 75.5 70.0 723 0.77 0.69 0.71

Medication-free (subgroup 1)

Invasive BC vs Disease/ 41.6 39.8 40.4 0.33 0.30 0.31

Medication-free (subgroup 2)

Model groupings comprise; Invasive BC: subjects diagnosed with invasive BC (n = 105); Cancer-free: subjects without invasive BC, in situ and benign diseases
(n = 614); In situ: subjects with in situ cancer (n = 40); Benign group: subjects with benign breast disease (n = 214); Disease/Medication-free: subjects without
BC or any other disease and being under no medication (n=288); Diseases/ Medication-free (subgroup 1): subset of Disease/Medication-free group,
discriminated from invasive BC with high accuracy by MS assays models (n = 237); Diseases/ Medication-free (subgroup 2): subset of Disease/Medication-free
group, but predicted as invasive BC group with high accuracy by MS assays models (n = 51); Healthy (AW): healthy female subjects from an independent

cohort from the AIRWAVE study (n = 186).

®HILIC+ results of the fitted models are after the removal of lidocaine features.

Trust, including healthy women and women with early mammo-
graphically detected breast cancer. We also compared results to a
second independent series of healthy controls from the AIRWAVE
study. Together the use of ¢fDNA and metabolomics, when used
as a translational research tool, can provide a link between the
laboratory and clinic.

RESULTS

The demographics and clinical metadata of the 1185 individuals
analyzed in this study are reported in the Supplementary Table 1
comprising 999 from the BSMS study and 186 female individuals
recruited from AIRWAVE (AW ).

NMR spectroscopy
In the BSMS cohort OPLS-DA of plasma '"H-NMR global profiling
data (1D-NOESY and CPMG) between patients diagnosed with
invasive breast cancer and cancer-free subjects, did not show
significant discrimination (Table 1, Fig. 1a, b). Similar non-
significant discrimination was found between groups for the
comparison between benign vs. in situ, invasive cancer vs. benign,
invasive cancer vs. in situ and cancer-free vs. all breast cancer
groups. Similar results, with poor discrimination accuracy (<60%,
Table 1) between all studied groups (Supplementary Fig. 2) were
obtained for OPLS-DA modeling of the plasma NMR targeted data
(19 metabolites and 112 lipoproteins).

Taking advantage of NMR data reproducibility between
spectrometers and spectra collection centers [21], we also
compared invasive cancer patients with data generated as part
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of the AIRWAVE study, comprising an independent cohort of
female healthy individuals (n=186). In particular, the targeted
datasets from both studies (i.e. the absolute concentration values
of 19 metabolites and 112 plasma lipoproteins) were employed
and used to build the corresponding MVA models. Initially,
unsupervised Principal Component Analysis (PCA) was performed
on diseases-free and healthy AIRWAVE individuals’ datasets from
both studies to test the feasibility of coupling the two
independent datasets. PCA score plot (Supplementary Fig. 3a)
from the 19 metabolites concentrations showed a perfect
classification between healthy AIRWAVE versus BSMS diseases-
free individuals. Further examination of loadings plots (Supple-
mentary Fig. 3b) revealed that glucose and lactic acid concentra-
tions were significantly different between the 2 study cohorts,
where glucose and lactic acid values were higher and lower,
respectively, in BSMS diseases-free individuals (Supplementary Fig.
3¢, d). This could be attributed to the sample collection time
points, nutritional habits and/or physical exercise between
individuals from each cohort, amongst possible factors. Never-
theless, glucose and lactic acid were removed from both datasets,
and the new PCA results indicated an overlap without any
significant classification trends between BSMS and AIRWAVE
samples, allowing us to employ them for further supervised
MVA analyses. It should be noted that the lipoproteins datasets
were highly overlapped for both studies (Supplementary Fig. 3e)
and they were employed for further analyses as such.

The supervised OPLS-DA analysis of the 17 metabolites dataset
(excluding glucose and lactic acid) for BSMS patients with invasive
breast cancer versus the AIRWAVE healthy subjects showed high
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Fig. 1 OPLS-DA analysis of plasma "H-NMR global profiling data between Invasive breast cancer vs. cancer-free subjects. Scores plots and

the ROC curves of the OPLS-DA analyses between cancer-free vs. Invasive breast cancer subjects from a NOESY and b CPMG NMR

spectral data.

classification accuracy (Table 1) of the two groups (Supplementary
Fig. 4a, b) and one-way ANOVA calculated p-values after
Benjamini-Hochberg correction [22] indicated citric acid, acetic
acid, leucine, histidine, glycine, glutamine, pyruvic acid and
creatinine as discriminative biomarkers (Supplementary Fig. 4c).
The same analysis for the 112 plasma lipoproteins provided a
good classification of invasive cancer patients versus healthy AW
subjects (Table 1, Supplementary Fig. 5) and 17 lipoprotein classes
appeared to significantly change (p < 0.05) between the 2 classes
(Supplementary Table 2). Following the same strategy, OPLS-DA
models were constructed for the comparison between benign vs
healthy (AIRWAVE) (Supplementary Fig. 6a) and in situ vs healthy
(AW) (Supplementary Fig. 6b) and their performance is summar-
ized in Table 1. Results indicated again high classification
accuracies for the benign vs. healthy (AW) and in situ vs healthy
(AW) models based upon the 17 metabolites concentration
datasets. The produced loadings from the models suggested
several metabolites as potential biomarkers, such as pyruvic acid,
citric acid, leucine, histidine, glycine, glutamine and creatinine
(Supplementary Fig. 6¢, d). It is noteworthy that although the
mean age of BSMS breast cancer and AW subjects were
significantly different (Supplementary Table 1), Pearson correlation
analysis of all plasma metabolites concentrations with subjects’
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age indicated an insignificant contribution of age to the measured
values (Supplementary Fig. 7) in the present datasets.

UPLC-MS

Similarly, OPLS-DA showed no significant discrimination between
any sample class pairings for all LC-MS assays. In particular, the
statistical models based upon the lipidomic profile of plasma
samples for both positive and negative ionization modes,
exhibited similar discrimination accuracy between invasive cancer
and cancer-free subjects (accuracy = 64%), whereas the models
from the benign vs. in situ, invasive cancer vs. benign, invasive
cancer vs. in situ and cancer-free vs. the rest of the types of breast
cancer groups showed lower discrimination accuracy values (i.e.
<60%) (Table 1, Supplementary Fig. 8). However, a moderate
discrimination accuracy (AUC =0.65 and accuracy = 76.5%) was
observed between the invasive cancer and the cancer-free control
group from the HILIC+ dataset. An examination of the extracted
loadings data from the supervised OPLS-DA analysis showed that
the most weighted HILIC+ features leading to the observed
discrimination, corresponded to lidocaine, most likely explained
by contamination of several plasma samples by local anesthetic
during the blood sampling procedure. When we removed HILIC+
lidocaine features and repeated the MVA analysis the model

SPRINGER NATURE
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Fig.2 OPLS-DA analysis of MS HILIC+ (HPOS) data between cancer-free vs. invasive breast cancer subjects and their resulting subgroups.
a. Scores plot and ROC curve of the OPLS-DA analysis between Cancer-free vs. Invasive breast cancer subjects from the MS HILIC+ (HPOS)
assay data. b. Scores plot and the ROC curve of the OPLS-DA analysis [MS HILIC+ (HPOS) assay] between Invasive breast cancer vs. Diseases/
medication-free subjects (n=288), where the two observed subgroups are colored differently; those predicted as Invasive Cancer are
depicted as red diamonds and the rest of the Diseases/medication-free subjects are depicted as inverted yellow triangles.

showed less accuracy in discriminating the two groups
(AUC=0.62 and accuracy = 67.0%) in agreement with the
lipidomic profile (Table 1 and Fig. 2a).

Having considered lidocaine contamination of the samples, we
further stratified the 614 cancer-free controls, comparing 288
reported as having no drugs intake and/or other disease with the
other 326 subjects. Subsequently, we isolated this disease/
medication-free group and we re-evaluated all MVA analyses for
both UPLC-MS and NMR data. This was undertaken to avoid any
confounding in the data owing to the presence of features
corresponding to drug related compounds or to metabolites
relating to other diseases that cancer-free subjects were
experiencing during the blood sampling period. This OPLS-DA
model for invasive cancer vs. disease/medication-free subjects
indicated a slightly higher discrimination accuracy (+3%) for all
UPLC-MS assays (Table 1 and Fig. 2b). When exploring the
predicting ability of our models, 51 of the 288 plasma samples
from the diseases/medication-free healthy controls, were pre-
dicted as invasive cancer with accuracy >85% based on their
metabolic data (Table 1 and Fig. 3a).

However, the supervised OPLS-DA analysis of the diseases/
medication-free vs. the diseases/medication-free predicted as
invasive cancer samples showed high discrimination accuracy,
namely, 86%, 76 and 71% for HILIC+, Lipid RPC+ and Lipid RPC-
MS assays, respectively (Table 1). When this group of 51 control
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subject were excluded highly predictive models were produced
from the diseases/medication-free (without those predicted as
Invasive Cancer) vs. invasive cancer plasma samples, with accuracy
values 76%, 70 and 73% for HILIC+, Lipid RPC+ and Lipid RPC—
MS assays, respectively.

Plasma cfDNA analysis

Initially, total cfDNA levels in all blood samples from BSMS were
employed for multiple univariate ANOVA analyses, comparing the
total cfDNA concentration between each group of subjects as for
the metabolomics data (Fig. 3b). All univariate analyses of the
cfDNA concentration corroborate the obtained results from the
MS based MVA models. The total ¢fDNA concentration was
significantly higher in invasive breast cancer vs. the diseases-free
subjects, whereas the cases of cancer-free and benign tumors vs.
invasive cancer samples showed no significant differences (Fig.
3b). In addition, there was no significant difference in concentra-
tion between patients with invasive and in situ cancer. Of note,
the 51 diseases/medication-free subjects (subgroup 2), that were
classified as “cancer like” by HILIC+, Lipid RPC+ and Lipid RPC—
LC-MS assays respectively also had a significantly higher cfDNA
concentration (p =0.002) compared to the rest of the healthy
controls (n=237), whereas non-significant differences were
observed vs. the invasive cancer samples. In addition, the
subgroup of 237 diseases-free subjects (subgroup 1) had

Oncogene
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n x Fold concentration changes between the studied groups. The n x Fold was calculated by the equation: nx Fold = log, (%m)-

Moreover, one-way ANOVA analysis coupled with t-test was performed for the determination of the statistically significant (p < 0.05)
differences of the observed cfDNA concentration changes for each case. For each comparison, cfDNA concentration is higher in the

underlined group.

significantly lower cfDNA concentration vs. the invasive cancer
(Fig. 3b). Consequently, cfDNA results were in total agreement
with the LC-MS metabolomics data. It should be noted that
Pearson correlation analysis (r = 0.068) of plasma cfDNA measured
values with subjects’ age indicated insignificant contribution of
age to the cfDNA differences between the studied groups.

As expected, the MVA analysis of the combined c¢fDNA and
LC-MS datasets—since their agreement—produce superior OPLS-
DA models i.e., with higher discrimination accuracy (see MVA results
of HILIC+ and cfDNA combined datasets in Supplementary Fig. 9).

DISCUSSION

We report the metabolomic and cfDNA analysis of a large cohort of
sequential plasma samples from 999 women attending for routine
breast screening and validation with an independent cohort of 186
healthy women from the AIRWAVE study. Our main findings
demonstrate the utility of cfDNA quantification here. This represents
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a real-world cohort, and results of this comprehensive work exemplify
the challenges of establishing such a complex composite biomarker
panel since the resulting accuracy of the signature derived from the
UPLC-MS analysis was only moderate (AUCs between 0.62 and 0.76).

Several metabolomics studies have attempted to detect the
breast cancer fingerprint in serum and plasma [1, 23, 24], showing
high accuracy in models (AUC > 0.9), which discriminate breast
cancer from healthy subjects. The majority of the models
described in the aforementioned studies are derived by MS
plasma or tissue analyses with a maximum of 100 advanced breast
cancer and 100 controls, although another NMR-based metabo-
lomic study employing a large serum/plasma cohort succeeded in
monitoring and predicting BC relapse (accuracy = 71%) and
discriminating early BC from metastatic BC patients (accuracy =
85%) [25]. Here, our large cohort analysis represents a much earlier
cancer stage with greater power based on the larger sample size
(999 women). NMR untargeted metabolomics data were incapable
of discriminating/fingerprinting any of the patient groups (Fig. 1)

SPRINGER NATURE
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in this screening population. Moreover, using a targeted approach
nineteen metabolites and 112 lipoproteins concentrations
extracted by NMR data, were also statistically insignificant among
the studied groups (Supplementary Fig. 1). It is noteworthy that
many plasma metabolites quantified herein are reported to
change in invasive BC (e.g. L-glutamine, L-valine, creatine etc.)
[1, 23, 24]. However, in this large cohort of early screen detected
breast cancers none of these metabolites exhibited statistically
significant variation in concentration (Supplementary Fig. 1). Such
‘negative data’ serves to reinforce the importance of performing
screening studies in larger cohorts. Strikingly, our results are in
agreement with a very recent study, where it was shown that NMR
metabolomic data were multi-disease specific for patients risk
stratification except from breast cancer [26]. Nevertheless, it is
notable that the measured concentration of several plasma
metabolites (i.e. creatine, histidine, valine, alanine and tyrosine)
was found slightly (but not significantly) elevated in the plasma
samples of women with invasive BC (Supplementary Fig. 1), which
is in accordance to published literature [23, 27].

An advantage NMR spectroscopy is in its high reproducibility
(provided that sample collection, preparation and spectra
acquisition parameters are the same for all cases) [21], which
can allow meaningful comparisons between datasets acquired
from different cohorts. With this in mind, we constructed MVA
models that discriminated invasive cancer, in situ and benign
samples for an independent cohort of healthy women with high
accuracy based upon the calculated absolute concentrations of 17
plasma metabolites as well as of 112 lipoproteins. Loadings of the
models with high classification accuracy, provided several
potential biomarkers which many of them were in line with the
aforementioned literature. Namely, results showed an alteration of
amino-acids and TCA circle metabolism in the invasive and in situ
cancer subjects since in both cases there was a decrease of citric
acid and an increase of histidine and glutamine [23, 27].

In addition, the increase of pyruvic acid in the plasma of cancer
patients implies the altered glucose metabolism due to the presence
of cancer cells (Warburg effect) [28, 29]. Several plasma lipoproteins
were also observed to significantly change (Supplementary Table 2)
consistent with evidence that breast cancer is influenced by
environmental factors and lipoprotein levels in turn have a strong
relationship with diet [30]. Data on the specific lipoproteins we have
identified are lacking, and merits further investigation.

The employment of UPLC-MS lipidomic and small molecule
metabolites profiling provided improved discrimination accu-
racy between invasive BC and healthy controls (UPLC-MS
assays mean accuracy = 65.4% and NMR assays mean accuracy
= 51%). Attempting to reduce the MS data “noise” due to any
medication or other diseases of the healthy controls, we
focussed on analysis of 288 disease and medication-free
subjects, which provided an improved but still not high,
classification accuracy from the invasive BC. However, MS data
from the 288 diseases/medication-free subjects identified a
subgroup of 51 that were commonly predicted as invasive BC
patients from all MS assays compared to the rest (n =237).

Of note, these data are in agreement with data for plasma
cfDNA concentration, which we have shown previously to be
associated with progression free survival, response rate and
overall survival in patients with metastatic breast cancer [3, 31].
Clinical follow up revealed no unusual features for this group of 51
healthy subjects and all were confirmed as disease free at a census
date of November 2019 suggesting that these features do not
necessarily characterize a circulating cancer phenotype. Addition-
ally, it has been shown recently that cfDNA is a significant
biomarker of aging [32], however, in our study plasma cfDNA
measured values showed insignificant contribution of age to the
cfDNA differences between the studied groups.

Importantly, our screening study was carried out at a single site
working to good clinical practice as quality assurance and
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following a validated standard operating procedure for plasma
sample collection and processing helping to minimize any
variation due to preanalytical processing. This is both an
advantage and a limitation. Future studies will require standardi-
zation between institutions: for example, use of lidocaine as an
anesthetic was found as a metabolite in our analyses and other
external factors (e.g. diet) are well known to influence metabo-
lomic findings. We also used cfDNA not circulating tumor DNA
(ctDNA) due to the cost issues in a large diagnostic cohort such as
this. Further studies may wish to include this after cfDNA analysis.

In aggregate, we describe here comparative analysis of plasma
cfDNA with the metabolome in a large cohort of women recalled
for mammography at Imperial College Healthcare NHS Trust,
including healthy women and women with early detected breast
cancer, ductal carcinoma in situ and invasive breast cancer. We did
not find significant differences between groups for all metabolites,
but found higher plasma cfDNA levels in invasive cancers than all
other groups. We then stratified the supervised OPLS-DA analysis
and total cfDNA concentration showing high discrimination
accuracy between invasive cancers and healthy controls. We also
compared OPLS-DA data for invasive breast cancers to a second
independent control group of healthy individuals from the
AIRWAVE study and found similar discrimination between breast
cancers and healthy controls.

Our results not only confirm that standardization of collection
and processing of biospecimens is central to reliable metabolomics
studies but highlight the importance of control groups selection
criteria for the -omics comparative studies. It is noteworthy that all
univariate analyses of cfDNA concentration corroborate results
from the MS based MVA models. To our knowledge, this is the first
report of agreement between molecular phenomics (i.e., metabo-
lomics) and plasma cfDNA levels for discriminating breast cancer
from healthy subjects in a screening population. Follow on studies
will involve analysis of candidate features in a larger validation
series as well as comparing results with serial plasma samples
taken at the next routine screening mammography appointment,
but we provide foundations for its role in the diagnostic pathway
for breast cancer.

MATERIALS AND METHODS

Patients and samples

We recruited individuals from the Breast Screening and Monitoring Study
(BSMS) who were recalled from mammography. The study protocol was
approved by the Riverside Research Ethics Committee (Imperial College
Healthcare NHS Trust; Tissue Bank Ethics/REC reference numbers: 12/LO/
2019; 13/LO/1152; R10015-16A; 07/Q0401/20) and conducted in accor-
dance with Good Clinical Practice Guidelines and the Declaration of
Helsinki. All patients gave written informed consent prior to participation
and were over 18 years of age. 20 ml blood was taken into K2 EDTA tubes
(BD Biosciences) and processed to recover plasma and buffy coat within
2 h of collection and stored at —80 °C for subsequent extraction of cfDNA
and germline DNA as described previously [10]. The cohort included
individuals with no breast disease, and women with biopsy confirmed
benign breast disease, carcinoma in situ and those with invasive breast
cancer. Driven by the LC-MS multivariate analyses (see below statistical
methods) as well as clinical metadata (Supplementary Table 1), we formed
several subgroups of samples due to the presence of features from
medication (e.g., lidocaine, etc.). Furthermore, an additional subgroup was
formed from the cancer/medication-free samples that was statistically
classified as invasive breast cancer within high accuracy. This was also
driven by the cfDNA assay results.

A second independent control group of healthy individuals was also
analyzed from women recruited from the AIRWAVE study (MREC/13/NW/
0588). The AIRWAVE Health Monitoring Study was established to evaluate
possible health risks associated with the use of TETRA, a digital communica-
tion system used by the police forces and other emergency services. This is
an ongoing long-term observational study following up the health of police
officers and staff across the United Kingdom, with the ability to monitor both
cancer and non-cancer health outcomes through data linkage. 53,280
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participants have been recruited between June 2004 and March 2015 with a
response rate averaging 50% of employees in participating forces. At
baseline, participants completed an enrollment questionnaire (sent via
routine administration or the occupational health service), or a comprehen-
sive health screening performed locally, or both. Screened participants have
now been followed-up for 7.5 years on average.

Each recruited individual provided a single EDTA 7 mL blood sample for
subsequent plasma isolation and storage at —80 °C. This cohort was used
for the validation of the cancer/medication-free group, aiming at testing its
NMR-based model robustness/predictive accuracy, and as an external
(independent) cancer/medication-free cohort versus invasive cancer
samples for the detection of any biomarkers.

Ultra-performance liquid chromatography-mass spectrometry
(UPLC-MS) — "H Nuclear Magnetic Resonance (NMR)
spectroscopy

Plasma samples for UPLC-MS and NMR analyses were prepared and data
acquired as published previously [33-35]. For UPLC-MS, the separation of
lipophilic analytes by reversed-phase chromatography (lipid RPC) and the
separation of hydrophilic analytes (e.g., polar and charged metabolites) by
hydrophilic interaction liquid chromatography (HILIC) took place. MS
positive and negative electrospray ionization modes produced lipid
positive and negative (lipid RPC+ and lipid RPC— respectively) and HILIC
positive (HILIC+) datasets. Solution "H-NMR spectra of all samples were
acquired using a Bruker IVDr 600 MHz spectrometer (Bruker BioSpin)
operating at 14.1. Further details about the quality control of both UPLC-
MS and NMR data, metabolites quantification as well as experimental
procedures can be found in supplementary materials.

Extraction and quantitation of plasma cfDNA

Cell-free DNA was isolated from 4 ml of blood plasma with the MagMAX
Cell-free DNA Isolation Kit (Thermo Fisher Scientific) on the Kingfisher Flex
instrument (Thermo Fisher Scientific) using the MagMAX cfDNA-4mL-
Flex.bdz protocol and processed according to the manufacturer’s
instructions.

Statistical analyses — multivariate/univariate statistics
Multivariate statistical (MVA) models, specifically Orthogonal Partial Least
Squares-Discriminant Analysis (OPLS-DA) of NMR and UPLC-MS metabo-
lomics data and clinical metadata were generated between study
participants with invasive cancer (n=105), in situ (n=40) and benign
breast disease (n=214), and imaging or biopsy confirmed cancer-free
controls (n=614). Modeling was performed in MATLAB (MathWorks,
version R2019b), using the PLS_Toolbox version 8.7.1 (2019) (Eigenvector
Research, Inc, Manson, WA, USA 98831; software available at http://
www.eigenvector.com). All multivariate statistical models and their metrics
were produced after cross-validation. Any correlation of metabolomics/
cfDNA data with subjects’ age/height/weight (see Supplementary Table 1)
was performed by refitting each multivariate model after adding each
variable into the model and calculating its accuracy.

For all studied groups, age/height/weight were not appeared as
statistically significant variables. Variables loadings data (i.e., metabolites’
LC-MS/NMR features) and Variable Importance in Projection (VIP) scores
from each multivariate OPLS-DA model were used to initially evaluate any
significant feature (i.e., any metabolite that could drive the classification
between studied groups). VIP scores estimate the importance of each
variable in the projection used in a PLS model and is often used for
variable selection. A variable with a VIP Score close to or greater than 1
(one) can be considered important in given model. Variables with VIP
scores significantly less than 1 (one) are less important and might be good
candidates for exclusion from the model [36]. Nevertheless, each variable’s
statistical significance (i.e. metabolites and lipoproteins concentration) was
further tested by univariate (ANOVA) analyses via built in MATLAB
functions (https://uk.mathworks.com/help/stats/one-way-anova.html). Any
reported p-values were corrected for false discovery rate (FDR) (applying
Benjamini-Hochberg FDR correction [22] using “fdr_bh" function (https://
www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh).

DATA AVAILABILITY

The datasets generated and/or analyzed during the current study are not publicly
available due to individuals’ privacy reasons but are available from PGT and JAS on
reasonable request and formal legal agreement.
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Any software/code employed in the study is available to download from the links
reported in the Methods section: “Statistical analyses — Multivariate/Univariate
statistics”.
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